Limit theory for heavy-tailed models on a lattice

Azra Tafro

University of Zagreb, Department of Mathematics

August 27th, 2010

State space (E, \mathcal{E})

- *M_p(E)* space of point measures on *E*.
- $\mathcal{M}_{\rho}(E)$ smallest σ -algebra making the evaluation maps $m \to m(F)$ measurable, $m \in \mathcal{M}_{\rho}(E)$, $F \in \mathcal{E}$.
- $C_{\kappa}^+ := \{ f : E \to \mathbb{R}_+ : f \text{ continuous with compact support} \}.$

Vague convergence of measures $\mu_n \in M_p(E)$, n > 0

$$\mu_n \xrightarrow{\mathbf{v}} \mu_0 \iff \mu_n(f) \to \mu_0(f) \text{ for all } f \in C_K^+$$

Poisson point process ξ on (E, \mathcal{E})

•
$$P(\xi(F) = k) = \begin{cases} e^{-\mu(F)}(\mu(F))^k/k! & \text{if } \mu(F) < \infty \\ 0 & \text{if } \mu(F) = \infty, \end{cases}$$
 for all $F \in \mathcal{E}$.
• $F_1 = F_2 \in \mathcal{E}$ mutually disjoint $\Rightarrow \mathcal{E}(F_2) = \mathcal{E}(F_2)$ independent

• $X \in \mathbb{R}^d$ and its distribution are regularly varying with index $\alpha > 0$:

$$\frac{P(x^{-1}X\in \cdot)}{P(|X|>x)} \xrightarrow{\nu} \mu(\cdot)$$

for a non-null Radon measure μ on $\mathbb{R}^d \setminus \{0\}$ with $\mu(tA) = t^{-\alpha}\mu(A), t > 0$.

• $X \in \mathbb{R}^d$ and its distribution are regularly varying with index $\alpha > 0$:

$$\frac{P(x^{-1}X\in \cdot)}{P(|X|>x)} \xrightarrow{v} \mu(\cdot)$$

for a non-null Radon measure μ on $\overline{\mathbb{R}}^d \setminus \{0\}$ with $\mu(tA) = t^{-\alpha}\mu(A), t > 0$.

• Equivalently, there exists $\Theta \in \mathbb{S}^{d-1}$ such that for any $t > 0, S \subset \mathbb{S}^{d-1}$ with $P(\Theta \in \partial S) = 0$,

$$\lim_{x\to\infty}\frac{P(|X|>tx,\overline{X}\in S)}{P(|X|>x)}=t^{-\alpha}P(\Theta\in S),$$

(weak convergence), where $\overline{x} = x/|x|$.

• $X \in \mathbb{R}^d$ and its distribution are regularly varying with index $\alpha > 0$:

$$\frac{P(x^{-1}X\in \cdot)}{P(|X|>x)} \xrightarrow{v} \mu(\cdot)$$

for a non-null Radon measure μ on $\overline{\mathbb{R}}^d \setminus \{0\}$ with $\mu(tA) = t^{-\alpha}\mu(A), t > 0$.

• Equivalently, there exists $\Theta \in \mathbb{S}^{d-1}$ such that for any $t > 0, S \subset \mathbb{S}^{d-1}$ with $P(\Theta \in \partial S) = 0$,

$$\lim_{x\to\infty}\frac{P(|X|>tx,\overline{X}\in S)}{P(|X|>x)}=t^{-\alpha}P(\Theta\in S),$$

(weak convergence), where $\overline{x} = x/|x|$.

• Equivalently, there exist $a_n \to \infty$ such that

$$nP(a_n^{-1}X \in \cdot) \xrightarrow{v} \mu(\cdot).$$

 $\{X_i\}$ i.i.d. and (a_n) such that $nP(|X| > a_n) \sim 1$. The following are equivalent:

- X_1 regularly varying with index $\alpha > 0$.
- Point process convergence with limiting Poisson process on $\mathbb{R}^d \setminus \{0\}$ with mean measure μ :

$$\sum_{i=1}^n \delta_{a_n^{-1}X_i} \Rightarrow \sum_{i=1}^{+\infty} \delta_{\pi_i}.$$

• Convergence of partial sums with α -stable limit S_{α} (for $\alpha <$ 2)

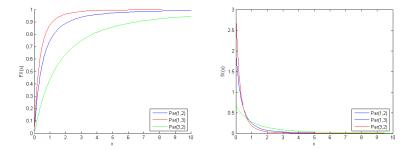
$$a_n^{-1}(X_1+\ldots X_n-b_n)\Rightarrow S_{\alpha}.$$

Example: Pareto distribution

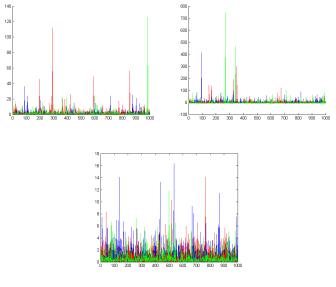
 $X \sim Par(c, \alpha)$

- Density function $f_X(x) = \alpha \frac{c^{\alpha}}{(c+x)^{\alpha+1}} \mathbf{1}_{\{x \ge 0\}}$
- Cumulative distribution function $F_X(x) = 1 (\frac{c}{c+x})^{\alpha} \mathbf{1}_{\{x \ge 0\}}$

• Tail function
$$\overline{F}_X(x) = (\frac{c}{c+x})^{\alpha} \mathbf{1}_{\{x \ge 0\}}$$



Example: Pareto distribution



Left: $X_1, \ldots, X_{1000} \sim Par(1, 2)$, Center: $X_1, \ldots, X_{1000} \sim Par(1, 3)$, Right: $X_1, \ldots, X_{1000} \sim Par(3, 2)$

• $\{Z_{i,j} : i, j \in \mathbb{Z}\}$ real valued iid random variables such that:

$$P(|Z_{i,j}| > x) = x^{-\alpha} L(x), L \text{ slowly varying at } \infty, \alpha > 0$$
(1)

$$\frac{P(Z_{i,j} > x)}{P(|Z_{i,j}| > x)} \to p \text{ and } \frac{P(Z_{i,j} \le -x)}{P(|Z_{i,j}| > x)} \to q$$
(2)

as $x \to \infty$, $0 \le p \le 1$, q = 1 - p.

• $\{Z_{i,j} : i, j \in \mathbb{Z}\}$ real valued iid random variables such that:

$$P(|Z_{i,j}| > x) = x^{-\alpha} L(x), L \text{ slowly varying at } \infty, \alpha > 0$$
(1)

$$\frac{P(Z_{i,j} > x)}{P(|Z_{i,j}| > x)} \to p \text{ and } \frac{P(Z_{i,j} \le -x)}{P(|Z_{i,j}| > x)} \to q$$
(2)

as $x \to \infty, 0 \le p \le 1, q = 1 - p$.

• $\{a_n\}$ sequence of positive constants such that

$$n^2 P(|Z_{1,1}| > a_n x) \to x^{-\alpha} \text{ for all } x > 0.$$
 (3)

.

• $\{Z_{i,j} : i, j \in \mathbb{Z}\}$ real valued iid random variables such that:

$$P(|Z_{i,j}| > x) = x^{-\alpha} L(x), L \text{ slowly varying at } \infty, \alpha > 0$$
(1)

$$\frac{P(Z_{i,j} > x)}{P(|Z_{i,j}| > x)} \to p \text{ and } \frac{P(Z_{i,j} \le -x)}{P(|Z_{i,j}| > x)} \to q$$
(2)

as $x \to \infty, 0 \le p \le 1, q = 1 - p$.

• $\{a_n\}$ sequence of positive constants such that

$$n^2 P(|Z_{1,1}| > a_n x) \to x^{-\alpha} \text{ for all } x > 0.$$
 (3)

•
$$\lambda(dx) = \alpha p x^{-\alpha-1} \mathbf{1}_{(0,\infty)}(x) dx + \alpha q(-x)^{-\alpha-1} \mathbf{1}_{(-\infty,0)}(x) dx$$
 measure on $\mathbb{R} \setminus \{0\}$.

• $\mu = Leb \times Leb \times \lambda$ measure on $\mathbb{R}^2 \times \mathbb{R} \setminus \{0\}$.

Theorem 1

For each *n* suppose $\{X_{n,i,j} : i, j \in \mathbb{Z}\}$ are iid random elements of (E, \mathcal{E}) and let λ be a Radon measure on (E, \mathcal{E}) . Define $\xi_n := \sum_{i,j \in \mathbb{Z}} \delta_{(\frac{j}{n}, \frac{j}{n}, X_{n,i,j})}$ and suppose ξ is PRM on $\mathbb{R}^2 \times E$ with mean measure $\mu = Leb \times Leb \times \lambda$. Then $\xi_n \Rightarrow \xi \text{ in } M_p(\mathbb{R}^2 \times E)$ iff $n^2 P(X_{n,1,1} \in \cdot) \xrightarrow{v} \lambda(\cdot) \text{ on } E.$

(4)

Theorem 1

For each *n* suppose $\{X_{n,i,j} : i, j \in \mathbb{Z}\}$ are iid random elements of (E, \mathcal{E}) and let λ be a Radon measure on (E, \mathcal{E}) . Define $\xi_n := \sum_{i,j \in \mathbb{Z}} \delta_{(\frac{i}{n}, \frac{i}{n}, X_{n,i,j})}$ and suppose ξ is PRM on $\mathbb{R}^2 \times E$ with mean measure $\mu = Leb \times Leb \times \lambda$. Then

 $\xi_n \Rightarrow \xi$ in $M_p(\mathbb{R}^2 \times E)$

iff

$$n^2 P(X_{n,1,1} \in \cdot) \xrightarrow{v} \lambda(\cdot)$$
 on E .

 $X_{n,i,j} := a_n^{-1} Z_{i,j}$ satisfies (4) on $\mathbb{R} \setminus \{0\}$, so

$$\sum_{i,j\in\mathbb{Z}}\delta_{(\frac{i}{n},\frac{j}{n},a_n^{-1}Z_{i,j})} \Rightarrow \sum_h \delta_{(t_h^{(1)},t_h^{(2)},w_h)},$$

where $t_h^{(1)}, t_h^{(2)}, w_h$ are such that the sum on the right is a Poisson random measure with mean measure $\mu = Leb \times Leb \times \lambda$ on $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\})$.

(4)

For a fixed
$$m \in \mathbb{N}, Z_{i,j}^{(m)} := (Z_{i-m,j-m}, Z_{i-m+1,j-m}, \dots, Z_{i+m,j+m}) \in \mathbb{R}^{(2m+1)^2}$$
.

Theorem 2

Let $\{Z_{i,j}\}$ be i.i.d. satisfying (1) and (2) with $\{a_n\}$ satisfying (3). Then for each fixed positive integer m

$$\sum_{i,j\in\mathbb{Z}} \delta_{(\frac{i}{n},\frac{j}{n},Z_{i,j}^{(m)})} \Rightarrow \sum_{h} \sum_{k=1}^{(2m+1)^2} \delta_{(t_h^{(1)},t_h^{(2)},w_h \mathbf{e}_k)}$$

in $M_{\rho}(\mathbb{R}^2 \times (\mathbb{R}^{(2m+1)^2} \setminus \{0\}))$ as $n \to \infty$, where $\mathbf{e}_k \in \mathbb{R}^{(2m+1)^2}$ is the basis element with *k*th component equal to one and the rest zero, and $t_h^{(1)}, t_h^{(2)}, w_h$ are defined as above.

Convergence of spatial averages

• $\{c_{k,l}\}$ array of real numbers such that

$$\sum_{k,l\in\mathbb{Z}} |\boldsymbol{c}_{k,l}|^{\delta} < \infty \text{ for some } \delta < \alpha, \ \delta \le 1.$$
(5)

$$X_{i,j} := \sum_{k,l \in \mathbb{Z}} c_{k,l} Z_{i+k,j+l}.$$
(6)

Convergence of spatial averages

• $\{c_{k,l}\}$ array of real numbers such that

$$\sum_{k,l\in\mathbb{Z}} |c_{k,l}|^{\delta} < \infty \text{ for some } \delta < \alpha, \ \delta \le 1.$$
(5)

$$X_{i,j} := \sum_{k,l \in \mathbb{Z}} c_{k,l} Z_{i+k,j+l}.$$
(6)

Theorem 3

Suppose that $\{Z_{i,j}\}, \{a_n\}, \{c_{k,l}\}$ satisfy (1), (2), (3) and (7), and $\{X_{i,j}\}$ is given by (6). Let $\{(t_h^{(1)}, t_h^{(2)}, w_h)\}$ be the points of PRM(μ) on $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\})$. Then

$$\sum_{i,j\in\mathbb{Z}}\delta_{(\frac{i}{n},\frac{j}{n},a_n^{-1}X_{i,j})} \Rightarrow \sum_{k,l\in\mathbb{Z}}\sum_h \delta_{(t_h^{(1)},t_h^{(2)},w_hc_{k,l})} \text{ in } M_p(\mathbb{R}^2\times(\mathbb{R}\setminus\{0\})) \text{ as } n\to\infty.$$

- weak limiting behaviour of extremes
- joint limiting distribution of upper and lower extremes
- exceedances

-

- weak limiting behaviour of extremes
- joint limiting distribution of upper and lower extremes
- exceedances

Extremal index

If $P(M_n \leq u_n) \rightarrow e^{-\theta \tau}$ for each τ , with u_n satisfying $n\overline{F}(u_n) \rightarrow \tau$, we say that the stationary sequence $\{X_n\}$ has extremal index θ .

- B - - B

- weak limiting behaviour of extremes
- joint limiting distribution of upper and lower extremes
- exceedances

Extremal index

If $P(M_n \leq u_n) \rightarrow e^{-\theta \tau}$ for each τ , with u_n satisfying $n\overline{F}(u_n) \rightarrow \tau$, we say that the stationary sequence $\{X_n\}$ has extremal index θ .

Example (extremal index)

Denote
$$M_n = \max_{0 \le i,j \le n} X_{i,j}$$
, $c_+ = \max_{k,l} \{c_{k,l}, 0\}$, $c_- = \max_{k,l} \{-c_{k,l}, 0\}$.

$$P(a_n^{-1}M_n \leq x) = e^{-(pc_+^{\alpha} + qc_-^{\alpha})x^{-\alpha}},$$

i.e. the extremal index of the array $\{X_{i,j}\}$ is $pc_+^{\alpha} + qc_-^{\alpha}$.

- weak limiting behaviour of extremes
- joint limiting distribution of upper and lower extremes
- exceedances

Extremal index

If $P(M_n \leq u_n) \rightarrow e^{-\theta \tau}$ for each τ , with u_n satisfying $n\overline{F}(u_n) \rightarrow \tau$, we say that the stationary sequence $\{X_n\}$ has extremal index θ .

Example (extremal index)

Denote
$$M_n = \max_{0 \le i,j \le n} X_{i,j}, c_+ = \max_{k,l} \{c_{k,l}, 0\}, c_- = \max_{k,l} \{-c_{k,l}, 0\}.$$

$$P(a_n^{-1}M_n \leq x) = e^{-(pc_+^{\alpha} + qc_-^{\alpha})x^{-\alpha}},$$

i.e. the extremal index of the array $\{X_{i,j}\}$ is $pc_+^{\alpha} + qc_-^{\alpha}$.

Example 2

Denote
$$M_{n,m}^r$$
 - *r*th largest among $\{X_{(-n,-m)}, \ldots, X_{(n,m)}\}$. For $0 < y < x$ we have

$$P(a_n^{-1}M_{n,n} \leq x, a_n^{-1}M_{n,n}^2 \leq y) \rightarrow P(N(\langle x, \infty \rangle) = 0, N([y, x]) \leq 1).$$

Convergence of moving maxima

• $\{c_{k,l}\}$ array of real numbers such that

$$\sum_{k,l\in\mathbb{Z}} |\boldsymbol{c}_{k,l}|^{\delta} < \infty \text{ for some } \delta < \alpha, \ \delta \le 1.$$
(7)

$$Y_{i,j} := \bigvee_{k,l \in \mathbb{Z}} c_{k,l} Z_{i+k,j+l}.$$
(8)

Convergence of moving maxima

• $\{c_{k,l}\}$ array of real numbers such that

$$\sum_{k,l\in\mathbb{Z}} |c_{k,l}|^{\delta} < \infty \text{ for some } \delta < \alpha, \ \delta \le 1.$$
(7)

$$Y_{i,j} := \bigvee_{k,l \in \mathbb{Z}} c_{k,l} Z_{i+k,j+l}.$$
(8)

Theorem 4

Suppose that $\{Z_{i,j}\}, \{a_n\}, \{c_{k,l}\}$ satisfy (1), (2), (3) and (7), and $\{Y_{i,j}\}$ is given by (8). Let $\{(t_h^{(1)}, t_h^{(2)}, w_h)\}$ be the points of PRM(μ) on $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\})$. Then

$$\sum_{i,j\in\mathbb{Z}}\delta_{(\frac{i}{n},\frac{j}{n},a_n^{-1}Y_{i,j})} \Rightarrow \bigvee_{k,l\in\mathbb{Z}}\sum_h \delta_{(t_h^{(1)},t_h^{(2)},w_hc_{k,l})} \text{ in } M_p(\mathbb{R}^2\times(\mathbb{R}\setminus\{0\})) \text{ as } n\to\infty.$$

Convergence of moving maxima

• $\{c_{k,l}\}$ array of real numbers such that

$$\sum_{k,l\in\mathbb{Z}} |c_{k,l}|^{\delta} < \infty \text{ for some } \delta < \alpha, \ \delta \le 1.$$
(7)

$$Y_{i,j} := \bigvee_{k,l \in \mathbb{Z}} c_{k,l} Z_{i+k,j+l}.$$
(8)

Theorem 4

Suppose that $\{Z_{i,j}\}, \{a_n\}, \{c_{k,l}\}$ satisfy (1), (2), (3) and (7), and $\{Y_{i,j}\}$ is given by (8). Let $\{(t_h^{(1)}, t_h^{(2)}, w_h)\}$ be the points of PRM(μ) on $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\})$. Then

$$\sum_{i,j\in\mathbb{Z}}\delta_{(\frac{i}{n},\frac{j}{n},a_n^{-1}Y_{i,j})} \Rightarrow \bigvee_{k,l\in\mathbb{Z}}\sum_h \delta_{(t_h^{(1)},t_h^{(2)},w_hc_{k,l})} \text{ in } M_p(\mathbb{R}^2\times(\mathbb{R}\setminus\{0\})) \text{ as } n\to\infty.$$

Example (extremal index)

Denote
$$M_n = \max_{0 \le i,j \le n} Y_{i,j}$$
, $c_+ = \max_{k,l} \{c_{k,l}, 0\}$, $c_- = \max_{k,l} \{-c_{k,l}, 0\}$.

$$P(a_n^{-1}M_n \leq y) = e^{-(\rho c_+^{\alpha} + q c_-^{\alpha})y^{-\alpha}},$$

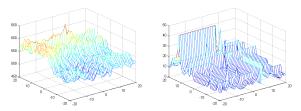
i.e. the extremal index of the array $\{Y_{i,j}\}$ is also $pc_{+}^{\alpha} + qc_{-}^{\alpha}$.

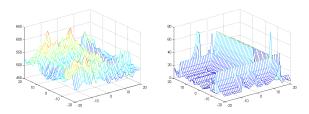
Example

•
$$Z_{i,j} \sim Par(1,2)$$

• $C_{k,l} = \begin{cases} \max\{\frac{1}{|k|}, \frac{1}{|l|}\} & , |k|, |l| \le 20 \\ 0 & , \text{ otherwise }. \end{cases}$

left $X_{i,j}$, right $Y_{i,j}$, |i|, $|j| \le 20$:





- Davis, R.A. and Resnick, S.I. (1985), Limit theory for moving averages of random variables with regularly varying tail probabilities, Ann. Probab. 13, 179-195.
- ② Davis, R.A. and Mikosch, T. (2008), Extreme value theory for space-time processes with heavy-tailed distributions, *Stochastic Processes and their Applications* 118, 560–584.
- Jessen, A.H. and Mikosch, T. (2006), Regularly varying functions, *Publications de l'Institut Mathematique* 80(94), 171-192.
- Leadbetter, M.R. and Rootzen, H. (1988), Extremal theory for stochastic processes, Ann. Probab. 16, 431-478.
- Sesnick, S.I. (2008), Extreme Values, Regular Variation, and Point Processes, Springer, New York