The Distribution of Portfolio Payoffs and Increases in Risk Aversion

Johannes Temme (joint work with Mathias Beiglböck, Johannes Muhle-Karbe)

August 26, 2010

Main Idea in a Nutshell

Arbitrage-free semimartingale market model S

 $U_A \ll U_L$

 $U_A \ll U_L$

! Maximize expected utility from terminal wealth ! $\mathbb{E}[U_A(\cdot)] \rightarrow \max$ $\mathbb{E}[U_L(\cdot)] \rightarrow \max$ optimal X_T^A optimal X_T^L

 $U_A \ll U_L$

! Maximize expected utility from terminal wealth ! $\mathbb{E}[U_A(\cdot)] \rightarrow \max$ $\mathbb{E}[U_L(\cdot)] \rightarrow \max$ optimal X_T^A optimal X_T^L • Relation between X_T^A and X_T^L ?

 $U_A \ll U_L$

! Maximize expected utility from terminal wealth ! $\mathbb{E}[U_A(\cdot)] \rightarrow \max$ $\mathbb{E}[U_L(\cdot)] \rightarrow \max$ optimal X_T^A optimal X_T^L 2 Delation between X_T^A and X_T^L 2

Relation between X_T^A and X_T^L ?

In certain market models

 X_T^L stochastically dominates X_T^A , i.e.,

$$X_T^A$$
 + "risk premium" + "noise" $\stackrel{(d)}{=} X_T^L$

Table of Contents

- Work in progress...
- Extension of Philip Dybvig, Yajun Wang, Increases in Risk Aversion and the Distribution of Portfolio Payoffs, 2009
- 1 Stochastic Dominance
- 2 Complete Market
- 3 Incomplete Market
 - Counterexample
 - Exponential Lévy Model

Definition

X, Y two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition

X, Y two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Y (monotone convex) stochastically dominates X, $(X \leq_c Y)$, iff for all $K \in \mathbb{R}$

 $\mathbb{E}\left[(X-K)_+\right] \le \mathbb{E}\left[(Y-K)_+\right]$

Definition

X, Y two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Y (monotone convex) stochastically dominates X, $(X \leq_c Y)$, iff for all $K \in \mathbb{R}$

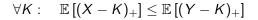
 $\mathbb{E}\left[(X-K)_+
ight] \leq \mathbb{E}\left[(Y-K)_+
ight]$

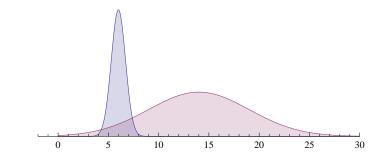
TFAE:

•
$$X \leq_{c} Y$$

• $Y \stackrel{(d)}{=} X + Z + \epsilon$, where
 $Z \geq 0$ ("risk premium"),
 $\mathbb{E}[\epsilon | X + Z] = 0$ ("noise")

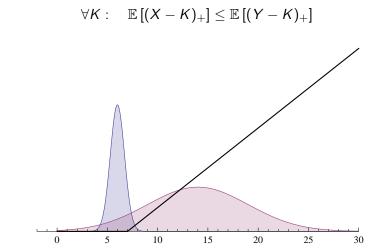
A Visual Example





The red distribution Y stochastically dominates the blue distribution X.

A Visual Example



The red distribution Y stochastically dominates the blue distribution X.

• $\mathcal{M}^{e}(S) = \{ \text{equivalent local martingale measures} \} = \{ \mathbb{Q} \}$

\$\mathcal{M}^e(S) = {equivalent local martingale measures} = {\mathbb{Q}}\$
Duality:

$$U'_A(X^A_T) = y_A \frac{d\mathbb{Q}}{d\mathbb{P}}, \qquad U'_L(X^L_T) = y_L \frac{d\mathbb{Q}}{d\mathbb{P}}, \quad y_A, y_L > 0 \quad (1)$$

\$\mathcal{M}^e(S) = {equivalent local martingale measures} = {\mathbb{Q}}\$
Duality:

$$U'_{A}(X_{T}^{A}) = y_{A} \frac{d\mathbb{Q}}{d\mathbb{P}}, \qquad U'_{L}(X_{T}^{L}) = y_{L} \frac{d\mathbb{Q}}{d\mathbb{P}}, \quad y_{A}, y_{L} > 0 \quad (1)$$

Theorem (DW09)

In a complete 1-period market model, $X^A \leq_c X^L$, i.e., $X^L \stackrel{(d)}{=} X^A + Z + \epsilon.$

\$\mathcal{M}^e(S) = {equivalent local martingale measures} = {\mathbb{Q}}\$
Duality:

$$U'_{A}(X_{T}^{A}) = y_{A} \frac{d\mathbb{Q}}{d\mathbb{P}}, \qquad U'_{L}(X_{T}^{L}) = y_{L} \frac{d\mathbb{Q}}{d\mathbb{P}}, \quad y_{A}, y_{L} > 0 \quad (1)$$

Theorem (DW09)

In a complete 1-period market model, $X^A \leq_c X^L$, i.e., $X^L \stackrel{(d)}{=} X^A + Z + \epsilon.$

Corollary

In a complete market,
$$X_T^A \preceq_c X_T^L$$
, i.e., $X_T^L \stackrel{(d)}{=} X_T^A + Z + \epsilon$.

Main idea of proof: Extensive use of (1)

Incomplete Market

■ $|M^{e}(S)| > 1$

 $\bullet |\mathcal{M}^e(S)| > 1$

Duality (Kramkov-Schachermayer99, Schachermayer01, reasonable elasticity):

$$U'_{\mathcal{A}}(X^{\mathcal{A}}_T) = \mathcal{Y}_{\mathcal{A}}, \qquad U'_{\mathcal{L}}(X^{\mathcal{L}}_T) = \mathcal{Y}_{\mathcal{L}},$$

where $\mathcal{Y}_A, \mathcal{Y}_L$ solve *dual* problem related to original optimization problem.

 $\bullet |\mathcal{M}^e(S)| > 1$

Duality (Kramkov-Schachermayer99, Schachermayer01, reasonable elasticity):

$$U'_{\mathcal{A}}(X^{\mathcal{A}}_T) = \mathcal{Y}_{\mathcal{A}}, \qquad U'_{\mathcal{L}}(X^{\mathcal{L}}_T) = \mathcal{Y}_{\mathcal{L}},$$

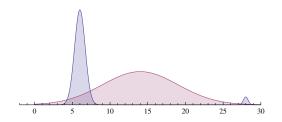
where $\mathcal{Y}_A, \mathcal{Y}_L$ solve *dual* problem related to original optimization problem.

BUT: no nice relation between \mathcal{Y}_A and \mathcal{Y}_L as in a complete market.

Counterexample: 1-Period Model, 2 stocks

- Incomplete market, agents A, L with power utility
 Two stocks:
 - "risky" red stock: should be bought by L
 - "secure" blue stock: should be bought by A

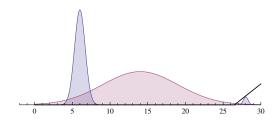
?
$$\forall K : \mathbb{E}\left[(X^A - K)_+\right] \leq \mathbb{E}\left[(X^L - K)_+\right]$$
 ?



Counterexample: 1-Period Model, 2 stocks

- Incomplete market, agents A, L with power utility
 Two stocks:
 - "risky" red stock: should be bought by L
 - "secure" blue stock: should be bought by A

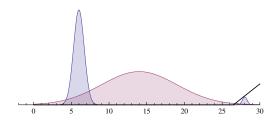
$$\exists K: \mathbb{E}\left[(X^A - K)_+\right] \not\leq \mathbb{E}\left[(X^L - K)_+\right]$$



Counterexample: 1-Period Model, 2 stocks

- Incomplete market, agents A, L with power utility
 Two stocks:
 - "risky" red stock: should be bought by L
 - "secure" blue stock: should be bought by A

$$\exists K: \mathbb{E}\left[(X^{A}-K)_{+}
ight]
eq \mathbb{E}\left[(X^{L}-K)_{+}
ight]$$



 Similar counterexample for 2-Period model with one risky stock & one risk-free stock and power utility

Incomplete Market: Our Approach

Incomplete markets

In general: X_T^L does not stochastically dominate X_T^A

Incomplete markets

In general: X_T^L does not stochastically dominate X_T^A

- To check stochastic dominance in incomplete markets, we consider
 - special market models (stochastic volatility model, exponential Lévy model)
 - **2** special utility functions (power utilities $U(x) = \frac{x^{1-p}}{1-p}$)

Incomplete markets

In general: X_T^L does not stochastically dominate X_T^A

- To check stochastic dominance in incomplete markets, we consider
 - special market models (stochastic volatility model, exponential Lévy model)
 - **2** special utility functions (power utilities $U(x) = \frac{x^{1-\rho}}{1-\rho}$)
- $\blacksquare \rightarrow$ exponential Lévy model and power utilities
 - 1 N-period exponential Lévy model
 - 2 "essentially" 1-period model
 - 3 result for continuous time Lévy model by taking limit

• Agents A, L with power utility functions U_A , U_L

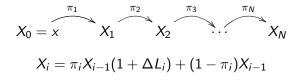
- Agents A, L with power utility functions U_A , U_L
- Risk-free stock $S^0 = 1$, ΔL_m i.i.d. random variables

$$S_n^1 = \prod_{m=1}^n (1 + \Delta L_m) = \mathcal{E}(L)_n, \quad n = 1, \dots, N,$$
 risky stock,

- Agents A, L with power utility functions U_A , U_L
- Risk-free stock $S^0 = 1$, ΔL_m i.i.d. random variables

$$S_n^1 = \prod_{m=1}^n (1 + \Delta L_m) = \mathcal{E}(L)_n, \quad n = 1, \dots, N,$$
 risky stock,

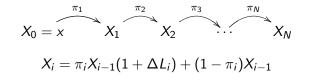
wealth process X_i evolves according to



- Agents A, L with power utility functions U_A , U_L
- Risk-free stock $S^0 = 1$, ΔL_m i.i.d. random variables

$$S_n^1 = \prod_{m=1}^n (1 + \Delta L_m) = \mathcal{E}(L)_n, \quad n = 1, \dots, N,$$
 risky stock,

• wealth process X_i evolves according to



Proposition (Samuelson69)

Optimal strategy $(\pi_i)_{i=1}^N$ of N-period problem is given by $\pi_i = \pi^* \in \mathbb{R}$ (π^* optimal strategy for corr. 1-period problem).

Inheritance of Stochastic Dominance in 1-Period Models

 Agents A, L with power utility functions U_A, U_L stochastic initial capital-distributions μ_A, μ_L satisfying

 $\mu_A \preceq_c \mu_L.$

Inheritance of Stochastic Dominance in 1-Period Models

 Agents A,L with power utility functions U_A, U_L stochastic initial capital-distributions μ_A, μ_L satisfying

$$\mu_A \preceq_c \mu_L.$$

One stock S, one risk-free stock normalized to 1, possibly incomplete market:

$$\max_{\pi} \mathbb{E}\left[U_i(\pi x + (1-\pi)x \cdot S)\right],$$

where x is initial capital distributed according to μ_A , resp., μ_L .

Inheritance of Stochastic Dominance in 1-Period Models

 Agents A,L with power utility functions U_A, U_L stochastic initial capital-distributions μ_A, μ_L satisfying

$$\mu_A \preceq_c \mu_L.$$

One stock S, one risk-free stock normalized to 1, possibly incomplete market:

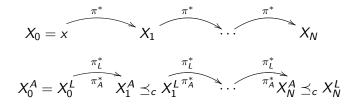
$$\max_{\pi} \mathbb{E}\left[U_i(\pi x + (1-\pi)x \cdot S)\right],$$

where x is initial capital distributed according to μ_A , resp., μ_L .

Proposition

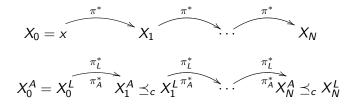
 $\mu_A \preceq_c \mu_L$ implies $X^A \preceq_c X^L$.

N-period Exponential Lévy model:



N-period Exponential Lévy model

N-period Exponential Lévy model:



Corollary

The optimal terminal wealths X_N^A , X_N^L of the N-period Lévy problem satisfy $X_N^A \preceq_c X_N^L$.

$$S_t^0 = 1,$$
 risk-free stock
 $rac{dS_t^1}{S_t^1} = dL_t,$ risky stock,

$$S_t^0 = 1,$$
 risk-free stock
 $rac{dS_t^1}{S_t^1} = dL_t,$ risky stock,

- (L_t)_t is Lévy process (stationary, independent increments, càdlàg Markov process).
- Approximate $(S_t)_t$ by step function $t\mapsto \prod_{m=1}^{\lfloor t/N
 floor}(1+\Delta L_m)$

$$S_t^0 = 1,$$
 risk-free stock
 $rac{dS_t^1}{S_t^1} = dL_t,$ risky stock,

(L_t)_t is Lévy process (stationary, independent increments, càdlàg Markov process).

• Approximate $(S_t)_t$ by step function $t \mapsto \prod_{m=1}^{\lfloor t/N \rfloor} (1 + \Delta L_m)$ We have shown:

I Result holds in *N*-period exponential Lévy model

$$X_N^A \preceq_c X_N^L$$

$$S_t^0 = 1,$$
 risk-free stock
 $rac{dS_t^1}{S_t^1} = dL_t,$ risky stock,

(L_t)_t is Lévy process (stationary, independent increments, càdlàg Markov process).

• Approximate $(S_t)_t$ by step function $t \mapsto \prod_{m=1}^{\lfloor t/N \rfloor} (1 + \Delta L_m)$ We have shown:

1 Result holds in *N*-period exponential Lévy model

$$X_N^A \preceq_c X_N^L$$

Optimal payoffs X_N of N-period models converge in L¹ to optimal payoffs X_T in continuous time model

$$\mathbb{E}\left[|X_N^A - X_T^A|\right] \to 0 \qquad \mathbb{E}\left[|X_N^L - X_T^L|\right] \to 0$$

Theorem

In a time-continuous exponential Lévy model: $X_T^A \leq_c X_T^L$, i.e.,

$$X_T^A$$
 + "risk premium" + "noise" $\stackrel{(d)}{=} X_T^L$

Theorem

In a time-continuous exponential Lévy model: $X_T^A \preceq_c X_T^L$, i.e.,

$$X_T^A$$
 + "risk premium" + "noise" $\stackrel{(d)}{=} X_T^L$

future plan (should work...):

Independence of increments was crucial.

Theorem

In a time-continuous exponential Lévy model: $X_T^A \preceq_c X_T^L$, i.e.,

$$X_T^A$$
 + "risk premium" + "noise" $\stackrel{(d)}{=} X_T^L$

future plan (should work...):

- Independence of increments was crucial.
- Stationarity of increments was not crucial.

Theorem

In a time-continuous exponential Lévy model: $X_T^A \preceq_c X_T^L$, i.e.,

$$X_T^A$$
 + "risk premium" + "noise" $\stackrel{(d)}{=} X_T^L$

future plan (should work...):

- Independence of increments was crucial.
- Stationarity of increments was not crucial.
- Attain results for models with conditionally independent increments, e.g.: BNS (Kallsen&Muhle-Karbe10)

• **Complete markets:** Result $X_T^A \preceq_c X_T^L$ holds for all complete markets and any utility function $U_A \ll U_L$.

- **Complete markets:** Result $X_T^A \preceq_c X_T^L$ holds for all complete markets and any utility function $U_A \ll U_L$.
- Incomplete markets: $X_T^A \preceq_c X_T^L$ does generally not hold (counterexample)

- **Complete markets:** Result $X_T^A \preceq_c X_T^L$ holds for all complete markets and any utility function $U_A \ll U_L$.
- Incomplete markets: $X_T^A \preceq_c X_T^L$ does generally not hold (counterexample)
 - Result holds in exponential Lévy models with power utilities

- **Complete markets:** Result $X_T^A \preceq_c X_T^L$ holds for all complete markets and any utility function $U_A \ll U_L$.
- Incomplete markets: $X_T^A \preceq_c X_T^L$ does generally not hold (counterexample)
 - Result holds in exponential Lévy models with power utilities
 - Future plan: Result holds in models with conditionally independent increments and power utilities

- **Complete markets:** Result $X_T^A \preceq_c X_T^L$ holds for all complete markets and any utility function $U_A \ll U_L$.
- Incomplete markets: $X_T^A \preceq_c X_T^L$ does generally not hold (counterexample)
 - Result holds in exponential Lévy models with power utilities
 - Future plan: Result holds in models with conditionally independent increments and power utilities
 - "Strong" numerical evidence suggests that result holds in stochastic volatility models with correlation