Model independent bounds for variance swaps

Martin Klimmek
with David Hobson
University of Warwick

August 23, 2010

Question:

What is the range of possible values for a security paying

$$
\int_{0}^{T} \frac{\left(d X_{t}\right)^{2}}{X_{t-}^{2}}
$$

if $\left(X_{t}\right)_{t \geq 0}$ is a martingale started at a fixed point and it's law at time T is μ ?

Answer: The continuous case

Suppose that X is a continuous martingale. By Ito's formula,

$$
d \log \left(X_{t}\right)=\frac{d X_{t}}{X_{T}}-\frac{1}{2} \frac{\left(d X_{t}\right)^{2}}{X_{t}^{2}}
$$

Then

$$
\int_{0}^{T} \frac{\left(d X_{t}\right)^{2}}{X_{t-}^{2}}=-2 \log \left(X_{T}\right)+2 \log \left(X_{0}\right)+\int_{0}^{T} \frac{2}{X_{t}} d X_{t}
$$

In the continuous case a model-independent price and hedge are trivial.

Continuity?

-2 log-contracts \sim VIX.

Figure: 7th May 2010, Flash Crash - VIX

Intuition for an answer in the general case

Drop the continuity assumption and assume only right-continuity.
Itô for semimartingales:

$$
\begin{aligned}
\int_{0}^{T} \frac{\left(d X_{t}\right)^{2}}{X_{t-}^{2}}= & -2 \log \left(X_{T} / X_{0}\right)+2 \int_{0}^{1} \frac{d X_{t}}{X_{t-}} \\
& -\sum_{0 \leq t \leq 1} 2\left(\frac{\Delta X_{t}}{X_{t-}}\right)-2 \log \left(1+\frac{\Delta X_{t}}{X_{t-}}\right)-\left(\frac{\Delta X_{t}}{X_{t-}}\right)^{2}
\end{aligned}
$$

Let

$$
J(x)=-2 x+2 \log (1+x)+x^{2} .
$$

$$
\mathbb{E}\left[\int_{0}^{T} \frac{\left(d X_{t}\right)^{2}}{X_{t-}^{2}}\right]=-2 \mathbb{E}\left[\log \left(X_{T} / X_{0}\right)\right]+\mathbb{E}\left[\sum_{0 \leq t \leq T} J\left(\frac{\Delta X_{t}}{X_{t-}}\right)\right]
$$

If jumps are positive:

$$
J\left(\sum_{t} \Delta X_{t}^{J} / X_{t-}^{J}\right) \geq \sum_{t} J\left(\Delta X_{t}^{J} / X_{t-}^{J}\right)
$$

If jumps are negative:

$$
J\left(\sum_{t} \Delta X_{t}^{J} / X_{t-}^{J}\right) \leq \sum_{t} J\left(\Delta X_{t}^{J} / X_{t-}^{J}\right)
$$

Intuition is to look for a one-jump martingales to maximise (up-jump), minimise (down-jump) the value of the yariance swap

Jump at the maximum for a lower bound?

There exists at time change $t \rightarrow A_{t}$ such that $X_{t}=B_{A_{t}}$.
If A_{t} is discontinuous, so is X_{t}.
Define $R_{t}=\sup _{s \leq t} X_{s}$ and $S_{t}=\sup _{s \leq t} B_{s}$.
Note that $R_{t} \leq S_{A_{t}}$.

$$
\int_{0}^{T} \frac{\left(d X_{t}\right)^{2}}{X_{t-}^{2}} \geq \int_{0}^{T} \frac{\left(d X_{t}\right)^{2}}{R_{t-}^{2}} \geq \int_{0}^{T} \frac{\left(d B_{A_{t}}\right)^{2}}{S_{A_{t-}}^{2}} \geq \int_{0}^{A_{T}} \frac{d u}{\left(S_{u}\right)^{2}}
$$

Similarly, let $I_{t}=\inf _{s \leq t} B_{s}$ then:

$$
\int_{0}^{T} \frac{\left(d X_{t}\right)^{2}}{X_{t-}^{2}} \leq \int_{0}^{A_{T}} \frac{d u}{I_{u}^{2}}
$$

Simplifying $\int_{0}^{\tau} \frac{d t}{S_{t}^{2}}$

$$
d\left(\frac{S_{t}-B_{t}}{S_{t}}\right)^{2}=2\left(\frac{S_{t}-B_{t}}{S_{t}}\right) \frac{B_{t}}{S_{t}^{2}} d S_{t}-2\left(\frac{S_{t}-B_{t}}{S_{t}^{2}}\right) d B_{t}+\frac{d t}{\left(S_{t}\right)^{2}}
$$

Then,

$$
\int_{0}^{\tau} \frac{d t}{S_{t}^{2}}=\left(\frac{S_{\tau}-B_{\tau}}{S_{\tau}}\right)^{2}+2 \int_{0}^{\tau}\left(\frac{S_{t}-B_{t}}{S_{t}^{2}}\right) d B_{t}
$$

The problem is to minimise $\left(\frac{S_{\tau}-B_{\tau}}{S_{\tau}}\right)^{2}$ over stopping times τ, with the property $B_{\tau} \sim \mu$ which is:
The Skorohod problem

$$
\left.\min _{\tau} \mathbb{E}\left[\left.\left(\frac{S_{\tau}-B_{\tau}}{S_{\tau}}\right)^{2} \right\rvert\, B_{\tau} \sim \mu\right]\right]
$$

Solution to the Skorohod Problem

Given μ with mean 1 , there exists a decreasing function $f:[0, \infty) \rightarrow[0,1]$ with $f(0)=1$ and a random variable Z, $\mathbb{P}(Z \geq x)=\exp (-R(x))$ on $[1, \infty)$ such that if

$$
\begin{aligned}
\tau_{f} & =\inf \left\{t \geq 0 \mid B_{t} \leq f\left(S_{t}\right)\right. \\
\tau_{G} & =\inf \left\{t \geq 0 \mid S_{t} \geq G\right\}
\end{aligned}
$$

then $\tau=\min \left(\tau_{G}, \tau_{f}\right)$ solves the embedding problem:

$$
\left.\min _{\tau} \mathbb{E}\left[\left.\left(\frac{S_{\tau}-B_{\tau}}{S_{\tau}}\right)^{2} \right\rvert\, B_{\tau} \sim \mu\right]\right]
$$

Properties of the solution

1. Let $\hat{\mu}$ be the law of S_{τ}.
2. The embedding minimises $\hat{\mu}$ over embeddings i.e minimises $\mathbb{P}\left(S_{\tau}>x\right)$ for all x.
3. $\mathbb{P}\left(S_{\tau} \leq x\right)=\hat{\mu}(-\infty, x]=\mu(-\infty, x]-m(x)$.
4. $m(x)=\mathbb{P}\left(S_{\tau} \geq x, B_{\tau}<x\right)=\mathbb{P}\left(S_{\tau} \geq x\right)-\mathbb{P}\left(B_{\tau} \geq x\right)$
5. $R(x)=\int_{0}^{x} \frac{\mu(d u)}{1-\hat{\mu}(-\infty, x]}$, (nice case - no atoms)

Construction of the martingale

Define the martingale

$$
N_{t}=B_{\min \left(H_{1+t}, \tau\right)}
$$

Note that $N_{\infty} \sim \mu$.
Let $A(t):[0, \infty) \rightarrow[0, T)$ be a deterministic time change .
$M_{t}^{A}=N_{A(t)}$ is martingale with the requisite properties.

A martingale with the right properties on $[0, T]$
Let $F(x)=\mathbb{P}\{Z \leq x\}$ and $h=F^{-1}$. Set $M_{t}=N_{h(t / T)}$.

1. A right-continuous martingale
2. $M_{0}=1, M_{T} \sim \mu$
3. If M jumps at t then $M_{t-}=\sup _{s \leq t} M_{s}$
4. Carries the optimality properties of the Perkins solution and thus attains the lower bound.

Example: Target law is Uniform

$$
M_{T} \sim U[1-\epsilon, 1+\epsilon], \epsilon \in[0,1] .
$$

The distribution function is $F_{\epsilon}(x)=\frac{x-1+\epsilon}{2 \epsilon}$

$$
\begin{aligned}
m(x) & =\frac{1}{2 \epsilon}(\epsilon-1+x-2 \sqrt{x \epsilon-\epsilon}) \\
f(x) & =F^{-1}(m(x))=x-2 \sqrt{\epsilon(x-1)} \\
\hat{\mu}((-\epsilon, x]) & =F(x)-m(x)=2 \frac{\sqrt{\epsilon(x-1)}}{\epsilon}
\end{aligned}
$$

Calculating the bounds for $\epsilon \in(0,1)$

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{T} \frac{\left(d M_{t}\right)^{2}}{M_{t-}^{2}}\right] & =\mathbb{E}\left[\left(\frac{S_{\tau}-B_{\tau}}{S_{\tau}}\right)^{2}\right] \\
& =\int_{1}^{1+\epsilon} \frac{(x-f(x))^{2}}{x^{2}} \mathbb{P}\left(S_{\tau} \geq x, B_{\tau}<x\right) d x \\
& =\int_{1}^{1+\epsilon} \frac{(x-f(x))^{2}}{x^{2}} \frac{\mathbb{P}\left(S_{\tau} \geq x\right)}{x-f(x)} d x \\
& =2 \int_{1}^{1+\epsilon} \frac{\sqrt{\epsilon(x-1)} \times(1-\sqrt{\epsilon(x-1)} / \epsilon)}{x^{2}} d x
\end{aligned}
$$

The target law is symmetric and so a reflection gives the upper bound which is:

$$
\int_{1}^{1+\epsilon} \frac{\sqrt{\epsilon(x-1)} \times 2(1-\sqrt{\epsilon(x-1)} / \epsilon)}{(2-x)^{2}} d x
$$

Uniform Bounds - Perkins compared with Azema-Yor

Figure: Ratio of bound value to continuous log-contract value

Lognormal Example

$\mu_{\epsilon} \sim \operatorname{lognormal}\left(-\frac{\epsilon^{2}}{2}, \epsilon\right)$

'Model-independence’

Suppose we know call prices with maturity T for all strikes.

$$
\begin{aligned}
C(K, T) & =\mathbb{E}^{\mathbb{P}}\left[e^{-r T}\left(P_{T}-K\right)^{+}\right] \\
\mathbb{P}\left(P_{T}>K\right) & =e^{r T}\left|\frac{\partial}{\partial K} C(K, T)\right| \\
\mathbb{P}\left(P_{T} \in K\right) & =e^{r T} \frac{\partial^{2}}{\partial K^{2}} C(K, T)
\end{aligned}
$$

Set $X_{t}=e^{-r t} P_{t}$ (martingale under a pricing measure). $X_{T} \sim \mu$ is known.

