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Motivation

• Given: a frictionless market of stocks with continuous
Markovian dynamics.

• If there does not exist an equivalent local martingale
measure can we have the concept of hedging?

• Answer: Yes, if a square-integrable “market price of risk”
exists.

• If there exists an equivalent local martingale measure
and a stock price process is a “strict local martingale”
what is the cheapest way to hold this stock at time T?

• Answer: Delta-hedging.

• How can we compute hedging prices?

• Answer: PDE techniques, (non-)equivalent changes of
measures

• Techniques: Itô’s formula, PDE techniques to prove
smoothness of hedging prices, Föllmer measure
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Two generic examples

• Reciprocal of the three-dimensional Bessel process (NFLVR):

dS̃(t) =− S̃2(t)dW (t)

• Three-dimensional Bessel process:

dS(t) =
1

S(t)
dt + dW (t)
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Strict local martingales

• A stochastic process X (·) is a local martingale if there exists a
sequence of stopping times (τn) with limn→∞ τn = ∞ such
that X τn(·) is a martingale.

• Here, in our context, a local martingale is a nonnegative
stochastic process X (·) which does not have a drift:

dX (t) = X (t)somethingdW (t).

• Strict local martingales (local martingales, which are not
martingales) do only appear in continuous time.

• Nonnegative local martingales are supermartingales.
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We assume a Markovian market model.

• Our time is finite: T < ∞. Interest rates are zero.

• The stocks S(·) = (S1(·), . . . ,Sd(·))T follow

dSi (t) =Si (t)

(
µi (t,S(t))dt +

K∑
k=1

σi ,k(t,S(t))dWk(t)

)

with some measurability and integrability conditions.

• → Markovian

• but not necessarily complete (K > d allowed).

• The covariance process is defined as

ai ,j(t,S(t)) :=
K∑

k=1

σi ,k(t,S(t))σj ,k(t,S(t)).

• The underlying filtration is denoted by F = {F(t)}0≤t≤T .
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An important guy: the market price of risk.

• A market price of risk is an RK -valued process θ(·) satisfying

µ(t,S(t)) = σ(t,S(t))θ(t).

• We assume it exists and∫ T

0
‖θ(t)‖2dt < ∞.

• The market price of risk is not necessarily unique.

• We will always use a Markovian version of the form θ(t,S(t)).
(needs argument!)
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Related is the stochastic discount factor.

• The stochastic discount factor corresponding to θ is denoted
by

Z θ(t) := exp

(
−
∫ t

0
θT(u,S(u))dW (u)− 1

2

∫ t

0
‖θ(u,S(u))‖2du

)
.

• It has dynamics

dZ θ(t) = −θT(t,S(t))Z θ(t)dW (t).

• If Z θ(·) is a martingale, that is, if E [Z θ(T )] = 1, then it
defines a risk-neutral measure Q with dQ = Z θ(T )dP.

• Otherwise, Z θ(·) is a strict local martingale and classical
arbitrage is possible.

• From Itô’s rule, we have

d
(
Z θ(t)Si (t)

)
= Z θ(t)Si (t)

K∑
k=1

(σi ,k(t,S(t))− θk(t,S(t))) dWk(t).
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Everything an investor cares about: how and how much?

• We call trading strategy the number of shares held by an
investor: η(t) = (η1(t), . . . , ηd(t))T

• We assume that η(·) is progressively measurable with respect
to F and self-financing.

• The corresponding wealth process V v ,η(·) for an investor with
initial wealth V v ,η(0) = v has dynamics

dV v ,η(t) =
d∑

i=1

ηi (t)dSi (t).

• We restrict ourselves to trading strategies which satisfy
V 1,η(t) ≥ 0



Motivation Notation Hedging (price) Smoothness Change of measure Example Summary

The terminal payoff

• Let p : Rd
+ → [0,∞) denote a measurable function.

• The investor wants to have the payoff p(S(T )) at time T .

• For example,

• market portfolio: p̃(s) =
∑d

i=1 si
• money market: p0(s) = 1
• stock: p1(s) = s1
• call: pC (s) = (s1 − L)+ for some L ∈ R.

• We define a candidate for the hedging price as

hp(t, s) := Et,s
[
Z̃ θ(T )p(S(T ))

]
,

where Z̃ θ(T ) = Z θ(T )/Z θ(t) and S(t) = s under the
expectation operator Et,s .
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Prerequisites

• We shall call (t, s) ∈ [0,T ]×Rd
+ a point of support for S(·) if

there exists some ω ∈ Ω such that S(t, ω) = s.

• We have assumed Markovian stock price dynamics such that
S(t) is Rd -valued, unique and stays in the positive orthant and
a square-integrable Markovian market price of risk θ(t,S(t)).

• We have defined

hp(t, s) := Et,s
[
Z̃ θ(T )p(S(T ))

]
,

where Z̃ θ(T ) = Z θ(T )/Z θ(t) and S(t) = s under the
expectation operator Et,s .

• In particular,
hp(T , s) := p(s).
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A first result: non path-dependent European claims

Assume that we have a contingent claim of the form p(S(T )) ≥ 0
and that for all points of support (t, s) for S(·) with t ∈ [0,T ) we
have hp ∈ C 1,2(Ut,s) for some neighborhood Ut,s of (t, s). Then,
with ηp

i (t, s) := Dih
p(t, s) and vp := hp(0,S(0)), we get

V vp ,ηp
(t) = hp(t,S(t)).

The strategy ηp is optimal in the sense that for any ṽ > 0 and for
any strategy η̃ whose associated wealth process is nonnegative and
satisfies V ṽ ,η̃(T ) ≥ p(S(T )), we have ṽ ≥ vp. Furthermore, hp

solves the PDE

∂

∂t
hp(t, s) +

1

2

d∑
i=1

d∑
j=1

si sjai ,j(t, s)D
2
i ,jh

p(t, s) = 0

at all points of support (t, s) for S(·) with t ∈ [0,T ).
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The proof relies on Itô’s formula.

• Define the martingale Np(·) as

Np(t) := E[Z θ(T )p(S(T ))|F(t)] = Z θ(t)hp(t,S(t)).

• Use a localized version of Itô’s formula to get the dynamics of
Np(·). Since it is a martingale, its dt term must disappear
which yields the PDE.

• Then, another application of Itô’s formula yields

dhp(t,S(t)) =
d∑

i=1

Dih
p(t,S(t))dSi (t) = dV vp ,ηp

(t).

• This yields directly V vp ,ηp
(·) ≡ hp(·,S(·)).
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Proof (continued)

• Next, we prove optimality.

• Assume we have some initial wealth ṽ > 0 and some strategy
η̃ with nonnegative associated wealth process such that
V ṽ ,η̃(T ) ≥ p(S(T )) is satisfied.

• Then, Z θ(·)V ṽ ,η̃(·) is a supermartingale.

• This implies

ṽ ≥ E[Z θ(T )V ṽ ,η̃(T )] ≥ E[Z θ(T )p(S(T ))]

= E[Z θ(T )V vp ,ηp
(T )] = vp
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Non-uniqueness of PDE

• Usually,

∂

∂t
v(t, s) +

1

2

d∑
i=1

d∑
j=1

si sjai ,j(t, s)D
2
i ,jv(t, s) = 0

does not have a unique solution.

• However, if hp is sufficiently differentiable, it can be
characterized as the minimal nonnegative solution of the PDE.

• This follows as in the proof of optimality. If h̃ is another
nonnegative solution of the PDE with h̃(T , s) = p(s), then
Z θ(·)h̃(·,S(·)) is a supermartingale.
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Corollary: Modified put-call parity

For any L ∈ R we have the modified put-call parity for the call-
and put-options (S1(T )− L)+ and (L− S1(T ))+, respectively,
with strike price L:

Et,s
[
Z̃ θ(T )(L− S1(T ))+

]
+ hp1

(t, s)

= Et,s
[
Z̃ θ(T )(S1(T )− L)+

]
+ Lhp0

(t, s),

where p0(·) ≡ 1 denotes the payoff of one monetary unit and
p1(s) = s1 the price of the first stock for all s ∈ Rd

+.
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A technical definition

We shall call a function f : [0,T ]× Rd
+ → R locally Lipschitz and

bounded on Rd
+ if for all s ∈ Rd

+ the function t → f (t, s) is
right-continuous with left limits and for all M > 0 there exists
some C (M) < ∞ such that for all t ∈ [0,T ].

sup
1
M
≤‖y‖,‖z‖≤M

y 6=z

|f (t, y)− f (t, z)|
‖y − z‖

+ sup
1
M
≤‖y‖≤M

|f (t, y)| ≤ C (M).
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Sufficient conditions for the differentiability of hp.

(A1) The functions θk and σi ,k are for all i = 1, . . . , d and
k = 1, . . . ,K locally Lipschitz and bounded.

(A2) For all points of support (t, s) for S(·) with t ∈ [0,T ) there
exist some C > 0 and some neighborhood U of (t, s) such
that

d∑
i=1

d∑
j=1

ai ,j(u, y)ξiξj ≥ C‖ξ‖2

for all ξ ∈ Rd and (u, y) ∈ U .

(A3) The payoff function p is chosen so that for all points of
support (t, s) for S(·) there exist some C > 0 and some
neighborhood U of (t, s) such that hp(u, y) ≤ C for all
(u, y) ∈ U .

We will proceed in three steps to show that these conditions imply
smoothness of hp.
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Step 1: Stochastic flows

We define X t,s,z(·) := (S t,sT(·), zZ̃φ,t,s(·))T.

Take (t, s) ∈ [0,T ]× Rd
+ a point of support for S(·). Then under

Assumption (A1) [locally Lipschitz and bounded] we have for all
sequences (tk , sk)k∈N with limk→∞(tk , sk) = (t, s) that

lim
k→∞

sup
u∈[t,T ]

‖X tk ,sk ,1(u)− X t,s,1(u)‖ = 0

almost surely.

In particular, for K (ω) sufficiently large we have that X tk ,sk ,1(u, ω)
is strictly positive and Rd+1

+ -valued for all k > K (ω) and
u ∈ [t,T ].
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Step 2: Schauder estimates

Fix a point (t, s) ∈ [0,T )× Rd
+ and a neighborhood U of (t, s).

Suppose Assumptions (A1) and (A2) [locally Lipschitz and
bounded, non-degenerate a] hold.

Let (fk)k∈N denote a sequence of solutions of the Black-Scholes
PDE on U , uniformly bounded under the supremum norm on U . If
limk→∞ fk(t, s) = f (t, s) on U for some function f : U → R, then
f solves also the PDE on some neighborhood Ũ of (t, s). In
particular, f ∈ C 1,2(Ũ).

• Janson and Tysk (2006), Tysk and Ekström (2009)

• Interior Schauder estimates by Knerr (1980) together with
Arzelà-Ascoli type of arguments
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Step 3: Putting everything together

Under Assumptions (A1)-(A3) [locally Lipschitz and bounded,
non-degenerate a, locally boundedness of hp] there exists for all
points of support (t, s) for S(·) with t ∈ [0,T ) some neighborhood
U of (t, s) such that the function hp is in C 1,2(U).

• Define p̃(s1, . . . , sd , z) := zp(s1, . . . , sd).

• Define p̃M(·) := p̃(·)1{p̃(·)≤M} for some M > 0

• Approximate by sequence of continuous functions p̃M,m such
that p̃M,m ≤ 2M for all m ∈ N.
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Proof (continuation)

• The corresponding expectations are defined as

h̃p,M(u, y) := Eu,y [p̃M(S1(T ), . . . ,Sd(T ), Z̃ θ(T ))]

for all (u, y) ∈ Ũ for some neighborhood Ũ of (t, s) and
equivalently h̃p,M,m.

• We have continuity of h̃p,M,m for large m due to the bounded
convergence theorem.

• A result from Jansen and Tysk (2006) yields that under
Assumption (A2) [non-degenerate a] h̃p,M,m is a solution of
the PDE.

• Then, by Step 2 firstly, h̃p,M and secondly, hp also solve the
PDE.
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We can change the measure to compute hp

• There exists not always an equivalent local martingale
measure.

• However, after making some technical assumptions on the
probability space and the filtration we can construct a new
measure Q which corresponds to a “removal of the stock price
drift”.

• Based on the work of Föllmer and Meyer and along the lines
of Delbaen and Schachermayer.
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Theorem: Under a new measure Q the drifts disappear.
There exists a measure Q such that P � Q. More precisely, for all
nonnegative F(T )-measurable random variables Y we have

EP[Z θ(T )Y ] = EQ
[
Y 1{

1

Zθ(T )
>0

}] .

Under this measure Q, the stock price processes follow

dSi (t) = Si (t)
K∑

k=1

σi ,k(t,S(t)) dW̃k(t)

up to time τ θ := inf{t ∈ [0,T ] : 1/Z θ(t) = 0}. Here,

W̃k(t ∧ τ θ) := Wk(t ∧ τ θ) +

∫ t∧τθ

0
θk(u,S(u))du

is a K -dimensional Q-Brownian motion stopped at time τ θ.
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What happens in between time 0 and time T : Bayes’ rule.

For all nonnegative F(T )-measurable random variables Y the
representation

EQ
[
Y 1{1/Zθ(T )>0}

∣∣∣F(t)
]

= EP[Z θ(T )Y |F(t)]
1

Z θ(t)
1{1/Zθ(t)>0}

holds Q-almost surely (and thus P-almost surely) for all t ∈ [0,T ].
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The class of Bessel processes with drift provides interesting
arbitrage opportunities.

• We begin with defining an auxiliary stochastic process X (·) as

dX (t) =

(
1

X (t)
− c

)
dt + dW (t)

with W (·) denoting a Brownian motion and c ≥ 0 a constant.

• X (t) is for all t ≥ 0 strictly positive since X (·) is a Bessel
process under an equivalent measure.

• The stock price process is now defined via

dS(t) =
1

X (t)
dt + dW (t) = S(t)

(
1

S2(t)− S(t)ct
dt +

1

S(t)
dW (t)

)
with S(0) = X (0) > 0.
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After a change of measure, the Bessel process becomes
Brownian motion.

• As a reminder:

dS(t) =
1

S(t)− ct
dt + dW (t).

• We have S(t) ≥ X (t) > 0 for all t ≥ 0.

• The market price of risk is θ(t, s) = 1/(s − ct).

• Thus, the inverse stochastic discount factor 1/Z θ becomes
zero exactly when S(t) hits ct.

• Removing the drift with a change of measure as before makes
S(·) a Brownian motion (up to the first hitting time of zero by
1/Z θ(·)) under Q.
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The optimal strategy for getting one dollar at time T can
be explicitly computed.

• For p(s) ≡ p0(s) ≡ 1 we get

hp0
(t, s) = EP

[
Z θ(T )

Z θ(t)
· 1
∣∣∣∣Ft

]∣∣∣∣
S(t)=s

= EQ[1{1/Zθ(T )>0}|Ft ]|S(t)=s

= Φ

(
s − cT√
T − t

)
− exp(2cs − 2c2t)Φ

(
−s − cT + 2ct√

T − t

)
.

• This yields the optimal strategy

η0(t, s) =
2√

T − t
φ

(
s − cT√
T − t

)
− 2c exp(2cs − 2c2t)Φ

(
−s − cT + 2ct√

T − t

)
.

• The hedging price hp satisfies on all points {s > ct} the PDE

∂

∂t
hp(t, s) +

1

2
D2hp(t, s) = 0.
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Conclusion

• No equivalent local martingale measure needed to find an
optimal hedging strategy based upon the familiar delta hedge.

• Sufficient conditions are derived for the necessary
differentiability of expectations indexed over the initial market
configuration.

• The dynamics of stochastic processes under a non-equivalent
measure and a generalized Bayes’ rule might be of interest
themselves.

• We have computed some optimal trading strategies in
standard examples for which so far only ad-hoc and not
necessarily optimal strategies have been known.
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Thank you!
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Strict local martingales II

Assume X (·) is a nonnegative local martingale:

dX (t) = X (t)somethingdW (t).

• We always have E[X (T )] ≤ X (0).

• If E[X (T )] = X (0) then X (·) is a (true) martingale.

• If “something” behaves nice (for example is bounded) then
X (·) is a martingale.

• If E[X (T )] < X (0) then X (·) is a strict local martingale.
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Role of Markovian market price of risk

Let M ≥ 0 be a random variable measurable with respect to
FS(T ). Let ν(·) denote any MPR and θ(·, ·) a Markovian MPR.
Then, with

Mν(t) := E
[

Z ν(T )

Z ν(t)
M

∣∣∣∣Ft

]
and Mθ(t) := E

[
Z θ(T )

Z θ(t)
M

∣∣∣∣Ft

]
for t ∈ [0,T ], we have Mν(·) ≤ Mθ(·) almost surely.
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Proof

• We define c(·) := ν(·)− θ(·,S(·)) and cn(·) := c(·)1{‖c(·)‖≤n}

• Then,

Z ν(T )

Z ν(t)
= lim

n→∞

Z cn
(T )

Z cn(t)

· exp
(
−
∫ T

t
θT(dW (u) + cn(u)du)− 1

2

∫ T

t
‖θ‖2du

)
.

• Since cn(·) is bounded, Z cn
(·) is a martingale.

• Fatou’s lemma, Girsanov’s theorem and Bayes’ rule yield

Mν(t) ≤ lim inf
n→∞

EQn

[
exp

(
−
∫ T

t
θTdW n(u)− 1

2

∫ T

t
‖‖2du

)
M

∣∣∣∣Ft

]
.

• Since σ(·,S(·))cn(·) ≡ 0 the process S(·) has the same
dynamics under Qn as under P.
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Open problem

The last result might be related to the “Markovian selection
results”, as in Krylov (1973) and Ethier and Kurtz (1986).
There, the existence of a Markovian solution for a martingale
problem is studied.
It is observed that a supremum over a set of expectations indexed
by a family of distributions is attained and the maximizing
distribution is a Markovian solution of the martingale problem.
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Open problem

hp can be characterized as the minimal nonnegative solution of the
Cauchy problem

∂

∂t
v(t, s) +

1

2

d∑
i=1

d∑
j=1

si sjai ,j(t, s)D
2
i ,jv(t, s) = 0

v(T , s) = p(s)

Can an iterative method be constructed, which converges to the
minimal solution of this PDE?
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“Classical” Mathematical Finance I

• Reminder: dZ θ(t) = −θT(t,S(t))Z θ(t)dW (t), where θ
denotes the market price of risk.

• Assume: Z θ(·) is a true martingale.

• Then, there exists a risk-neutral measure Q, under which S(·)
has dynamics

dSi (t) =Si (t)
K∑

k=1

σi ,k(t,S(t))dW Q
k (t).

• Then,

hp(t, s) = Et,s
[
Z̃ θ(T )p(S(T ))

]
= EQt,s

[p(S(T ))] .

• Below: Generalization to the situation where Z θ(·) is a strict
local martingale and risk-neutral measure Q does not exist.
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“Classical” Mathematical Finance II

• If we assume that the number of stocks d and the number of
driving Brownian motions K is equal, that is, d = K , and σ
has full rank, then the market is called complete.

• Then, by the Martingale Representation Theorem, there exists
some strategy η such that

V v ,η(T ) = p(S(T ))

for initial capital v = hp(0,S(0)).

• That is, the contingent claim / payoff can be hedged.

• Often, one can use Itô’s rule to compute

ηi (t) = Dih
p(t,S(t)),

which is called delta hedge.
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“Classical” Mathematical Finance III
• Often, the hedging price hp needs to be computed numerically.
• Theory behind it: Feynman-Kac Theorem
• It states that under some continuity and growth conditions on

a and p, any solution v : [0,T ]× Rd
+ → R of the

Cauchy-Problem (Black-Scholes PDE)

∂

∂t
v(t, s) +

1

2

d∑
i=1

d∑
j=1

si sjai ,j(t, s)D
2
i ,jv(t, s) = 0

v(T , s) = p(s)

with polynomial growth can be represented as

v(t, s) = EQt,s
[p(S(T ))] = hp(t, s),

where a(·, ·) = σ(·, ·)σT(·, ·) and S(·) has Q-dynamics

dSi (t) = Si (t)
K∑

k=1

σi ,k(t,S(t))dW Q
k (t).



Motivation Notation Hedging (price) Smoothness Change of measure Example Summary

Feynman-Kac does not always work.
• We have seen, as long as

• some growth and continuity conditions on σ and p are satisfied,
• the risk-neutral measure Q exists,
• hp is of polynomial growth,
• the Black-Scholes equation has a solution

we know that the hedging price hp is a solution.

• Growth conditions are often not satisfied, for example

dS̃(t) =− S̃2(t)dW (t)

with corresponding PDE

∂

∂t
v(t, s) +

1

2
s4D2v(t, s) = 0.

• Then, v1(t, s) = s and v2(t, s) = 2sΦ
(

1
s
√

T−t

)
− s are

solutions of polynomial growth, satisfying v(T , s) = s and
v(t, 0) = 0.
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“Classical” Mathematical Finance IV

• Remember: We have assumed that there exists some θ which
maps the volatility into the drift, that is σ(·, ·)θ(·, ·) = µ(·, ·).

• It can be shown that this assumption excludes “unbounded
profit with bounded risk”.

• Thus “making (a considerable) something out of almost
nothing” is not possible.

• However, it is still possible to “certainly make something more
out of something”.

• The reason that the arbitrage is not scalable is due to the
credit constraint (admissibility) V 1,η(·) ≥ 0.
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Digression: Problems of the no-arbitrage assumption.

• A typical market participant can statistically detect whether a
market price of risk θ exists or does not exist.

• However, there exists no statistical test to decide whether
Z θ(·) is a true martingale or not (whether arbitrage exists or
does not exist).

• Instead of starting from the normative assumption of no
arbitrage, Stochastic Portfolio Theory takes a descriptive
approach.

• One goal is to find models which provide realistic dynamics of
the market weights Si (·)/(Si (·) + . . .Sd(·)).

• These models tend to violate the no-arbitrage assumption.
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Stationarity of the market weights.
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Figure: Market weights against ranks on logarithmic scale, 1929 - 1999,
from Fernholz, Stochastic Portfolio Theory, page 95.
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