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Consumption: Empirically Observed Features

I Consumption is increasing in Wealth.

I Investments are increasing in Wealth.

I Consumption is concave in Wealth.

I Consumption exhibits patterns of Habit Formation.
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Habit Formation

I Preference functional with additive habits:

T∑

t=0

E

[
ut

(
ct −

t−1∑

s=0

β
(t)
s cs

)]

I When measuring satisfaction from consumption, habits
determined by past consumption are incorporated.

I Current high level of consumption forces addiction to high
level of consumption in the future.
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Related Literature

I Abel (1990)

I Constantinides (1990)

I Detemple and Zapatero (1991, 1992)

I Chan and Kogan (2002)

I Detemple and Karatzas (2003)

I Karatzas and Zitkovic (2003)

I Malamud and Trubowitz (2007)

I Englezos and Karatzas (2009)

Roman Muraviev, ETH Zurich Optimal Consumption with Habit Formation



Preliminaries: Introduction and Setting
Monotonicity

Concavity
Estimates and Convergence

Motivation: Consumption and Habit Formation
Related Literature
The Financial Market
Individual Agent Optimality
Complete Markets with CRRA Utility

The Financial Market - Settings I

I Finite probability space (Ω, G , P) with filtration

G0 := {φ, Ω} ⊆ ... ⊆ GT := G

L2(G0) ∼= R ⊆ L2(G1) ⊆ ... ⊆ L2(GT )

I Market: N risky securities and one period risk-free bonds.

I St = (1,S1
t , ...,SN

t ) - adapted positive price processes.
dt = (rt , d

1
t , ..., dN

t ) - adapted dividend processes.
rt > 0 - predictable interest rate process.

I πt = (φt , π
1
t , ..., π

N
t ) - adapted portfolio process.

Assumption: π−1 = πT = 0.
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The Financial Market - Settings II

I Investment process corresponding to π:

Iπ
t := πt · St

I Financial Wealth process corresponding to π:

W π
t := πt−1 · (St + dt)

I No Arbitrage: ∃ positive adapted SPD (Rt)t=0,...,T :

St−1 · Rt−1 = E [(St + dt) · Rt |Gt−1]

I Remark: For every portfolio π and every SPD (Rt)t=0,...,T :

I π
t−1 · Rt−1 = E [W π

t · Rt |Gt−1]
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The Aggregate State Price Density

I The Financial Wealth Space in period 0 ≤ t ≤ T :

Lt =
{
W π

t = πt−1 · (St + dt)|πt−1 ∈ L2(Gt−1)
}

L2(Gt−1) ⊆ Lt ⊆ L2(Gt)

I Orthogonal projection of L2(GT ) onto Lt :

Pt
L : L2(GT ) → Lt

I Theorem (Malamud and Trubowitz 2007): ∃! Aggregate
SPD M0 = 1, M1, ...,MT , s.t. Mt ∈ Lt , and moreover

Mt =
t−1∏

τ=0

Pτ+1
L

[
Rτ+1

Rτ

]

for every positive SPD Rt .
I Assumption: We consider only markets with Mt 6= 0.
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Random Endowment and Consumption

I Agent with random endowments: adapted process εt ≥ 0.

I Agent’s consumption: ct = εt + W π
t − I π

t ≥ 0.

I Utility maximization problem:

sup
c0,...,cT

T∑

t=0

E

[
ut

(
ct −

t−1∑

s=0

β
(t)
s cs

)]

Habits: Positive random variables: β
(t)
s ∈ L2(Gs), s < t.

I Inada conditions: ut : [0,+∞) → R, C 2-smooth, u′t(x) > 0,
u′′t (x) < 0, u′t(0) = ∞ and u′t(∞) = 0.
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First Order Conditions

I Theorem: ∃! positive optimal consumption stream c∗t and
wealth process W ∗

t solving the system of equations:

Pt
L [Rt(c)] =

Mt

Mt−1
· Rt−1(c),

and

ct = εt + Wt − E
[Mt+1

Mt
Wt+1|Gt

]
,

for all t = 0, ..., T ; where

Rt(c) := u′t
(
ct−

t−1∑

τ=0

β(t)
τ cτ

)−
T∑

s=t+1

E
[
β

(s)
t ·u′s

(
cs−

s−1∑

τ ′=0

β
(s)
τ ′ cτ ′

)∣∣Gt

]
> 0

is a positive SPD.
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Example: Complete Market with ut(x) = x1−γ

1−γ

I Theorem :

c∗t = At ·W ∗
t + Bt ; c∗0 = Ao · ε0 + B0

W ∗
t = Ft · c∗t−1 + Gt

T∑

s=0

E
[
Ms · c∗s

]
=

T∑

s=0

E
[
Ms · εs

]

where 0 < At < 1 and Ft > 0.
I Conclusion: The optimal consumption stream c∗t and the

investment is a linear increasing function of the wealth W ∗
t

with a slope < 1.
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Results in Incomplete Markets

I Generally no explicit solution due to PL
t .

I Monotonicity of the consumption and investments

0 <
∂c∗t
∂W ∗

t
≤ 1

I Concavity
∂2c∗t
∂2W ∗

t
≤ 0

I Asymptotic behavior and estimates

lim
W ∗

t →∞
c∗t
W ∗

t
; f (W ∗

t ) ≤ c∗ ≤ g(W ∗
t )
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Dynamic Programming Fails Showing Monotonicity

I Value Function:

Vt (ε0, π0, ..., πt−1) = sup
πt

{u(ct −
t−1∑

k=0

β
(t)
k ck)−

E [Vt+1(ε0, π0, ..., πt)|Gt ]}
I Proposition:

V ′
0(ε0) = u′(c0(ε0)) + E

[
∂V1

∂ε0
(ε0, πo(ε0))

]
,

I No habits: β
(s)
0 = 0 implies c ′0(ε0) ≥ 0, but c ′0(ε0) ≤ 1 is

unclear.

I Habits: For β
(s)
0 > 0 both properties are unclear.
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Incomplete Markets with a Constant Interest Rate

I Aggregate SPD density satisfies

E [Mt |Gt−1] = (1 + r)−1 ·Mt−1

I Lemma: The First order conditions are:

Pt
L

[
u′t

(
ct −

t−1∑

τ=0

β(t)
τ cτ

)
]
·M̃t−1 = u′t−1

(
ct−1 −

t−2∑

τ=0

β(t)
τ cτ

)
·M̃t

for all t = 1, ..., T .

I Theorem: We have

1 ≥ ∂c∗t
∂W ∗

t
> 0 ; 1 ≥ ∂c∗0

∂ε0
> 0
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Idiosyncratic Incompleteness I: Definitions

I Market is complete w.r.t (Ft)0≤t≤T ;
Incompleteness: (Gt)0≤t≤T , s.t., εt ∈ L2(Gt) and Ft ⊆ Gt .
Source of incompleteness is the random endowment:

I Assumption (?) : For every X ∈ L2(Ft), we have

E
[
X |Ft−1

]
= E

[
X |Gt−1

]

I Proposition: Lt = L2
(
σ{Gt−1, Ft}

)
.

I Proposition: Under assumption (?), the aggregate SPD
satisfies Mt ∈ L2(Ft).
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Idiosyncratic Incompleteness II: Monotonicity

I Theorem: For Idiosyncratic incomplete market, we have

0 <
∂c∗t
∂W ∗

t
≤ C (β,M) ≤ 1 ; 0 <

∂c∗0
∂ε0

≤ C (β, M) ≤ 1

0 <
∂W ∗

t

∂c∗t−1

I Theorem: Assume that only risk free bonds are available for

trading with a constant interest rate r , and β
(t)
t−1 = β, and

β
(t)
s = 0 for all s < t − 1, then

∂c∗t
∂W ∗

t
≤ 1− β(1 + r)−1

1− βT−t+1(1 + r)−T+t−1
;

∂c∗0
∂ε0

≤ 1− β(1 + r)−1

1− βT+1(1 + r)−T−1
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Low Degree of Habits

I Theorem (no habits): Assume that β = 0, then

1 ≥ ∂c∗t
∂W ∗

t
> 0 ; 1 ≥ ∂c∗0

∂ε0
> 0

I Stability Theorem: For an arbitrary incomplete market, ∃
β∗ := β∗(M1, ...,MT ), s.t.,

0 <
∂c∗t (β, W ∗)

∂W ∗
t

≤ 1 ; 0 <
∂c∗0 (β, ε0)

∂ε0
≤ 1

for all 0 ≤ β ≤ β∗.
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Why only CRRA utilities?

I Assumption: ut(x) = u(x), ∀ 0 ≤ t ≤ T .

I Desirable: concavity of c∗t w.r.t W ∗
t for all markets and habits.

I Simplest utility maximization problem:

sup
πo

u
(
ε0 − π0

)
+ u

(
π0 ·

(
1 + r

))

I Solution: c0(ε0) := ε0 − π0(ε0), where

π0(ε0) + (u′)−1
(
(1 + r) · u(

1 + (1 + r) · π0(ε0)
))

= ε0

I Theorem: c0(ε0) is a concave function ∀r > 0, iff

u(x) = C · x1−γ
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Incomplete Markets of Type C
I Definition: Incomplete Market is of type class C, if

Pt
L = E

[ · |Ht

]

.

I Theorem: For any incomplete market of type C with constant
interest rate, we have

∂2c∗t
∂2W ∗

t
≤ 0 ;

∂2c∗0
∂2ε0

≤ 0

I Theorem: For Idiosyncratic incomplete markets, we have

∂2c∗t
∂2W ∗

t
≤ 0 ;

∂2c∗0
∂2ε0

≤ 0
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Convergence

I We assume ut(x) = x1−γ

1−γ ∀ 0 ≤ t ≤ T .
I Lemma: For CRRA utility with habits and no random

endowment (εt = 0 for all t > 0), we have

cNE
t = Xt ·W NE

t

W NE
t = Yt · cNE

t−1

where Xt is some adapted positive process and Yt ∈ Lt .
I Theorem For any incomplete market with constant interest

rate, the optimal consumption stream c∗t satisfies

lim
W ∗

t →∞
c∗t
W ∗

t
= Xt ; lim

W ∗
t →∞

c∗0
ε0

= X0

lim
W ∗

t →∞
W ∗

t

c∗t−1

= Yt
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Estimates

I Theorem: For Idiosyncratic incomplete markets and markets
of type C with constant interest rates, we have

Xt ·W ∗
t − At ≤ c∗t ≤ Xt ·W ∗

t + At

X0· · ε0 − A0 ≤ c∗0 ≤ X0 · ε0 + A0

where At is some adapted process.

I Corollary: The rate of convergence is linear.
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