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Question:

What is the range of possible values for a security paying∫ T
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if (Xt)t≥0 is a martingale started at a fixed point and it’s law at
time T is µ ?



Answer: The continuous case

Suppose that X is a continuous martingale. By Ito’s formula,
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In the continuous case a model-independent price and hedge are
trivial.



Continuity?
-2 log-contracts ∼ VIX.

Figure: 7th May 2010, Flash Crash - VIX



Intuition for an answer in the general case

Drop the continuity assumption and assume only
right-continuity.

Itô for semimartingales:
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Let

J(x) = −2x + 2 log(1 + x) + x2.
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If jumps are positive:
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Intuition is to look for a one-jump martingales to maximise
(up-jump), minimise (down-jump) the value of the variance swap.



Jump at the maximum for a lower bound?

There exists at time change t → At such that Xt = BAt .

If At is discontinuous, so is Xt .

Define Rt = sups≤t Xs and St = sups≤t Bs .

Note that Rt ≤ SAt .∫ T
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Similarly, let It = infs≤t Bs then:∫ T
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Simplifying
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The problem is to minimise
(
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over stopping times τ , with

the property Bτ ∼ µ which is:

The Skorohod problem
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Solution to the Skorohod Problem

Given µ with mean 1, there exists a decreasing function
f : [0,∞)→ [0, 1] with f (0) = 1 and a random variable Z ,

P(Z ≥ x) = exp(−R(x)) on [1,∞) such that if

τf = inf{t ≥ 0|Bt ≤ f (St)

τG = inf{t ≥ 0|St ≥ G}

then τ = min(τG , τf ) solves the embedding problem:
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Properties of the solution

1. Let µ̂ be the law of Sτ .

2. The embedding minimises µ̂ over embeddings i.e minimises

P(Sτ > x) for all x .

3. P(Sτ ≤ x) = µ̂(−∞, x ] = µ(−∞, x ]−m(x).

4. m(x) = P(Sτ ≥ x ,Bτ < x) = P(Sτ ≥ x)− P(Bτ ≥ x)

5. R(x) =
∫ x
0

µ(du)
1−µ̂(−∞,x] , (nice case - no atoms)



Construction of the martingale

Define the martingale

Nt = Bmin(H1+t ,τ),

Note that N∞ ∼ µ.

Let A(t) : [0,∞)→ [0,T ) be a deterministic time change .

MA
t = NA(t) is martingale with the requisite properties.



A martingale with the right properties on [0,T ]
Let F (x) = P{Z ≤ x} and h = F−1. Set Mt = Nh(t/T ).

1. A right-continuous martingale

2. M0 = 1, MT ∼ µ
3. If M jumps at t then Mt− = sups≤t Ms

4. Carries the optimality properties of the Perkins solution and
thus attains the lower bound.



Example: Target law is Uniform

MT ∼ U[1− ε, 1 + ε], ε ∈ [0, 1].

The distribution function is Fε(x) = x−1+ε
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Calculating the bounds for ε ∈ (0, 1)
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Uniform Bounds - Perkins compared with Azema-Yor

Figure: Ratio of bound value to continuous log-contract value



Lognormal Example

µε ∼ lognormal(− ε2

2 , ε)





‘Model-independence’

Suppose we know call prices with maturity T for all strikes.

C (K ,T ) = EP[e−rT (PT − K )+]

P(PT > K ) = erT | ∂
∂K

C (K ,T )|

P(PT ∈ K ) = erT
∂2

∂K 2
C (K ,T )

Set Xt = e−rtPt (martingale under a pricing measure).
XT ∼ µ is known.


