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Main Idea in a Nutshell

Arbitrage-free semimartingale market model S

risk averse A
utility UA

capital x

risk loving L
utility UL

capital x

UA � UL

! Maximize expected utility from terminal wealth !

E [UA(·)]→ max

optimal X A
T

E [UL(·)]→ max

optimal X L
T

? Relation between X A
T and X L

T ?

In certain market models

X L
T stochastically dominates X A

T , i.e.,

X A
T + “risk premium” + “noise”

(d)
= X L

T
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Second Order Stochastic Dominance

Definition

X ,Y two random variables on (Ω,F ,P).

Y (monotone convex) stochastically dominates X , (X �c Y ), iff
for all K ∈ R

E [(X − K )+] ≤ E [(Y − K )+]

TFAE:

X �c Y

Y
(d)
= X + Z + ε, where

Z ≥ 0 (“risk premium”),
E [ε|X + Z ] = 0 (“noise”)
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A Visual Example

∀K : E [(X − K )+] ≤ E [(Y − K )+]
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The red distribution Y stochastically dominates the blue
distribution X .
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Complete Market

Me(S) = {equivalent local martingale measures} = {Q}
Duality:

U ′A(X A
T ) = yA

dQ
dP

, U ′L(X L
T ) = yL

dQ
dP

, yA, yL > 0 (1)

Theorem (DW09)

In a complete 1-period market model, X A �c X L, i.e.,

X L (d)
= X A + Z + ε.

Corollary

In a complete market, X A
T �c X L

T , i.e., X L
T

(d)
= X A

T + Z + ε.

Main idea of proof: Extensive use of (1)



Complete Market

Me(S) = {equivalent local martingale measures} = {Q}

Duality:

U ′A(X A
T ) = yA

dQ
dP

, U ′L(X L
T ) = yL

dQ
dP

, yA, yL > 0 (1)

Theorem (DW09)

In a complete 1-period market model, X A �c X L, i.e.,

X L (d)
= X A + Z + ε.

Corollary

In a complete market, X A
T �c X L

T , i.e., X L
T

(d)
= X A

T + Z + ε.

Main idea of proof: Extensive use of (1)



Complete Market

Me(S) = {equivalent local martingale measures} = {Q}
Duality:

U ′A(X A
T ) = yA

dQ
dP

, U ′L(X L
T ) = yL

dQ
dP

, yA, yL > 0 (1)

Theorem (DW09)

In a complete 1-period market model, X A �c X L, i.e.,

X L (d)
= X A + Z + ε.

Corollary

In a complete market, X A
T �c X L

T , i.e., X L
T

(d)
= X A

T + Z + ε.

Main idea of proof: Extensive use of (1)



Complete Market

Me(S) = {equivalent local martingale measures} = {Q}
Duality:

U ′A(X A
T ) = yA

dQ
dP

, U ′L(X L
T ) = yL

dQ
dP

, yA, yL > 0 (1)

Theorem (DW09)

In a complete 1-period market model, X A �c X L, i.e.,

X L (d)
= X A + Z + ε.

Corollary

In a complete market, X A
T �c X L

T , i.e., X L
T

(d)
= X A

T + Z + ε.

Main idea of proof: Extensive use of (1)



Complete Market

Me(S) = {equivalent local martingale measures} = {Q}
Duality:

U ′A(X A
T ) = yA

dQ
dP

, U ′L(X L
T ) = yL

dQ
dP

, yA, yL > 0 (1)

Theorem (DW09)

In a complete 1-period market model, X A �c X L, i.e.,

X L (d)
= X A + Z + ε.

Corollary

In a complete market, X A
T �c X L

T , i.e., X L
T

(d)
= X A

T + Z + ε.

Main idea of proof: Extensive use of (1)



Incomplete Market

|Me(S)| > 1

Duality (Kramkov-Schachermayer99, Schachermayer01,
reasonable elasticity):

U ′A(X A
T ) = YA, U ′L(X L

T ) = YL,

where YA,YL solve dual problem related to original
optimization problem.
BUT: no nice relation between YA and YL as in a complete
market.
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Counterexample: 1-Period Model, 2 stocks

Incomplete market, agents A, L with power utility
Two stocks:

“risky” red stock: should be bought by L
“secure” blue stock: should be bought by A

? ∀K : E
[
(X A − K )+

]
≤ E

[
(X L − K )+

]
?

0 5 10 15 20 25 30

Similar counterexample for 2-Period model with one risky
stock & one risk-free stock and power utility
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Incomplete Market: Our Approach

Incomplete markets

In general: X L
T does not stochastically dominate X A

T

To check stochastic dominance in incomplete markets, we
consider

1 special market models (stochastic volatility model, exponential
Lévy model)

2 special utility functions (power utilities U(x) = x1−p

1−p )

→ exponential Lévy model and power utilities
1 N-period exponential Lévy model
2 “essentially” 1-period model
3 result for continuous time Lévy model by taking limit
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N-Period Exponential Lévy Model

Agents A, L with power utility functions UA,UL

Risk-free stock S0 = 1, ∆Lm i.i.d. random variables

S1
n =

n∏
m=1

(1 + ∆Lm) = E(L)n, n = 1, . . . ,N, risky stock,

wealth process Xi evolves according to

X0 = x

π1

%%
X1

π2
$$
X2

π3

  . . .

πN
%%
XN

Xi = πiXi−1(1 + ∆Li ) + (1− πi )Xi−1

Proposition (Samuelson69)

Optimal strategy (πi )
N
i=1 of N-period problem is given by

πi = π∗ ∈ R (π∗ optimal strategy for corr. 1-period problem).
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Inheritance of Stochastic Dominance in 1-Period Models

Agents A,L with power utility functions UA,UL

stochastic initial capital-distributions µA, µL satisfying

µA �c µL.

One stock S , one risk-free stock normalized to 1, possibly
incomplete market:

max
π

E [Ui (πx + (1− π)x · S)] ,

where x is initial capital distributed according to µA, resp., µL.

Proposition

µA �c µL implies X A �c X L.
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N-period Exponential Lévy model

N-period Exponential Lévy model:

X0 = x

π∗

''
X1

π∗

$$. . .

π∗

''
XN

X A
0 = X L

0

π∗L

π∗A
**

X A
1 �c X L

1

π∗L

π∗A $$. . .

π∗L

π∗A
))

X A
N �c X L

N

Corollary

The optimal terminal wealths X A
N , X L

N of the N-period Lévy
problem satisfy X A

N �c X L
N .
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Time-continuous Exponential Lévy Model: Idea of Proof

S0
t = 1, risk-free stock

dS1
t

S1
t

= dLt , risky stock,

(Lt)t is Lévy process (stationary, independent increments,
càdlàg Markov process).

Approximate (St)t by step function t 7→
∏bt/Nc

m=1 (1 + ∆Lm)

We have shown:

1 Result holds in N-period exponential Lévy model

X A
N �c X L

N

2 Optimal payoffs XN of N-period models converge in L1 to
optimal payoffs XT in continuous time model

E
[
|X A

N − X A
T |

]
→ 0 E

[
|X L

N − X L
T |

]
→ 0
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X A
N �c X L

N

2 Optimal payoffs XN of N-period models converge in L1 to
optimal payoffs XT in continuous time model

E
[
|X A

N − X A
T |

]
→ 0 E

[
|X L

N − X L
T |

]
→ 0



Time-continuous Exponential Lévy Model: Idea of Proof
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Exponential Lévy: Main Result & Future Plan

Theorem

In a time-continuous exponential Lévy model: X A
T �c X L

T , i.e.,

X A
T + “risk premium” + “noise”

(d)
= X L

T

future plan (should work...):

Independence of increments was crucial.

Stationarity of increments was not crucial.

Attain results for models with conditionally independent
increments, e.g.: BNS
(Kallsen&Muhle-Karbe10)
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Summary

Complete markets: Result X A
T �c X L

T holds for all complete
markets and any utility function UA � UL.

Incomplete markets: X A
T �c X L

T does generally not hold
(counterexample)

Result holds in exponential Lévy models with power utilities
Future plan: Result holds in models with conditionally
independent increments and power utilities
“Strong” numerical evidence suggests that result holds in
stochastic volatility models with correlation
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