

Joint Dynamics using Asymptotic Methods

August 2010

Outline of Presentation

1. Problem

2. Model Description

- Local Volatility Component
- Stochastic Volatility Component

3. Cross Smile Estimation

- Spread Pricing
- Smile Calculation

4. Back testing
5. Summary \& Conclusions

Financial Problem

USDJPY and AUDUSD are two liquid currency pairs (ATM vols known, Smile known)

AUDJPY is less liquid (ATM vols known)

What is the smile of AUDJPY?

Mathematical Problem

$S_{1, t}, S_{2, t}$ Marginal Laws known

What is the law of $\frac{S_{1, t}}{S_{2, t}}$?

Approach

Use Risk Neutral Approach to take on board all observed data (photography)

Use Historical Data to incorporate evolution information (dynamic)

Base analysis on rich models (Multi LSVLC)
Use efficient numerical techniques to perform all calculations (asymptotics)

. 1 Model Description

Model

Each currency pair is a mixture of local volatility and stochastic volatility

Stochastic volatility introduces correlation between volatilities

Local volatility introduces level dependency to the cross

Literature I - on local correlation

A-M. Avenalleda, D. Boyer-Olson, J. Busca and P.Friz, << Reconstructing Volatility >>, October 2002

B-V. Durrleman + N. El-Karoui, 《 Basket Skew », April 2007

C-Bruno Dupire << Basket Skew Asymptotics > working paper 2004
D-X. Burtschell, J. Gregory and J-P. Laurent, << Beyond the Gaussian Copula: Stochastic and Local Correlation », Working Paper, 2005

E-A. Langnau, << Introduction Into Local Correlation Modelling », September 2009.

F-B. Jourdain, Mohamed Sbai "Coupling Index and stocks" 2009

Literature II - some comments

A-It gives the framework for calibrating baskets and numerical algorithms for short term asymptotics for pricing

B-C-It provides a good grasp of the phenomenology with model free approach
Good for the phenomenology

D-Simple idea to expand the dimension and obtain stochastic correlation at a cheap cost (is used for the local correlation model)

E-Simplest local volatility extension plus direct calibration formulae and model risk illustration through the chewing gum effect

F- Nice numerical method - particle method, specific to baskets

However,

As will be shown in the sequel, we need:

- local volatility and local correlation
- Fast Calibration : flow business
- Precise formulae for pricing

Local Volatility Component

$$
\begin{aligned}
& \frac{d S_{1, t}}{S_{1, t}}=\sigma_{1}\left(S_{1, t}, t\right) d W_{1, t} \\
& \frac{d S_{2, t}}{S_{2, t}}=\sigma_{2}\left(S_{2, t}, t\right) d W_{2, t} \\
& \left\langle d W_{1, t}, d W_{2, t}\right\rangle=\rho_{12}\left(\frac{S_{1, t}}{S_{2, t}}\right) d t
\end{aligned}
$$

Equation (1)

Historical Data
confirm link between correlation and cross level

Local Volatility Component (2)

Stoch. Volatility Component

$\frac{d S_{1, t}}{S_{1, t}}=\sigma_{1} e^{\alpha_{1} \tilde{W}_{1, t}-\frac{1}{2} \alpha_{1}^{2} t} d W_{1, t}$
$\frac{d S_{2, t}}{\boldsymbol{S}_{2, t}}=\sigma_{2} e^{\alpha_{2} \tilde{W}_{2, t}-\frac{1}{2} \alpha_{2}^{2} t} d W_{2, t}$
$<d W_{1, t}, d W_{2, t}>=\rho_{12}^{S} d t$
$<d \tilde{W}_{1, t}, d \tilde{W}_{2, t}>=\rho_{12}^{\sigma} d t$
$<d W_{1, t}, d \tilde{W}_{2, t}>=\rho_{12}^{s, \sigma} d t$
$<d \tilde{W}_{1, t}, d W_{2, t}>=\rho_{12}^{\sigma, s} d t$

Spot correlation is calibrated to the atm of the cross

Volvol correlation is a trader's input that can be estimated through historical data

Spot vol correlation has a very small impact

Eq. (3)

.2 Mathematical Results

Results

A- Short Term Asymptotic for LSVLC

B- Multi Stochastic VoL Perturbation approach

C- Multi Local Volatility Using most likely path combined with gradient conditioning

D- LSVLC combination result

A-Ito and Short Term Asymptotic

Pricing European Options under the general Local Stochastic

 Volatility and Local Correlation$$
\begin{aligned}
& \frac{d S_{i, t}}{S_{i, t}}=\sigma_{i} d W_{i, t}^{s}, i=1, \ldots, n \\
& \frac{d \sigma_{i}}{\sigma_{i}}=\alpha_{i} d W_{i, t}^{\sigma} \\
& <d W_{i, t}^{u}, d W_{j, t}^{v}>=\rho_{i, j}^{u, v}\left(S_{1, t}, \ldots, S_{n, t}\right) d t, \ldots, u, v \in\{S, \sigma\} \quad \text { Eq. (4) }
\end{aligned}
$$

We want to price the Basket European options "linear"

$$
B_{T}=\sum_{i=1}^{n} S_{i}(T) \quad \text { Eq. (5) }
$$

A-Ito and Short Term Asymptotic

Notations

$$
\begin{aligned}
& \sigma_{B}^{2}=\sum_{i, j=1}^{n} \rho_{i, j} \sigma_{i} \sigma_{j} \omega_{i} \omega_{j} \\
& \omega_{i}=\frac{S_{i}}{\sum_{j=1}^{n} S_{j}}
\end{aligned}
$$

$$
\beta_{i, j}=\frac{\rho_{i, j} \sigma_{i} \sigma_{j} \omega_{i} \omega_{j}}{\sum_{i, j=1}^{n} \rho_{i, j} \sigma_{i} \sigma_{j} \omega_{i} \omega_{j}}
$$

$$
\beta_{i}=\sum_{j=1}^{n} \beta_{i, j}=\sum_{j=1}^{n} \beta_{j, i}
$$

Approach

- Use Ito on special variable
- Take limit when time goes to zero

A-Ito and Short Term Asymptotic

Result

$$
\begin{aligned}
& X_{t}=B_{T} \frac{1}{\sigma_{B}} \\
& d X_{t}=\frac{\sum_{i=1}^{n} \sigma_{i} \omega_{i} d W_{i, t}}{\sigma_{B}}-\frac{1}{2} \ln X_{t} \frac{d \sigma_{B}^{2}}{\sigma_{B}^{2}}+\theta_{t} d t \\
& \frac{d \sigma_{B}^{2}}{\sigma_{B}^{2}}=\sum_{i, j=1}^{n} \underbrace{\beta_{i, j}}_{\text {correatio }} \underbrace{\frac{d \rho_{i, j}}{\rho_{i, j}}}_{\text {n }}+2 \sum_{i=1}^{n} \underbrace{\beta_{i} \frac{d \sigma_{i}}{\frac{\sigma_{i}}{\sigma_{i}}}}_{\text {dynamice }} \underbrace{}_{\text {dynamic }}+2 \sum_{i=1}^{n} \underbrace{\beta_{i} \frac{d \omega_{i}}{\omega_{i}}}_{\text {weight' }}
\end{aligned}
$$

Three terms contributing to the distortion from a log normal

- (1) Weights variability
- (2) Each underlying own distortion
- (3) Correlation skew

A-Case I : Pat Hagan formula recovered

We look at a one stoch vol model - keep one underlying :

$$
\begin{aligned}
& X_{t}=B_{T} \frac{1}{\sigma_{B}} \\
& \frac{d X_{t}}{X_{t}}=\sigma\left(X_{t}\right) d Z_{t} \\
& \sigma^{2}\left(X_{t}\right)=1+\alpha^{2} \ln ^{2}\left(X_{t}\right)-2 \rho_{S, \sigma} \alpha \ln \left(X_{t}\right)
\end{aligned}
$$

This becomes a local volatility model for which the implied volatility is given by the classical BBF formula in [6]

Recover easily the Pat Hagan formula cf [7]

A-Case II : Sum of log-normals is not a log normal

We keep one term coming from the weights variability:

$$
\begin{aligned}
& X_{t}=B_{T} \frac{1}{\sigma_{B}} \\
& \frac{d X_{t}}{X_{t}}=\sigma\left(X_{t}\right) d Z_{t} \\
& \sigma^{2}\left(X_{t}\right)= \\
& \sum_{i, j=1}^{n} \frac{w_{i} \sigma_{i} w_{j} \sigma_{j} \rho_{i, j}^{S, S}}{\sigma_{B}^{2}} \\
& -2 \ln \left(X_{t}\right) \sum_{i, j=1}^{n}\left(\beta_{i}-w_{i}\right) \frac{\sigma_{i} w_{j} \sigma_{j} \rho_{i, j}^{S, S}}{\sigma_{B}} \\
& +\ln ^{2}\left(X_{t}\right) \sum_{i, j=1}^{n}\left(\beta_{i}-w_{i}\right)\left(\beta_{j}-w_{j}\right) \sigma_{i} \sigma_{j} \rho_{i, j}^{S, S}
\end{aligned}
$$

- We have a skew
- We have a curvature
- The distribution that is generated is not a log-normal

A-Case III : Multi Stoch vol and no local correlation nor local volatility

We keep contribution from each underlying smile

We neglect the variability of the weights (in practice it is negligible)

$$
\begin{aligned}
& X_{t}=B_{t} \frac{1}{\sigma_{B}} \\
& \frac{d X_{t}}{X_{t}}=\sigma\left(X_{t}\right) d Z_{t} \\
& \sigma^{2}\left(X_{t}\right)=1-2 \ln \left(X_{t}\right) \sum_{i, j=1}^{n} \frac{\sigma_{i}}{\sigma_{B}} w_{i} \beta_{j} \alpha_{j} \rho_{i, j}^{S, \sigma}+\ln ^{2}\left(X_{t}\right) \sum_{i, j=1}^{n} \beta_{i} \alpha_{i} \beta_{j} \alpha_{j} \rho_{i, j}^{\sigma, \sigma}
\end{aligned}
$$

A-Case IV : Multi Stoch vol asymptotic implied volatility calculation

Moment match the two coefficients of the $\log (X)$ expansions

Use the Pat Hagan formula

$$
\begin{aligned}
& \tilde{\alpha}^{2}=\sum_{i, j=1}^{n} \beta_{i} \alpha_{i} \beta_{j} \alpha_{j} \rho_{i, j}^{\sigma, \sigma} \\
& \tilde{\rho} \tilde{\alpha}=\sum_{i, j=1}^{n} \frac{\sigma_{i}}{\sigma_{B}} w_{i} \beta_{i} \alpha_{i} \rho_{i, j}^{S, \sigma}
\end{aligned}
$$

$$
\Sigma_{B S}(T, K)=\Sigma\left(T, B_{0}\right) f\left(\frac{\ln \left(\frac{B_{0}}{K}\right)}{\Sigma\left(T, B_{0}\right)}\right)
$$

$$
f(x)=\frac{\tilde{\alpha} x}{\ln \left(\frac{\sqrt{\tilde{\alpha}^{2} x^{2}-2 \tilde{\alpha} \tilde{\rho} x+1}-\tilde{\rho}+\tilde{\alpha} x}{1-\tilde{\rho}}\right)}
$$

Moment Match
Pat Hagan Formula cf[7]

A-Case V : Local Correlation Model

No stochastic volatility

We assume that the local correlation is given by the following formula
$\frac{d \rho_{i, j}}{\rho_{i, j}}=-\left(1-\delta_{i-j}\right) \lambda_{i, j} \ln \left(X_{t}\right) d Z_{t}$
We obtain the following dynamic

```
\(X_{t}=B_{T} \frac{1}{\sigma_{B}}\)
\(\frac{d X_{t}}{X_{t}}=\frac{\sum_{i=1}^{n} \sigma_{i} \omega_{i} d W{ }_{i, t}}{\sigma_{B}}-\frac{1}{2} \ln { }^{2} X_{t} \sum_{i, j=1}^{n} \beta_{i, j} \lambda_{i, j} d Z_{t}+\theta_{t} d t\)
\(\frac{d X_{t}}{X_{t}}=\sigma\left(X_{t}\right) d B\)
\(\sigma^{2}\left(X_{t}\right)=1+\frac{1}{4} \ln { }^{4} X_{t}\left(\sum_{i, j=1}^{n} \beta_{i, j} \lambda_{i, j}\right)\)
```


B-Multi Stoch. Volatility European

Pricing European Options under multi asset Stochastic

 Volatility can be performed using perturbation techniques$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d S_{i}}{S_{i}}=\mu_{i} d t+\sigma_{i} d W_{i}^{s} \\
d \sigma_{i}=\varepsilon \alpha_{i} \sigma_{i} d W_{i}^{\sigma}
\end{array} \quad\right. \text { Eq. (6) } \\
& \left\langle d W_{i}^{s}, d W_{j}^{\sigma}\right\rangle=\sqrt{\varepsilon} \rho_{i, j}^{s, \sigma} d t,\left\langle d W_{i}^{s}, d W_{j}^{s}\right\rangle=\rho_{i, j}^{s} d t,\left\langle d W_{i}^{\sigma}, d W_{j}^{\sigma}\right\rangle=\rho_{i, j}^{\sigma} d t
\end{aligned}
$$

We want to price the European payoff f

$$
u=E\left(f\left(S_{1}(T), \ldots, S_{n}(T)\right) \mid S_{1}(t)=s_{1}, \ldots, S_{n}(t)=s_{n}, \sigma_{1}(t)=\sigma_{1}, \ldots, \sigma_{n}(t)=\sigma_{n}\right)
$$

B-Multi Stoch. Volatility (2)

It is based on the Black Scholes price (eps=0) and its greeks
Result $\left\{\begin{array}{c}\partial_{t} u_{0}+\sum_{i}\left(\mu_{i}-\frac{1}{2} \sigma_{i}^{2}\right) \partial_{x_{i}} u_{0}+\frac{1}{2} \sum_{i, j} \rho_{i, j}^{s} \sigma_{i} \sigma_{j} \partial_{x_{x}, x_{j}} u_{0}=0 \quad \text { Eq. (7) } \\ u_{0}(T)=f\end{array}\right.$

$$
\begin{aligned}
& u=u_{0} \\
& \left.+(T-t)\left\{\sum_{i, j} \frac{1}{12} \alpha_{i} \alpha_{j} \sigma_{i}(t) \sigma_{j}(t) \rho_{i, j}^{\sigma \sigma \sigma} \frac{\partial u_{0}}{\partial\left(\sigma_{i} \sigma_{j}\right.}\right\}\right\} \\
& +(T-t)\left\{\sum_{i, j} \frac{1}{6} \alpha_{i} \alpha_{j} \sigma_{i}(t) \sigma_{j}(t) \rho_{i, j}^{\sigma_{i j} \sigma} \frac{\partial^{2} u_{0}}{\partial \sigma_{i} \partial \sigma_{i}}\right\} \\
& +(T-t)\left\{\left\{\sum_{i, j} \frac{1}{2} \sigma_{i}(t) \alpha_{j} \sigma_{j}(t) \rho_{i, j}^{s, \sigma} S_{i} \frac{\partial^{2} u_{0}}{\partial s_{i}, \sigma_{j}}\right\}\right. \\
& \text { Black \& Scholes } \\
& \text { cross Varga } \\
& \text { cross Vomma } \\
& \text { cross Vanna }
\end{aligned}
$$

B-Proof in 1D

Dynamic in 1D is given by:

$$
\begin{aligned}
\frac{d S_{t}^{\varepsilon}}{S_{t}^{\varepsilon}} & =\mu_{t} d t+\sigma_{t} d W_{t}^{1} \\
d \sigma_{t} & =\varepsilon \eta\left(t, \sigma_{t}\right) d t+\sqrt{\varepsilon} \alpha\left(\sigma_{t}, t\right) d W_{t}^{2}
\end{aligned} \quad \mathbf{E q .}
$$

Option's price satisfies $\quad C(t, s, \varepsilon)$

$$
\begin{aligned}
& C_{t}+\mu_{t} s C_{s}+\frac{1}{2} \sigma^{2} s^{2} C_{s s}+\varepsilon\left(\eta(t, \sigma) C_{\sigma}+\frac{\alpha^{2}(t, \sigma)}{2} C_{\sigma \sigma}+\sigma \rho_{t} s \alpha(t, \sigma)\right)=0 \quad \text { Eq. (10) } \\
& C(T, s)=\phi(s)
\end{aligned}
$$

B-Proof in 1 D: order 0

Equation order 0 is Black \& Scholes:

$$
\begin{aligned}
& C_{t}^{0}+\mu_{t} s C_{s}^{0}+\frac{1}{2} \sigma_{0}^{2} s^{2} C_{s s}^{0}=0 \quad \text { Eq. (11) } \\
& C^{0}(T, s)=\phi(s)
\end{aligned}
$$

Change of variables

$$
\phi_{\exp }(x)=\phi\left(S_{0} e^{x}\right)
$$

$C_{t}+\left(\mu_{t}-\frac{\sigma^{2}}{2}\right) C_{x}+\frac{1}{2} \sigma^{2} C_{x t}+\varepsilon\left(\eta(t, \sigma) C_{\sigma}+\frac{\alpha^{2}(t, \sigma)}{2} C_{\sigma \sigma}+\sigma \rho_{t} \alpha(t, \sigma) C_{x \sigma}\right)=0 \quad$ Eq. (12) $C(T, s)=\phi_{\text {exp }}(s)$

B-Proof in 1 D: order 1

Compute derivative w.r.t to epsilon:
 $v^{\varepsilon}(t, x)=\partial_{\varepsilon} C(t, x, \varepsilon)$

Equation becomes:

$$
\begin{aligned}
& v_{t}^{\varepsilon}+\left(\mu_{t}-\frac{\sigma^{2}}{2}\right) v_{x}^{\varepsilon}+\frac{1}{2} \sigma^{2} v_{x x}^{\varepsilon}+\varepsilon\left(\eta(t, \sigma) v_{\sigma}^{\varepsilon}+\frac{\alpha^{2}(t, \sigma)}{2} v_{\sigma \sigma}^{\varepsilon}+\sigma p_{t} \alpha(t, \sigma) v_{x \sigma}^{\varepsilon}\right)= \\
& -\left(\eta(t, \sigma) C_{\sigma}+\frac{\alpha^{2}(t, \sigma)}{2} C_{\sigma \sigma}+\sigma \rho_{t} \alpha(t, \sigma) C_{x \sigma}\right) \\
& v^{\varepsilon}(T, x)=0
\end{aligned}
$$

B-Proof in 1 D: Math Toolbox

(1) Lemma (magical lemma):

- Let Xt be a martingale and let $\mathbf{P (t ,}$ $\mathrm{Xt})$ a pricing function then :

Eq. (14)

$$
\frac{\partial^{n} P}{\partial x^{n}}\left(t, X_{t}\right)=E\left(\frac{\partial^{n} P}{\partial x^{n}}\left(T, X_{T}\right) X_{t}\right) \quad \forall n
$$

Feymann-Kac

if X_{t} satifies the following SDE

$$
d X_{t}=a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d W_{t}
$$

Then the following value function

$$
u(t, x)=E_{X_{t}=x}\left(f\left(X_{T}\right)+\int_{t}^{T} g\left(X_{s}\right) d s\right)
$$

Satisfies The Feymann - Kac equation

$$
\begin{aligned}
& u_{t}+a u_{x}+\frac{1}{2} b u_{x x}=g \\
& u_{T}=f
\end{aligned}
$$

Eq. (15)

B-Proof in 1 D: order 1

Keep only order 1 in eps:
$v_{1}+\left(\mu_{t}-\frac{\sigma_{0}^{2}}{2}\right) v_{x}+\frac{1}{2} \sigma_{0} v_{x x}=-\left(\eta\left(t, \sigma_{0}\right) C_{o}^{0}+\frac{\alpha^{2}\left(t, \sigma_{0}\right)}{2} C_{o \sim}^{0}+\sigma_{0} \rho_{t} \alpha\left(t, \sigma_{0}\right) C_{10}^{0}\right) \quad$ Eq. (16)
$v(T, x)=0$
Use Feymann-Kac:

$$
\begin{aligned}
v(t, x) & =E\left[\int _ { t } ^ { T } \left(\eta\left(\theta, \sigma_{0}\right) C_{\sigma}^{0}\left(\theta, X_{\theta}\right)+\frac{1}{2} \alpha^{2}\left(\theta, \sigma_{0}\right) C_{\sigma \sigma}^{0}\left(\theta, X_{\theta}\right) \quad\right.\right. \text { Eq. (17) } \\
& \left.\left.+\sigma_{0} \rho_{\theta} \alpha^{2}\left(\theta, \sigma_{0}\right) C_{x \sigma}^{0}\left(\theta, X_{\theta}\right)\right) d \theta \mid X_{t}=x\right]
\end{aligned}
$$

To use lemma we need to transform vol derivatives into x derivatives

B-Proof in 1 D: order 1

Following Black\&Scholes relations hold:

$$
\begin{aligned}
& C_{\sigma}^{0}(t, x)=\sigma_{0}(T-t)\left(C_{x x}^{0}(t, x)-C_{x}^{0}(t, x)\right) \\
& C_{x \sigma}^{0}(t, x)=\sigma_{0}(T-t)\left(C_{x x x}^{0}(t, x)-C_{x x}^{0}(t, x)\right) \\
& C_{\sigma \sigma}^{0}(t, x)=(T-t)\left(C_{x x}^{0}(t, x)-C_{x}^{0}(t, x)\right)+\sigma_{0}^{2}(T-t)^{2}\left(C_{x x x}^{0}(t, x)-2 C_{x x x}^{0}(t, x)+C_{x x}^{0}(t, x)\right)
\end{aligned}
$$

B-Proof in 1 D: order 1

Therefore:

$$
\begin{align*}
& E\left[\int_{t}^{T} \eta\left(\theta, \sigma_{0}\right) C_{\sigma}^{0}\left(\theta, X_{\theta}\right) d \theta\right]=\sigma_{0}\left(\int_{t}^{T}(T-\theta) \eta\left(\theta, \sigma_{0}\right) d \theta\right)\left(C_{x x}^{0}(t, x)-C_{x}^{0}(t, x)\right)=\frac{1}{(T-t)}\left(\int_{t}^{T}(T-\theta) \eta\left(\theta, \sigma_{0}\right) d \theta\right) C_{\sigma}^{0}(t, x) \\
& E\left[\int_{t}^{T} \rho_{\theta} \alpha\left(\theta, \sigma_{0}\right) C_{x \sigma}^{0}\left(\theta, X_{\theta}\right) d \theta\right]=\sigma_{0}\left(\int_{t}^{T}(T-\theta) \eta\left(\theta, \sigma_{0}\right) d \theta\right)\left(C_{x x x}^{0}(t, x)-C_{x x}^{0}(t, x)\right) \\
& =\frac{1}{(T-t)}\left(\int_{t}^{T}(T-\theta) \rho_{\theta} \alpha\left(\theta, \sigma_{0}\right) d \theta\right) C_{x \sigma}^{0}(t, x) \quad \text { Eq. (19) } \tag{19}\\
& E\left[\int_{t}^{T} \alpha^{2}\left(\theta, \sigma_{0}\right) C_{\sigma \sigma}^{0}\left(\theta, X_{\theta}\right) d \theta\right]=\left(\int_{t}^{T}(T-\theta) \alpha^{2}\left(\theta, \sigma_{0}\right) d \theta\right)\left(C_{x x}^{0}(t, x)-C_{x}^{0}(t, x)\right) \\
& +\sigma_{0}^{2}\left(\int_{t}^{T}(T-\theta)^{2} \alpha^{2}\left(\theta, \sigma_{0}\right) d \theta\right)\left(C_{x x x x}^{0}(t, x)-2 C_{x x x}^{0}(t, x)+C_{x x}^{0}(t, x)\right)
\end{align*}
$$

B-Proof in 1 D: conclusion

finally:

$C(t, x, \varepsilon)=C^{0}(t, x)+\varepsilon\left(\right.$ VegaFactor $C_{\sigma}^{0}(t, x)+$ VannaFacto $r C_{x \sigma}^{0}(t, x)+V o \lg$ aFactor $\left.C_{\sigma \sigma}^{0}(t, x)\right)$

$$
\text { VegaFactor }=\frac{1}{(T-t)}\left(\int_{t}^{T}(T-\theta) \eta\left(\theta, \sigma_{0}\right) d \theta\right)+\frac{1}{2(T-t) \sigma_{0}}\left(\int_{t}^{T}(T-\theta) \alpha^{2}\left(\theta, \sigma_{0}\right) d \theta\right)-\frac{1}{2(T-t)^{2} \sigma_{0}}\left(\int_{t}^{T}(T-\theta)^{2} \alpha^{2}\left(\theta, \sigma_{0}\right) d \theta\right)
$$

VolgaFactor $=\frac{1}{2(T-t)^{2}} \int_{t}^{T}(T-\theta)^{2} \alpha^{2}\left(\theta, \sigma_{0}\right) d \theta$
Eq. (20)
VannaFactor $=\frac{s}{(T-t)} \int_{t}^{T}(T-\theta) \sigma_{0} \rho_{\theta} \alpha\left(\theta, \sigma_{0}\right) d \theta$

C-Multi European under Local Volatility Local Correlation

 (1)Pricing European Options under multi local volatility local correlation model can be performed using perturbation techniques

$$
\begin{aligned}
& \frac{d S_{\mathrm{i}}}{S_{\mathrm{i}}}=\mu_{i} d t+\sigma_{i}\left(t, S_{\mathrm{i}}\right) d W_{i} \\
& <d W_{i}, d W_{j}>=\rho_{i, j}\left(t, S_{1}, \ldots, S_{n}\right) d t
\end{aligned}
$$

We want to price the European payoff f

$$
u=E\left(f\left(S_{1}(T), \ldots, S_{n}(T)\right) \mid S_{1}(t)=s_{1}, \ldots, S_{n}(t)=s_{n}\right)
$$

C-Multi European under Local Volatility Local Correlation

 (2)Using a simple perturbation analysis and Feymann Kac, we obtain the following result - just like before in the stochastic volatility case:
$u_{L V L C}=u_{B S}+E_{B S}\left(\frac{1}{2} \sum_{i, j}^{n} \int_{0}^{T}\left(\rho_{i, j}\left(t, S_{1}, \ldots, S_{n}\right) \sigma_{i}\left(t, S_{i}\right) \sigma_{j}\left(t, S_{j}\right)-\rho_{i, j}^{B S} \sigma_{i}^{B S} \sigma_{j}^{B S}\right) \frac{\partial^{2} u_{B S}}{\partial S_{i} \partial S_{j}} d t\right)+O\left(\varepsilon^{2}\right)$
Eq. (22)

Yet formulae are not practical - many integrals to be computed

We do not have the magical lemma :

C- Specific work for linear payoffs (3)

Consider a linear payoff

- Basket with positive weights
- Spread options

$$
\psi=(\underbrace{\sum_{i=1, n} w_{i} S_{i}(T)}_{B_{T}}-k)^{+} \mathbf{E q \cdot} \cdot(23)
$$

Under the general dynamic

$$
\begin{aligned}
& \frac{d S_{\mathrm{i}}}{S_{\mathrm{i}}}=\mu_{i} d t+\sigma_{i}\left(t, S_{\mathrm{i}}\right) d W_{i} \\
& <d W_{i}, d W_{j}>=\rho_{i, j}\left(t, S_{1}, \ldots, S_{n}\right) d t
\end{aligned}
$$

C-Most Likely Path Pricing under Multi Local Volatility (4)

Model Reduction - using Gradient Conditionning (Curran)

$$
\begin{aligned}
& k_{i}=E\left(S_{i}(T) \mid B(T)=k\right) \\
& \cong E\left(S_{i}(T) \mid Z=z^{*}\right) \\
& E\left(B(T) \mid Z=z^{*}\right)=k
\end{aligned}
$$

Eq. (24)

Asset	Forward	Vol. ATM	Slope	Weight
1	1.	0.20	-0.30	0.333
2	1.	0.25	-0.30	0.333
3	1.	0.30	-0.30	0.333

C-Most Likely Path Pricing under Multi Local Volatility (5)

Model Reduction - works as well for spreads

Asset/Value	Forward	Vol. ATM	Slope	Weight
1	1.	0.20	-0.30	0.50
2	1.	0.25	-0.30	0.50
3	1.	0.30	-0.30	-1.00

C-Most Likely Path Pricing under Multi Local Volatility (6)

Local Volatility Model becomes like when pricing : ψ
A simpler model - A multi Black Scholes Model :
Same methodology as in [3] and [4]:

$$
\begin{aligned}
& \frac{d S_{\mathbf{i}}}{S_{\mathbf{i}}}=\mu_{i} d t+\sigma_{i} * d W_{i} \\
& <d W_{i}, d W_{j}>=\rho_{i, j}\left(t, k_{1}, \ldots, k_{n}\right) d t
\end{aligned}
$$

C-From Specific to Generic(7)

Differentiating twice and integrating with exp(ik) we obtain the moment generating function for the joint distribution trick in [6]
$\int_{-\infty}^{\infty} \frac{\partial^{2} \psi}{\partial k^{2}} \exp (i k) d k=E\left(\exp \left(i \sum_{j=1}^{n} w_{j} S_{j}(T)\right)\right) \quad$ Eq. (26)

We can recover the joint density (Fourier inversion) and be able to price all European payoffs ©

Numerically tractable in low dimensions 3 to 4 :

D-Multi Local Vol \& Stoch. Volatility

Using Perturbation techniques under the general model

$$
\begin{aligned}
\frac{d S_{\mathrm{i}}}{S_{\mathrm{i}}} & =\mu_{i} d t+\sigma_{i} f_{i}\left(t, S_{\mathrm{i}}\right) d W_{i}^{s} \quad \text { Eq. (27) } \\
d \sigma_{i} & =\varepsilon \sigma_{i} d W_{i}^{\sigma}
\end{aligned}
$$

We have the following Pricing approximating results
Price $=$ Price Local Vol $+\varepsilon^{2}($ Price Stoch Vol - Price Local Vol Local Correl $)$
Eq. (28)

Summary

Pricing Calls on the cross

Pricing a call on the cross
$\left(\frac{S_{2, t}}{S_{1, t}}-k\right)^{+}$

Is equivalent to pricing a spread option on the two currency pairs
$\left(S_{2, t}-k S_{1, t}\right)^{+}$
Warning: only true after change of numeraire

Pricing Example: AUDJPY

Pricing a call on the cross

$\left(\frac{J P Y}{A U D}-k\right)^{+}$under JPY measure

Is equivalent to pricing a spread option on the two currency pairs
$\left(\frac{U S D}{A U D}-k \frac{U S D}{J P Y}\right)^{+}$under USD measure

Calculating Smile

From call prices we back out implied volatilities
From Implied Volatilities we back out smile characteristics

Method

Collect complete data of :

- AUDUSD, USDJPY and AUDJPY

Apply Model with different inputs

Compare Predicted smiles with observed ones of AUDJPY

Historical Data

From 18/11/02 to 17/11/04

Data for 1 y cross smile

Tests

We consider 4 different cases:

- Slope corr=0, curve corr=0, volvolcorr=0
- Slope corr=2, curve corr=0, volvolcorr=0
- Slope corr=2, curve corr=0, volvolcorr=0.5
- Slope corr=1.8, curve corr=-28,volvolcorr=0.5

Strangle

Risk Reversal

Strangle

Risk Reversal

Strangle

Risk Reversal

Strangle

Local Correlation Slope $=2$
Curvature $=-28$
volvol correlation $=0.5$
AUDJPY Strangle

Risk Reversal

Summary

A new model for cross smile estimation is produced

Uses a mixture of local vol and stoch. Vol

Introduces volvol correlation and local correlation

Playing on the parameters offers flexibility to predict market levels

It is based on efficient numerical techniques

Questions

Thank you for your attention

References

- [1] www.sciencedirect.com
- [2] M. Avellaneda, D. Boyer-Olson, J. Busca, P. Friz "Application of large deviation methods to the pricing of index options in finance".
- [3] J. Gatheral, "The Volatility Surface: A practitioner's Guide (Wiley Finance)".
- [4] A. Reghai, Most Likely Path Pricing "petits dejeuners de la Finance" November 2006.
- [5] Kirill Ilinski Finding the Basket 2001. Paul Wilmott magazine
- [6] H. Berestycki, J. Busca, I Florent. Asymptotics and calibration of local volatility models
- [7] Hagan, P., D. Kumar, A. Lesniewski, and D. Woodward (2002, September). "Managing Smile Risk" Wilmott magazine, 84-108.

Reference prices are based on closing prices.
The information contained in these publications is exclusively intended for a client base consisting of professionals or qualified investors. It is sent to vou by way of information and cannot be divulged to a third party without the prior consent of Natixis. . It cannot be considered under any
 of compliance. on the date of those reports, Natixis and and /or one of its subsidiaries may be in a confict of interest with the issuer mentioned herein. In part wilar, it may be that Natixis or any person or company linked thereto, their respective directors and and or rearesentatives and and ore trom the head ave invested on their own account in, or act or intend to act, in the next twelve months, as an advisor, provider of liquiditity, market maker, or corporate banker (and notably for underwriting transactions, placements or connected transactions), for a company discussed in this report.
this research may be disseminated from the United Kingdom by Natixis, London Branch, which is authorised by the ACP and subject to limited regulation by the Financial services Authority. Details about the extent of regulation by the Financial services Authority are available from the Londo This research may be
Branch on request.
he transfer / distribution of this document in Germany is done by / under the responsibility of Natixis zweigniederlassung Deutschland. NATIXIS is authorized by the ACP and regulated by BaFin (Bundesanstall für Finanzaienstleistungsaufsicht) for the conduct of its business in Germany. Watixis is authorised by the ACP and regulated by Bank of Spain and the CNMV for the conduct of its business in Spain.

Satixis, a foreign bank and broker-dealer, makes this sesearch report avaiable solely for distribution in the United States to major U.S. institutional investors as defined in Rule 15a-6 under the U.5. Securities Act of 1934. The

