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0. Introduction

• Large deviations theory: asymptotic estimates of probabilities of rare

events Aε ↔ random processes Xε

P[Aε] = Cε exp
(
−
I

ε

)
= exp

(
−
I

ε
+ o(1/ε)

)
for some I > 0, and (Cε) sequence converging at a subexponential rate, i.e.

ε lnCε → 0, as ε goes to zero;

I is the leading order term on logarithm scale in large deviations: rate function

Cε is the correction term.

4



• Large deviations results ↔ change of probability measures under which the

event Aε (rare under P) is non longer rare under Pε.

• Typically, the Radon-Nikodym dP
dPε has an exponential form

• One needs to determine the dominant contribution to the exponent (when

ε is small)
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• Large deviations results ↔ change of probability measures under which the

event Aε (rare under P) is non longer rare under Pε.

• Typically, the Radon-Nikodym dP
dPε has an exponential form

• One needs to determine the dominant contribution to the exponent (when

ε is small)

I Change of probability measures useful in simulating rare events

• If pε = P[Aε] is small, then sampling according to P is unlikely to produce

Aε → high relative error in estimating pε

• Quick simulation samples according to Pε, which gives more weight to the

rare but important outcomes of Aε: importance sampling method
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• Large deviation rate function ↔ entropy.

Illustration through an elementary example:

Throw a (fair) dice n times and set fi: the frequency of number i = 1, . . . ,6

Denote by pn(f): the probability that the numbers 1, . . . ,6 appear with fre-

quencies f = (f1 = n1/n, . . . , f6 = n6/n) in the n throws of dices:

pn(f) =
1

6n
n!

n1! . . . n6!
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• Large deviation rate function ↔ entropy.

Illustration through an elementary example:

Throw a (fair) dice n times and set fi: the frequency of number i = 1, . . . ,6

Denote by pn(f): the probability that the numbers 1, . . . ,6 appear with fre-

quencies f = (f1 = n1/n, . . . , f6 = n6/n) in the n throws of dices:

pn(f) =
1

6n
n!

n1! . . . n6!

Using Stirling formula: k! ' kke−k
√

2πk, we get when n is large:

1

n
ln pn(f) ' −I(f) := −

6∑
i=1

fi ln
fi
1
6

I(f) ≥ 0 is the relative entropy of the a posteriori probability f = (fi) with

respect to the a priori probability r = (1
6).
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• Hence pn(f) = exp(−nI(f) + o(n))

I This means that when n is large, pn(f) is concentrated where I(f) is

minimal.
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• Hence pn(f) = exp(−nI(f) + o(n))

I This means that when n is large, pn(f) is concentrated where I(f) is

minimal.

I The minimizing point is attained for f∗ = (1/6, . . . ,1/6), and I(f∗) = 0:

this is the ordinary law of large numbers!

I For f 6= f∗, I(f) > 0, and pn(f) tends to zero exponentially small!

I These ideas, concepts and computations in large deviations (concentration

phenomenon, entropy functional minimization, etc ...) still hold in general

random contexts, including diffusion processes,

→ but need more sophisticated mathematical treatments.
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1. Laplace transform and exponential change of measures

Let X be a real-valued random variable on (Ω,F ,P) with probability distribu-

tion µ(dx).

The logarithm Laplace (or moment generating) function of X is:

Γ(θ) = lnE[eθX] = ln
∫
eθxµ(dx) ∈ (−∞,∞], θ ∈ R.

• Γ(0) = 0, Γ convex (Hölder inequality).

• For any θ ∈ D(Γ) = {θ ∈ R : Γ(θ) <∞}, we define a probability measure µθ
on R by:

µθ(dx) = exp(θx− Γ(θ))µ(dx).
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• Let X1, . . . , Xn i.i.d. ; µ, and consider the probability measure Pθ on (Ω,F):

dPθ
dP

(X1, . . . , Xn) =
n∏
i=1

dµθ
dµ

(Xi) = exp
(
θ

n∑
i=1

Xi − nΓ(θ)
)
.

⇐⇒ (Bayes formula)

E
[
f(X1, . . . , Xn)

]
= Eθ

[
f(X1, . . . , Xn)exp

(
− θ

n∑
i=1

Xi + nΓ(θ)
)]
,

• For any θ in the interior of D(Γ):

Eθ[X] = Γ′(θ), Varθ[X] = Γ′′(θ).

In particular if 0 ∈ int(D(Γ)), then E[X] = Γ′(0), Var[X] = Γ′′(0).
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Examples

Bernoulli distribution: let µ ; B(p). Then

Γ(θ) = ln(1− p+ peθ), and µθ ; B(pθ), pθ =
peθ

1− p+ peθ
.

Poisson distribution: let µ ; P(λ). Then

Γ(θ) = λ(eθ − 1), and µθ ; P(λeθ)

Normal distribution: let µ ; N (0, σ2). Then

Γ(θ) =
θ2σ2

2
, and µθ ; N (θσ2, σ2)

Exponential distribution: let µ ; E(λ). Then

Γ(θ) =

{
ln
(
λ
λ−θ

)
, θ < λ and µθ ; E(λ− θ)

∞, θ ≥ λ
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2. Cramer’s theorem

Large deviations of level 1: concern random variables valued in a finite-

dimensional space.

Let (Xi) be an i.i.d. sequence of real random variables with probability dis-

tribution µ and finite mean x̄ = E[X1] =
∫
xµ(dx) < ∞, and consider the

empirical mean:

S̄n =
Sn

n
, Sn =

n∑
i=1

Xi

I By the law of large numbers, S̄n converges in probability to x̄.

I Cramer’s theorem focus on the asymptotics for probabilities of rare events,

e.g. P[S̄n ≥ x], for x > x̄, and states that

1

n
lnP

[
S̄n ≥ x

]
→ −γ < 0.
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The rate of convergence is determined by the Fenchel-Legendre transform

of the Log-Laplace function Γ of Xi:

Γ∗(x) = sup
θ∈R

[
θx− Γ(θ)

]
∈ [0,∞], x ∈ R.

I Γ∗ is convex, Γ∗(x̄) = 0, Γ∗(x) = supθ≥0

[
θx− Γ(θ)

]
, for x ≥ x̄, and so Γ∗

is nondecreasing on [x̄,∞)

I Given x ∈ R, if θ = θ(x) is solution to the saddle-point equation: x = Γ′(θ),

then Γ∗(x) = θx− Γ(θ), and

Eθ[Xi] = x.
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Cramer’s theorem. For any x ≥ x̄, we have

lim
n→∞

1

n
lnP

[
S̄n ≥ x

]
= −Γ∗(x) = − inf

y≥x
Γ∗(y).
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Cramer’s theorem. For any x ≥ x̄, we have

lim
n→∞

1

n
lnP

[
S̄n ≥ x

]
= −Γ∗(x) = − inf

y≥x
Γ∗(y).

Proof (Sketch). Upper bound. The main step in the upper bound ≤ is

based on Chebichev inequality combined with the i.i.d. assumption on the

Xi :

P
[
S̄n ≥ x

]
= E

[
1Sn
n ≥x

]
≤ E

[
eθ(Sn−nx)

]
= exp

(
nΓ(θ)− θnx

)
, ∀θ ≥ 0.
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Cramer’s theorem. For any x ≥ x̄, we have

lim
n→∞

1

n
lnP

[
S̄n ≥ x

]
= −Γ∗(x) = − inf

y≥x
Γ∗(y).

Proof (Sketch). Upper bound. The main step in the upper bound ≤ is

based on Chebichev inequality combined with the i.i.d. assumption on the

Xi :

P
[
S̄n ≥ x

]
= E

[
1Sn
n ≥x

]
≤ E

[
eθ(Sn−nx)

]
= exp

(
nΓ(θ)− θnx

)
, ∀θ ≥ 0.

By taking the infimum over θ ≥ 0, and by definition of Γ∗, we get

P
[
S̄n ≥ x

]
≤ exp

(
− nΓ∗(x)

)
,

and we conclude by taking logarithm.
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Lower bound. For simplicity, assume that there exists a solution θ = θ(x) >

0 to the saddle-point equation: Γ′(θ) = x, i.e. attaining the supremum in

Γ∗(x) = θ(x)x−Γ(θ(x)). The key step is now to introduce the new probability

distribution µθ and Pθ the corresponding probability measure on (Ω,F) with

likelihood ratio:

dPθ
dP

=
n∏
i=1

dµθ
dµ

(Xi) = exp
(
θSn − nΓ(θ)

)
,

so that Eθ[Xi] = x (the event {S̄n ≥ x} is no longer rare under Pθ).
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Lower bound. For simplicity, assume that there exists a solution θ = θ(x) >

0 to the saddle-point equation: Γ′(θ) = x, i.e. attaining the supremum in

Γ∗(x) = θ(x)x−Γ(θ(x)). The key step is now to introduce the new probability

distribution µθ and Pθ the corresponding probability measure on (Ω,F) with

likelihood ratio:

dPθ
dP

=
n∏
i=1

dµθ
dµ

(Xi) = exp
(
θSn − nΓ(θ)

)
,

so that Eθ[Xi] = x (the event {S̄n ≥ x} is no longer rare under Pθ). Then,

we have for all ε > 0:

P
[
S̄n ∈ [x, x+ ε)

]
= Eθ

[
exp

(
− θSn + nΓ(θ)

)
1Sn
n ∈[x,x+ε)

]
= e−n(θx−Γ(θ))Eθ

[
exp

(
− nθ(

Sn

n
− x)

)
1Sn
n ∈[x,x+ε)

]
≥ e−n(θx−Γ(θ))e−n|θ|εPθ

[
S̄n ∈ [x, x+ ε)

]
,
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Taking logarithm:

1

n
lnP

[
S̄n ∈ [x, x+ ε)

]
≥ −[θx− Γ(θ)]− |θ|ε+

1

n
lnPθ

[
S̄n ∈ [x, x+ ε)

]
= −Γ∗(x)− |θ|ε+

1

n
lnPθ

[
S̄n ∈ [x, x+ ε)

]
Now, since Eθ[Xi] =x, we have: limn Pθ

[
S̄n ∈ [x, x+ ε)

]
= 1/2 (> 0). Thus,

lim inf
n→∞

1

n
lnP

[
S̄n ≥ x

]
≥ lim

ε→0
lim inf
n→∞

1

n
lnP

[
S̄n ∈ [x, x+ ε)

]
≥ −Γ∗(x).

2
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Examples

Bernoulli distribution: let Xi ; B(p). Then

Γ∗(x) = x ln
(x
p

)
+ (1− x) ln

(1− x
1− p

)
for x ∈ [0,1] and ∞ otherwise.

Poisson distribution: let Xi ; P(λ). Then

Γ∗(x) = x ln
(x
λ

)
+ λ− x, for x ≥ 0, and ∞ otherwise.

Normal distribution: let Xi ; N (0, σ2). Then

Γ∗(x) =
x2

2σ2
, x ∈ R.

Exponential distribution: let Xi ; E(λ). Then

Γ∗(x) = λx− 1− ln(λx) for x > 0 and ∞ otherwise.
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Remark 1.

Cramer’s theorem possesses a multivariate counterpart dealing with the large
deviations of the empirical means of i.i.d. random vectors in Rd.

Remark 2.

The independence of the random variables Xi in the large deviations result
for the empirical mean S̄n =

∑n
i=1Xi/n can be relaxed with the Gärtner-Ellis

theorem, once we get the existence of the limit:

Γ(θ) := lim
n→∞

1

n
lnE

[
enθ.S̄n

]
, θ ∈ Rd.

The rate of convergence of the large deviation principle is then given by the
Fenchel-Legendre transform of Γ:

Γ∗(x) = sup
θ∈Rd

[θ.x− Γ(θ)], x ∈ Rd,

under the condition that Γ is steep, i.e. Γ′(θn) → ∞ for any sequence (θn)
converging to a boundary point of the domain of Γ (this ensures the existence
of a saddle-point for any x ∈ Rd).
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Remark 3: Relation with importance sampling

Fix n and let us consider the estimation of pn = P[S̄n ≥ x]. A standard

estimator for pn is the average with N independent copies of X = 1S̄n≥x →

relative error =
standard deviation

mean
=

√
pn(1− pn)

pn
√
N

.

Since pn is extremely small, we see that a large sample size N is required for

the estimator to achieve a reasonable relative error bound.
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Remark 3: Relation with importance sampling

Fix n and let us consider the estimation of pn = P[S̄n ≥ x]. A standard
estimator for pn is the average with N independent copies of X = 1S̄n≥x →

relative error =
standard deviation

mean
=

√
pn(1− pn)

pn
√
N

.

Since pn is extremely small, we see that a large sample size N is required for
the estimator to achieve a reasonable relative error bound.

I By using an exponential change of measure Pθ with likelihood ratio

dPθ
dP

= exp
(
θSn − nΓ(θ)

)
,

so that

pn = Eθ
[

exp
(
− θSn + nΓ(θ)

)
1S̄n≥x

]
,

we have an importance sampling (IS) (unbiased) estimator of pn, by taking
the average of independent replications (under Pθ) of

exp
(
− θSn + nΓ(θ)

)
1S̄n≥x.
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The parameter θ is chosen in order to minimize the variance of this esti-

mator, or equivalently its second moment:

M2
n(θ, x) = Eθ

[
exp

(
− 2θSn + 2nΓ(θ)

)
1S̄n≥x

]
≤ exp

(
− 2n(θx− Γ(θ))

)
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The parameter θ is chosen in order to minimize the variance of this esti-

mator, or equivalently its second moment:

M2
n(θ, x) = Eθ

[
exp

(
− 2θSn + 2nΓ(θ)

)
1S̄n≥x

]
≤ exp

(
− 2n(θx− Γ(θ))

)
(1)

By noting from Cauchy-Schwarz’s inequality that M2
n(θ, x) ≥ p2

n = P[S̄n ≥ x]

' Ce−2nΓ∗(x) as n goes to infinity, from Cramer’s theorem, we see that the

fastest possible exponential rate of decay of M2
n(θ, x) is twice the rate of the

probability itself, i.e. 2Γ∗(x). Hence, from (1), and with the choice of θ =

θ(x) s.t. Γ∗(x) = θ(x)x−Γ(θ(x)), we get an asymptotic optimal IS estimator

in the sense that :

lim
n→∞

1

n
lnM2

n(θx, x) = 2 lim
n→∞

1

n
ln pn.

This parameter θ(x) is such that Eθ(x)[S̄n] = x so that the event {S̄n ≥ x} is

no more rare under Pθ(x), and is precisely the parameter used in the derivation

of the large deviations result in Cramer’s theorem.
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3. Large deviations and Laplace principles

General definition of a large deviation principle (LDP)

Consider a sequence {Xε}ε on (Ω,F ,P) valued in some topological space X .

The LDP characterizes the limiting behaviour as ε → 0 of the family of

probability measures {P[Xε ∈ dx]}ε on X in terms of a rate function.

A rate function I is a lower semicontinuous function mapping I : X → [0,∞]

such that the level sets {x ∈ X : I(x) ≤M} are compact for all M < ∞.
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The sequence {Xε}ε satisfies a LDP on X with rate function I (and speed ε)

if :

(i) Upper bound : for any closed subset F of X

lim sup
ε→0

ε lnP[Xε ∈ F ] ≤ − inf
x∈F

I(x).

(ii) Lower bound : for any open subset G of X

lim inf
ε→0

ε lnP[Xε ∈ G] ≥ − inf
x∈G

I(x).

If F is a subset of X s.t. infx∈F o I(x) = infx∈F̄ I(x) := IF , then

lim
ε→0

ε lnP[Xε ∈ F ] = −IF ,

which means that P[Xε ∈ F ] = exp
(
− IF

ε + o(1/ε)
)
. The classical Cramer’s

theorem considered the case of the empirical mean Xε = Sn/n of i.i.d. random

variables in Rd, with ε = 1/n.
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Transformation of LDP by contraction principle

The LDP is preserved under continuous mappings.

Suppose that {Xε}ε satisfies a LDP on X with rate function I, and let f be

a continuous mapping from X to Y.

Then {f(Xε)}ε satisfies a LDP on Y with rate function:

J(y) = inf{I(x) : x ∈ X , y = f(x)}.

Remark

If f is a continuous bijection, then J(.) = I(f−1(.)).
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Laplace method gives an equivalent formulation of LDP, relying on Vara-

dhan’s formula.

Theorem (Varadhan)

Suppose that {Xε}ε satisfies a LDP on X with good rate function I. Then,

{Xε}ε satisfies the Laplace principle: for any bounded continuous function

ϕ : X → R, we have

lim
ε→0

ε lnE
[
eϕ(Xε)/ε

]
= sup

x∈X

[
ϕ(x)− I(x)

]
.

Remark. This can be viewed as a stochastic extension of the (deterministic)

Laplace integral’s formula:

lim
ε→0

ε ln
∫ 1

0
eϕ(x)/εdx = sup

x∈[0,1]
ϕ(x).
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Laplace method gives an equivalent formulation of LDP, relying on Vara-
dhan’s formula.

Theorem (Varadhan)

Suppose that {Xε}ε satisfies a LDP on X with good rate function I. Then,
{Xε}ε satisfies the Laplace principle: for any bounded continuous function
ϕ : X → R, we have

lim
ε→0

ε lnE
[
eϕ(Xε)/ε

]
= sup

x∈X

[
ϕ(x)− I(x)

]
.

Interpretation. By writing formally the LDP for (Xε) with rate function I

as P[Xε ∈ dx] ' e−I(x)/εdx, we can write

E
[
eϕ(Xε)/ε

]
=

∫
eϕ(x)/εP[Xε ∈ dx] '

∫
e(ϕ(x)−I(x))/εdx

' C exp
(

supx∈X (ϕ(x)− I(x))

ε

)
.

As in Laplace’s method for integrals, Varadhan’s formula states that to ex-
ponential order, the main contribution to the integral is due to the largest
value of the exponent.
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Theorem

The Laplace principle implies the large deviation principle with the same good

rate function. More precisely, if I is rate function on X and the limit

lim
ε→0

ε lnE
[
eϕ(Xε)/ε

]
= sup

x∈X

[
ϕ(x)− I(x)

]
is valid for all bounded continuous functions ϕ, then (Xε) satisfies a LDP on

X with rate function I.
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Theorem

The Laplace principle implies the large deviation principle with the same good

rate function. More precisely, if I is rate function on X and the limit

lim
ε→0

ε lnE
[
eϕ(Xε)/ε

]
= sup

x∈X

[
ϕ(x)− I(x)

]
is valid for all bounded continuous functions ϕ, then (Xε) satisfies a LDP on

X with rate function I.

Formal proof. Given F ⊂ X , consider: ψ(x) = 0 if x ∈ F , and ∞ otherwise.

ε lnP[Xε ∈ F ] = ε lnE[exp(−ψ(Xε)/ε)]

→ sup
x∈X

[−ψ(x)− I(x)] = − inf
x∈F

I(x).
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4. Relative entropy and Donsker-Varadhan formula

We are given a topological space S, and we denote by P(S) the set of prob-

ability measures on S equipped with its Borel σ field.

For ν ∈ P(S), the relative entropy R(.|ν) is a mapping from P(S) into R̄,

defined by

R(µ|ν) =


∫
S

(
ln dµ

dν

)
dµ =

∫
S
dµ
dν

(
ln dµ

dν

)
dν, if µ� ν

∞, otherwise

By observing that s ln s ≥ s− 1 with equality if and only if s = 1, we see that

R(µ|ν) ≥ 0, and R(µ|ν) = 0 if and only if µ = ν.
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Proposition (Log-Laplace and relative entropy)

Let ϕ be a bounded measurable function on S, i.e. ϕ ∈ B(S), and ν ∈ P(S).

Then,

ln
∫
S
eϕdν = sup

µ∈P(S)

[ ∫
S
ϕdµ−R(µ|ν)

]
,

and the supremum is attained uniquely by the probability measure µ0:

dµ0

dν
=

eϕ∫
S eϕdν

.
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Proposition (Log-Laplace and relative entropy)

Let ϕ be a bounded measurable function on S, i.e. ϕ ∈ B(S), and ν ∈ P(S).
Then,

ln
∫
S
eϕdν = sup

µ∈P(S)

[ ∫
S
ϕdµ−R(µ|ν)

]
,

and the supremum is attained uniquely by the probability measure µ0:

dµ0

dν
=

eϕ∫
S eϕdν

.

Proof. For any µ � ν, we have:∫
S
ϕdµ−R(µ|ν) =

∫
S
ϕdµ−

∫
S

(
ln
dµ

dν

)
dµ

=
∫
S
ϕdµ−

∫
S

(
ln

dµ

dµ0

)
dµ−

∫
S

(
ln
dµ0

dν

)
dµ

= ln
∫
S
eϕdν −R(µ|µ0).

We conclude by using the fact that R(µ|µ0) ≥ 0 and R(µ|µ0) = 0 if and only
if µ = µ0. 2
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Dual Proposition (Donsker-Varadhan variational formula)

For all µ, ν ∈ P(S), we have

R(µ|ν) = sup
ϕ∈B(S)

[ ∫
S
ϕdµ− ln

∫
S
eϕdν

]
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Dual Proposition (Donsker-Varadhan variational formula)

For all µ, ν ∈ P(S), we have

R(µ|ν) = sup
ϕ∈B(S)

[ ∫
S
ϕdµ− ln

∫
S
eϕdν

]

Proof (Sketch). From the previous proposition, we have

ln
∫
S
eϕdν ≥

∫
S
ϕdµ−R(µ|ν)

Since this holds true for all ϕ ∈ B(S), we get

R(µ|ν) ≥ sup
ϕ∈B(S)

[ ∫
S
ϕdµ− ln

∫
S
eϕdν

]
=: H(µ, ν).
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Proof. (Ctd).

Conversely, let µ s.t. H(µ, ν) < ∞. Then µ � ν. Indeed, if ν(A) = 0, then

by considering ϕn = n1A, we have for all n:

∞ > H(µ, ν) ≥
∫
S
ϕndµ− ln

∫
S
eϕndν = nµ(A) and so µ(A) = 0.
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Proof. (Ctd).

Conversely, let µ s.t. H(µ, ν) < ∞. Then µ � ν. Indeed, if ν(A) = 0, then

by considering ϕn = n1A, we have for all n:

∞ > H(µ, ν) ≥
∫
S
ϕndµ− ln

∫
S
eϕndν = nµ(A) and so µ(A) = 0.

Set f = dµ/dν and assume for simplicity that f is bounded and uniformly

positive so that ϕ = ln f ∈ B(S):

H(µ, ν) ≥
∫
S
ϕdµ− ln

∫
S
eϕdν =

∫
S

ln
dµ

dν
dµ = R(µ|ν).

2
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5. Sanov’s theorem

Large deviations of level 2: concern random measures.

Let (Xi) be an i.i.d. sequence of random variables valued in S with probability

distribution ρ, and consider the empirical measure valued in P(S):

Ln =
1

n

n∑
i=1

δXi

I By the law of large numbers, Ln converges weakly to ρ.

Theorem (Sanov) The sequence of empirical measures (Ln)n satisfies a LDP

with rate function the relative entropy R(.|ρ).
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Idea of proof by Laplace method (Dupuis-Ellis)

Study the asymptotic behavior of

V n :=
1

n
lnE[exp(nϕ(Ln))],

where ϕ is any bounded continuous function mapping P(S) into R.
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Idea of proof by Laplace method (Dupuis-Ellis)

Study the asymptotic behavior of

V n :=
1

n
lnE[exp(nϕ(Ln))],

where ϕ is any bounded continuous function mapping P(S) into R.

Corresponding dynamic problem. We introduce a sequence of random
subprobability measures related to the empirical measures as follows. For t ∈
[0,1], we denote Mt(S) the set of measures on S with total mass equal to t.
Fix n ∈ N∗, and for i = 0, . . . , n− 1, we define Ln0 = 0, and

Lni+1 = Lni +
1

n
δXi+1

,

so that Lnn equals the empirical measure Ln, and Lni is valued in Mi/n(S). We
also introduce, for each i = 0, . . . , n, and µ ∈ Mi/n(S), the function

V n(i, µ) =
1

n
lnEi,µ[exp(nϕ(Lnn))],

where Ei,µ denotes the expectation conditioned on Lni = µ. Thus, V n(0,0)
= V n , and V n(n, µ) = ϕ(µ).
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Since Xi are i.i.d. ; ρ, we see that the random measures {Lni , i = 0, . . . , n}
form a Markov chain on state spaces {Mi/n(S), i = 0, . . . , n} with probability

transition:

P[Lni+1 ∈ A|L
n
i = µ] = P[µ+

1

n
δXi ∈ A] =

∫
S

1A(µ+
1

n
δy)ρ(dy).
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Since Xi are i.i.d. ; ρ, we see that the random measures {Lni , i = 0, . . . , n}
form a Markov chain on state spaces {Mi/n(S), i = 0, . . . , n} with probability

transition:

P[Lni+1 ∈ A|L
n
i = µ] = P[µ+

1

n
δXi ∈ A] =

∫
S

1A(µ+
1

n
δy)ρ(dy).

By the law of iterated conditional expectations and Markov property:

V n(i, µ) =
1

n
lnEi,µ

[
Ei+1,Lni+1

[exp(nϕ(Lnn))]
]

=
1

n
lnEi,µ

[
exp(nV n(i+ 1, Lni+1))

]
=

1

n
ln
∫
S

exp
[
nV n(i+ 1, µ+

1

n
δy)

]
ρ(dy).
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From the variational formula relating Log-Laplace and relative entropy:

V n(i, µ) = sup
ν∈P(S)

[ ∫
S
V n(i+ 1, µ+

1

n
δy)ν(dy)−

1

n
R(ν|ρ)

]
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From the variational formula relating Log-Laplace and relative entropy:

V n(i, µ) = sup
ν∈P(S)

[ ∫
S
V n(i+ 1, µ+

1

n
δy)ν(dy)−

1

n
R(ν|ρ)

]
→ dynamic programming equation for the following stochastic control

problem. The controlled process is a Markov chain {L̄ni , i = 0, . . . , n} starting

from L̄n0 = 0, with controlled probability transitions:

P[L̄ni+1 ∈ A|L̄
n
i = µ] =

∫
S

1A(µ+
1

n
δy)νi(dy),

where {νi, i = 0, . . . , n} is the control process valued in P(S), in feedback

type, i.e. for each i, the decision νi depends on L̄ni . The running gain is

−1/nR(ν|ρ), and the terminal gain is ϕ. We deduce the stochastic control

representation formula:

V n = V n(0,0) = sup
(νi)

E
[
ϕ(L̄nn)−

1

n

n−1∑
i=0

R(νi|ρ)
]
.
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Asymptotic behavior of V n

Fix some arbitrary ν ∈ P(S), and consider the constant control νi = ν. With

this choice, L̄nn is the empirical measure of i.i.d. r.v. ; ν, and the control

representation for V n yields

V n ≥ E[ϕ(L̄nn)−R(ν|ρ)].

Since L̄nn converges weakly to ν, we have:

lim
n→∞E[ϕ(L̄nn)] = ϕ(ν).

Since ν is arbitrary in P(S), we deduce that

lim inf
n→∞ V n ≥ sup

ν∈P(S)
[ϕ(ν)−R(ν|ρ)].

The corresponding upper-bound requires more technical details, and we get

finally the Laplace principle with rate function as relative entropy:

lim
n→∞

1

n
lnE[exp(nϕ(Ln))] = lim

n→∞V
n = sup

ν∈P(S)
[ϕ(ν)−R(ν|ρ)].
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Remark

There are extensions of Sanov’s theorem on LDP for empirical measure of

Markov chains and occupation times of continuous-time Markov processes.

→ Main references are the works by Donsker and Varadhan: Consider an

ergodic Feller-Markov process X. Under some conditions, the occupation

measure Lt = 1
t

∫ t
0 δXsds satisfies a LDP with rate function I, and we have the

Laplace principle:

lim
t→∞

1

t
lnE

[
exp

( ∫ t
0
φ(Xs)ds

)]
= sup

µ∈P(S)

[ ∫
ϕdµ− I(µ)

]
.

for any bounded continuous function φ on S,
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6. Freidlin-Wentzell theory

Large deviations of level 3: concern random processes → sample path large

deviations results

Key result: Schilder’s theorem

Xε =
√
εW , with W = (Wt)t∈[0,T ] Brownian motion in Rd, valued in C([0, T ])

the space of continuous functions on [0, T ].

(Xε) satisfies a LDP on C([0, T ]) with rate function (action functional):

I(h) =

{
1
2

∫ T
0 |ḣ(t)|2dt, if h ∈ H0([0, T ]),

∞, otherwise

where H0([0, T ]) = {h ∈ H([0, T ]) : h(0) = 0}, and H([0, T ]) is the Cameron-

Martin space consisting of absolutely continuous functions h, with square-

integrable derivative ḣ.
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Sketch of proof. (Lower bound)

Let G 6= ∅ be an open set of C([0, T ]), h ∈ G, and δ > 0 s.t. B(h, δ) ⊂ G.

We want to prove that

lim inf
ε→0

ε lnP[
√
εW ∈ B(h, δ)] ≥ −I(h).
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Sketch of proof. (Lower bound)

Let G 6= ∅ be an open set of C([0, T ]), h ∈ G, and δ > 0 s.t. B(h, δ) ⊂ G.

We want to prove that

lim inf
ε→0

ε lnP[
√
εW ∈ B(h, δ)] ≥ −I(h).

For h /∈ H0([0, T ]), this inequality is trivial since I(h) = ∞. Suppose now h ∈
H0([0, T ]), and consider the probability measure:

dQh
dP

= exp
( ∫ T

0

ḣ(t)
√
ε
dWt −

1

2ε

∫ T
0
|ḣ(t)|2dt

)
,

=⇒

Wh = W −
h
√
ε

is a Brownian motion under Qh.
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Sketch of proof (Ctd) (Lower bound)

P[
√
εW ∈ B(h, δ)] = P[|Wh| <

δ
√
ε
]

= EQh
[
exp

(
−
∫ T

0

ḣ(t)
√
ε
dWh

t −
1

2ε

∫ T
0
|ḣ(t)|2dt

)
1|Wh|< δ√

ε

]

(Wh Qh-BM ) = E
[
exp

(
−
∫ T

0

ḣ(t)
√
ε
dWt −

1

2ε

∫ T
0
|ḣ(t)|2dt

)
1|W |< δ√

ε

]

(W ∼ −W ) = E
[
exp

(
+
∫ T

0

ḣ(t)
√
ε
dWt −

1

2ε

∫ T
0
|ḣ(t)|2dt

)
1|W |< δ√

ε

]

= E
[
exp(−

1

2ε

∫ T
0
|ḣ(t)|2dt) cosh(

∫ T
0

ḣ(t)
√
ε
dWt)1|W |< δ√

ε

]

≥ exp(−
1

2ε

∫ T
0
|ḣ(t)|2dt) P[|W | <

δ
√
ε
]

=⇒

ε lnP[
√
εW ∈ B(h, δ)] ≥ −I(h) + ε lnP[|W | <

δ
√
ε
]

2
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Corollary 1: diffusion with small noise parameter

dXε
s = bε(s,X

ε
s)ds+

√
εσ(s,Xε

s)dWs, t ≤ s ≤ T, Xε
t = x

with limε→0 bε = b.

{Xε,x,t, t ≤ s ≤ T} satisfies on C([t, T ]) a LDP with rate function:

I(h) =

{ 1
2

∫ T
t |ḣ− b(s, h)|2

(σσ′(s,h))−1ds, if h ∈ H([t, T ]), h(t) = x,

∞, otherwise

This result can be derived from Schilder’s theorem by contraction principle
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Corollary 2: exit probability from a domain

Let {Xε,x,t, t ≤ s ≤ T} be the diffusion with small noise parameter, and consider

the exit time from an open set Γ:

τ(Xε,t,x) := inf
{
s ≥ t : Xε,t,x

s /∈ Γ
}
,

Then,

lim
ε→0

ε lnP[τ(Xε,t,x) ≤ T ] = − inf {I(h) : h ∈ H([t, T ]), h(t) = x, τ(h) ≤ T}

=: −V0(t, x).

→
√

2V0(t, x) can be interpreted as a distance between x and ∂Γ in the

Riemannian metric defined by (σσ′)−1.

→ Sharp large deviations and asymptotic expansions by removing the log-

estimate (see Baldi, Fleming-James):

P[τ(Xε,t,x) ≤ T ] = e−V0(t,x)/ε(w(t, x) + εw1(t, x) + . . .),
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Sketch of proof by stochastic control method (Fleming)

We consider the exit probability large deviations problem:

vε(t, x) = P[τ(Xε,t,x) ≤ T ], (t, x) ∈ [0, T ]× Rd.

It is well-known that the function vε satisfies the linear PDE

∂vε

∂t
+ bε(t, x).Dxvε +

ε

2
tr(σσ′(t, x)D2

xvε) = 0, (t, x) ∈ [0, T )× Γ

together with the boundary conditions

vε(t, x) = 1, (t, x) ∈ [0, T )× ∂Γ

vε(T, x) = 0, x ∈ Γ.
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We make the logarithm transformation:

Vε = −ε ln vε.

Then, V ε satisfies the nonlinear PDE

−
∂Vε

∂t
− bε(t, x).DxVε −

ε

2
tr(σσ′(t, x)D2

xVε)

+
1

2
(DxVε)

′σσ′(t, x)DxVε = 0, (t, x) ∈ [0, T )× Γ,

together with boundary data:

Vε(t, x) = 0, (t, x) ∈ [0, T )× ∂Γ

Vε(T, x) = ∞, x ∈ Γ.
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At the limit ε → 0, the above PDE becomes a first-order PDE:

−
∂V0

∂t
− b(t, x).DxV0 +

1

2
(DxV0)′σσ′(t, x)DxV0 = 0, (t, x) ∈ [0, T )× Γ,

with the same boundary data:

V0(t, x) = 0, (t, x) ∈ [0, T )× ∂Γ

V0(T, x) = ∞, x ∈ Γ.

By PDE methods and viscosity solutions, one can prove that V ε→ V0, solution

to the above PDE.
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This PDE for V0 can be rewritten as an Hamilton-Jacobi equation:

Consider the Hamiltonian function

H(t, x, p) = −b(t, x).p+
1

2
p′σσ′(t, x)p, (t, x, p) ∈ [0, T ]× Γ× Rd,

which is quadratic and in particular convex in p, so that:

−
∂V0

∂t
+H(t, x,DxV0) = 0.
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This PDE for V0 can be rewritten as an Hamilton-Jacobi equation:

Consider the Hamiltonian function

H(t, x, p) = −b(t, x).p+
1

2
p′σσ′(t, x)p, (t, x, p) ∈ [0, T ]× Γ× Rd,

which is quadratic and in particular convex in p, so that:

−
∂V0

∂t
+H(t, x,DxV0) = 0.

Then, using the Legendre transform, we may rewrite

H(t, x, p) = sup
q∈Rd

[
− q.p−H∗(t, x, q)

]
= − inf

q∈Rd

[
q.p+H∗(t, x, q)

]
,

where

H∗(t, x, q) = sup
p∈Rd

[
− p.q −H(t, x, p)

]
=

1

2
|q − b(t, x))|2(σσ′(t,x))−1, (t, x, q) ∈ [0, T ]× Γ× Rd.
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Hence, the PDE for V0 is rewritten as an Hamilton-Jacobi equation:

∂V0

∂t
+ inf

q∈Rd

[
q.DxV0 +H∗(t, x, q)

]
= 0, (t, x) ∈ [0, T )× Γ,

which, together with the boundary data, is associated to the value function

for the following calculus of variations problem:

V0(t, x) = inf
h∈Hx([t,T ])

∫ T
t
H∗(s, h(s), ḣ(s))ds,

= inf
h∈Hx([t,T ])

∫ T
t

1

2
|ḣ− b(s, h)|2(σσ′(s,h))−1du

where

Hx([t, T ]) = {h ∈ H([t, T ]) : h(t) = x and τ(h) ≤ T} .
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Corollary 3: Diffusion processes densities in small time

Let Xt be the diffusion:

dXt = σ(Xt)dWt,

and denote p(t, x, y) the transition probability density i.e.:

p(t, x, y)dy = P[Xt ∈ dy|X0 = x].

also called Green function, and satisfying the (backward) Kolmogorov equa-

tion: for fixed y,

∂p(t, x, y)

∂t
=

1

2
tr(σσ′(x)D2

xp(t, x, y)),

and the (forward) Kolmogorov equation: for fixed x,

∂p(t, x, y)

∂t
=

1

2
tr(D2

y(σσ′(x)p(t, x, y))).

63



Varadhan’s result gives a large deviation estimate of p for small time asymp-

totics:

lim
t→0

t ln p(t, x, y) = − inf
{

1

2

∫ 1

0
|ḣ|2(σσ′(h))−1 : h ∈ H([0,1]), h(0) = x, h(1) = y

}
= −

1

2
d2(x, y).

d(x, y) is the distance between x and y in the Riemannian metric associated

with the inverse of the diffusion coefficient.

• Varadhan’s result can be derived from Freidlin-Wentzell theory by time

scaling.

• Improvement by Molchanov, Kiefer, Kanai, who derived sharp large devia-

tions estimates and asymptotic expansions of p(t, x, y) as t goes to zero (Heat

kernel expansion)
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• The practical use of these sample path large deviations results require the

computation of the distance for the Riemannian metric associated to the

inverse of the diffusion matrix: (σσ′)−1

I Solve the problem of calculus of variations (e.g. by Euler-Lagrange

equation) defining the Riemannian distance, and find the associated geodesics

(critical path attaining the infimum).

I Solve the Eikonal equation (in geometric optics) satisfied by the Riema-

nnian distance d(x, y):

|∇xd|σσ′(x) = 1

d(x, x) = 0.
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Lecture II. Large deviations in option pricing

1. Optimal importance sampling via large deviations approximation

2. Asymptotics in stochastic volatility models
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1. Optimal importance sampling via large deviations approximation

• Option pricing problem: computation of

Ig = E
[
g(St,0 ≤ t ≤ T )

]
,

Standard Monte-Carlo approximation:

INg =
1

N

N∑
i=1

g(Si).

Consistency of this estimator by law of large numbers

Error approximation (CLT) measured by the variance

I Importance sampling: variance reduction method by changing probability

measure from which paths are generated
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Importance sampling for diffusions: Girsanov’s theorem

• Consider a diffusion in Rd on (Ω,F ,P):

dXs = b(Xs)ds+ Σ(Xs)dWs,

and define the (option price) function:

v(t, x) = E
[
g(Xt,x

s , t ≤ s ≤ T )
]
, (t, x) ∈ [0, T ]× Rd.

• Introduce a probability measure Q ∼ P by its Radon-Nikodym density:

dQ
dP

= MT = exp
(
−
∫ T

0
φ′udWu −

1

2

∫ T
0
|φt|2dt

)
,

for some Rd-valued adapted process φ = (φt)0≤t≤T s.t. E[MT ] = 1.
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• By Girsanov’s theorem, the dynamics of X under Q is:

dXs =
(
b(Xs)−Σ(Xs)φs

)
ds+ Σ(Xs)dŴs,

where Ŵ is a brownian motion under Q, and from Bayes formula, the (option

price) function is:

v(t, x) = EQ
[
g(Xt,x

s , t ≤ s ≤ T )LT

]
,

where L is the Q-martingale density of P w.r.t. Q:

Lt =
1

Mt
= exp

( ∫ t
0
φ′udŴu −

1

2

∫ t
0
|φu|2du

)
, 0 ≤ t ≤ T.
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• By Girsanov’s theorem, the dynamics of X under Q is:

dXs =
(
b(Xs)−Σ(Xs)φs

)
ds+ Σ(Xs)dŴs,

where Ŵ is a brownian motion under Q, and from Bayes formula, the (option
price) function is:

v(t, x) = EQ
[
g(Xt,x

s , t ≤ s ≤ T )LT

]
,

where L is the Q-martingale density of P w.r.t. Q:

Lt =
1

Mt
= exp

( ∫ t
0
φ′udŴu −

1

2

∫ t
0
|φu|2du

)
, 0 ≤ t ≤ T.

I Alternative Monte-Carlo estimator for v(t, x):

INg,φ(t, x) =
1

N

N∑
i=1

g(Xi,t,x)LiT ,

by simulation of X and L under Q.

I Variance reduction technique: choice of φ inducing a smaller variance

for INg,φ.
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I Two approaches for the construction of such φ (called accelerator), both

relying on asymptotic results from large deviations:

A. Approximation of the option price via Freidlin-Wentzell results → stochas-

tic accelerator φ

• Fournié E., Lasry J.M. and P.L. Lions (1997): “Some nonlinear methods to

study far-from-the-money contingent claims”, Numerical Methods in Finance,

L.C.G. Rogers et D. Talay, eds, Cambridge University Press.

• Fournié E., Lasry J.M. and N. Touzi (1997): “Monte-Carlo methods for

stochastic volatility models”, Numerical Methods in Finance, L.C.G. Rogers

et D. Talay, eds, Cambridge University Press.
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B. Optimal deterministic accelerator φ via Laplace principle

• Glasserman P., Heidelberger P. and P. Shahabuddin (1999): “Asymptotically

optimal importance sampling and stratification for pricing path-dependent

options”, Mathematical finance, 9, 117-152.

• Guasoni P. and S. Robertson (2008): “Optimal importance sampling with

explicit formulas in continuous-time”, Finance and Stochastics, 12, 1-19.

• Robertson S. (2010): “Sample path large deviations and optimal importance

sampling for stochastic volatility models”, Stochastic Processes and their

Applications, 120, 66-83.
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A. Option pricing approximation via Freidlin-Wentzell theory

Suppose that the payoff g depends only on the terminal value XT , and apply

Itô’s formula to the Q-martingale v(s,Xt,x
s )Ls between s = t and s = T :

g(Xt,x
T )LT = v(t, x)Lt +

∫ T
t
Ls
(
Dxv(s,Xt,x

s )′Σ(Xt,x
s ) + v(x,Xt,x

s )φ′s
)
dŴs.
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A. Option pricing approximation via Freidlin-Wentzell theory

Suppose that the payoff g depends only on the terminal value XT , and apply

Itô’s formula to the Q-martingale v(s,Xt,x
s )Ls between s = t and s = T :

g(Xt,x
T )LT = v(t, x)Lt +

∫ T
t
Ls
(
Dxv(s,Xt,x

s )′Σ(Xt,x
s ) + v(x,Xt,x

s )φ′s
)
dŴs.

Hence, the variance of INg,φ(t, x) is given by

V arQ(INg,φ(t, x)) =
1

N
EQ
[ ∫ T
t
L2
s

∣∣∣Dxv(s,Xt,x
s )′Σ(Xt,x

s ) + v(x,Xt,x
s )φ′s

∣∣∣2ds].
If the function v were known, then one could vanish the variance by

choosing an accelerator:

φs = φ∗s = −
1

v(s,Xt,x
s )

Σ′(Xt,x
s )Dxv(s,Xt,x

s ), t ≤ s ≤ T.
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I This suggests to use an accelerator φ from the above formula with an

approximation of the function v.

I We may then reasonably hope to reduce the variance, and also to use such

a method for more general payoff functions, possibly path-dependent.

I We shall use a large deviations approximation for the function v.
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Basic idea:

Many derivatives contracts are designed to offer a payout in some exercice

domain, and otherwise expire with no value.

Then, a large proportion of simulated paths may end up out of the exercice

domain (for example deep out the money option), giving no contribution to

the Monte-Carlo estimator, but increasing the variance

I However, by considering the large deviations of the process of interest

around the deterministic system, then the proportion of simulated paths,

which end up in the exercice domain, is increased significantly, reducing there-

fore the variance.

I Freidlin-Wentzell theory: asymptotics in small diffusion term, or equiva-

lently by time-scaling, Varadhan theory: asymptotics in small time.
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Illustration

Within a stochastic volatility model:

dXt = d

(
St
Yt

)
=

(
0

η(Yt)

)
dt+

(
σ(Yt)St 0

ργ(Yt)
√

1− ρ2γ(Yt)

)(
dW1

t
dW2

t

)
consider an up-and-in bond of price:

v(t, x) = E
[
1

maxt≤u≤T S
t,x
u ≥K

]
t ∈ [0, T ], x = (s, y) ∈ (0,∞)× R,

= P[τ(Xt,x) ≤ T ],

where

τ(Xt,x) = inf
{
u ≥ t : Xt,x

u /∈ Γ
}
, Γ = (0,K)× R.
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The payout event {maxt≤u≤T S
t,x
u ≥ K} = {τ(Xt,x) ≤ T} is rare when x =

(s, y) ∈ Γ, i.e. s < K (out the money option) and the time to maturity T − t
is small.

I The large deviations asymptotics for the option price v(t, x) in small time to

maturity T − t is provided by the Freidlin-Wentzell and Varadhan theories:

By time scaling, we have v(t, x) = wT−t(x) where

wε(x) = P[τ(Xε,x) ≤ 1],

and Xε,x is the solution to

dXε
s = εb(Xε

s)ds+
√
εΣ(Xε

s)dWs, Xε
0 = x.

and τ(Xε,x) = inf
{
s ≥ 0 : Xε,x

s /∈ Γ
}

.
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From the sample paths large deviations result, we then have:

lim
t↗T

(T − t) ln v(t, x) = −V0(x)

with

V0(x) = inf

{
1

2

∫ 1

0
|ḣ(t)|2(ΣΣ′(h))−1dt : h ∈ H([0,1]), h(0) = x, τ(h) ≤ 1

}
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From the sample paths large deviations result, we then have:

lim
t↗T

(T − t) ln v(t, x) = −V0(x)

with

V0(x) = inf

{
1

2

∫ 1

0
|ḣ(t)|2(ΣΣ′(h))−1dt : h ∈ H([0,1]), h(0) = x, τ(h) ≤ 1

}
I Another expression of V0 in terms of Riemanian distance associated to the
metric (ΣΣ)−1: L0(x) =

√
2V0(x) is solution to the eikonal equation:

(DxL0)′ΣΣ′(x)DxL0 = 1, x ∈ Γ

L0(x) = 0, x ∈ ∂Γ

that may be numerically solved by finite difference methods. It is also re-
presented as

L0(x) = inf
z∈∂Γ

L0(x, z), x ∈ Γ,

where L0(x, z) is the distance from x to z for the metric ΣΣ−1:

L0(x, z) = inf

{∫ 1

0
|ḣ(t)|(ΣΣ′(h))−1dt : h ∈ H([0,1]), h(0) = x, h(1) = z

}
.
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This leads to the choice of an accelerator:

φ(t, x) =
L0(x)

T − t
Σ′(x)DxL0(x).

Such an accelerator φ may also be used for computing any option whose

exercice domain looks similar to the up and in bond, e.g. deep out the money

options.
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B. Choice of accelerator via Laplace principle

This approach does not require knowledge (approximation) of the option

price, and restricts to deterministic accelerators φ.

We identify the option payoff with a nonnegative functional G(W ) of the

Brownian motion W = (Wt)0≤t≤T on the set C([0, T ]) of continuous functions

on [0, T ], and we define F = lnG valued in R ∪ {−∞}.

For example, in the case of the Black-Scholes model for the stock price S,

with interest rate r and volatility σ, the payoff of an arithmetic Asian option

is (1
T

∫ T
0 Stdt−K)+, corresponds to a functional:

G(w) =
(

1

T

∫ T
0
S0 exp

(
σwt + (r − σ2/2)t

)
−K

)
+
.
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Deterministic change of drifts via Girsanov’s theorem

For any h ∈ H0([0, T ]) (Cameron-Martin space), we define the probability

measure Qh:

dQh
dP

= exp
( ∫ T

0
ḣ(t)dWt −

1

2

∫ T
0
|ḣ(t)|2dt

)
,

→ Monte-Carlo estimator of E[G(W )] by simulating under Qh the payoff:

G(W )
dP
dQh
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Deterministic change of drifts via Girsanov’s theorem

For any h ∈ H0([0, T ]) (Cameron-Martin space), we define the probability

measure Qh:

dQh
dP

= exp
( ∫ T

0
ḣ(t)dWt −

1

2

∫ T
0
|ḣ(t)|2dt

)
,

→ Monte-Carlo estimator of E[G(W )] by simulating under Qh the payoff:

G(W )
dP
dQh

→Objective: minimize over h the variance or equivalently the second moment

of this estimator:

M2(h) = EQh
[(
G(W )

dP
dQh

)2]
= E

[
G(W )2 dP

dQh

]
= E

[
exp

(
2F (W )−

∫ T
0
ḣ(t)dWt +

1

2

∫ T
0
|ḣ(t)|2dt

)]
.
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Approximation method by small noise asymptotics

Mε
2(h) = E

[
exp

{
1

ε

(
2F (
√
εW )−

∫ T
0

√
εḣ(t)dWt +

1

2

∫ T
0
|ḣ(t)|2dt

)}]
.

86



Approximation method by small noise asymptotics

Mε
2(h) = E

[
exp

{
1

ε

(
2F (
√
εW )−

∫ T
0

√
εḣ(t)dWt +

1

2

∫ T
0
|ḣ(t)|2dt

)}]
.

I Schilder’s theorem (LDP for (Xε =
√
εW )ε) + Varadhan’s integral formula

yields:

lim
ε→0

ε lnM2
ε (µ) = sup

z∈H0([0,T ])

[
2F (z) +

1

2

∫ T
0
|ż(t)− ḣ(t)|2dt−

∫ T
0
|ż(t)|2dt

]
.

→ We then say that ĥ ∈ H0([0, T ]) is an asymptotic optimal accelerator

if it is solution to the problem:

inf
h∈H0([0,T ])

sup
z∈H0([0,T ])

[
2F (z) +

1

2

∫ T
0
|ż(t)− ḣ(t)|2dt−

∫ T
0
|ż(t)|2dt

]
.
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Approximation method by small noise asymptotics

Mε
2(h) = E

[
exp

{
1

ε

(
2F (
√
εW )−

∫ T
0

√
εḣ(t)dWt +

1

2

∫ T
0
|ḣ(t)|2dt

)}]
.

I Schilder’s theorem (LDP for (Xε =
√
εW )ε) + Varadhan’s integral formula

yields:

lim
ε→0

ε lnM2
ε (µ) = sup

z∈H0([0,T ])

[
2F (z) +

1

2

∫ T
0
|ż(t)− ḣ(t)|2dt−

∫ T
0
|ż(t)|2dt

]
.

→ We then say that ĥ ∈ H0([0, T ]) is an asymptotic optimal accelerator

if it is solution to the problem:

inf
h∈H0([0,T ])

sup
z∈H0([0,T ])

[
2F (z) +

1

2

∫ T
0
|ż(t)− ḣ(t)|2dt−

∫ T
0
|ż(t)|2dt

]
.

I Swapping the order of optimization, this min-max problem is reduced to:

sup
h∈H0([0,T ])

[
2F (h)−

∫ T
0
|ḣ(t)|2dt

]
.

→ Problem of calculus of variations: may be solved by Euler-Lagrange equa-

tion.
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Example

Geometric Asian option: G(w) =
(
S0e

(r−σ
2

2 )T e
1
T

∫ T
0 σwtdt −K

)
+

→

sup
h∈H0([0,T ])

[
2 ln

(
ea
∫ T

0 h(t)dt − c
)
−
∫ T

0
|ḣ(t)|2dt

]
,

where a = σ/T , c = K
S0

exp
(
− (r − σ2

2 )T2

)
.

I Euler-Lagrange equation:

ḧ = −α, with α = a
exp

( ∫ T
0 h(t)dt

)
exp

( ∫ T
0 h(t)dt

)
− c

, (2)
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→

h(t) = −
α

2
t2 + γt. (3)

The parameter γ is found by substituting (3) into α in (2), which yields

γ(α) =
aT3α− 6 ln

(
α−a
cα

)
3aT2

.

Then, for this value of γ = γ(α), the problem (2) is solved by maximizing

over α > a. The optimal α̂ is unique by strict concavity, and found implicitly

via the first-order equation

aα̂T3 + 3 ln
(
α̂− a
cα̂

)
= 0.

This α̂ satisfies γ(α̂) = α̂T , and thus the optimal drift is

ĥ(t) =
α̂

2
t2 + α̂T t.
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Numerical results (I)

Monte-Carlo simulations without applying variance reduction, and by applying

the above importance sampling method. Parameter values are T = 1, r =

3%, σ = 30%, S0 = 100, K = 145.

Number of simulations without IS
20000

Standard deviation/mean 13.9905 1.07
10000

Standard deviation/mean 13.7428 1.065
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Numerical results (II)

Performance, in terms of variance ratios between the risk-neutral sample and

the sample with the optimal accelerator for an Asian option in a Black-Scholes

model.

Parameter values are T = 1, r = 5%, σ = 20%, S0 = 50, and strikes are

varying. 106 simulations.

Strike Price Variance ratios
50 304.0 7.59
60 28.00 26.5
70 1.063 310
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2. Asymptotics in stochastic volatility (SV) models

• Demand from practioners for closed-form or quasi-closed form pricing of

options and the need to calibrate models to data in a robust way

I Recent years, increasing interest for asymptotic and expansion methods in

option pricing and implied volatility for SV models → considerable literature

dealing with

• various asymptotics: small time or large time to maturity, extreme strike,

fast and slow time scales.

I Some of these methods are related to large deviations, heat kernel expan-

sion, or singular perturbation methods.
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Short review of the literature

• Large deviations approach: small time asymptotics

Avellaneda, Boyer-Olsen, Busca, Friz (2003), Berestycki, Busca and Florent

(2004): PDE and viscosity solutions methods

Series of paper by Forde and Jacquier (2009, 2010), thesis of A. Jacquier

supervised by A. Mijatovic: probabilistic methods

• Heat kernel and geometric approach: small time asymptotics

Hagan, Lesniewski (2002), Henry-Labordère (2005), Bourgade, Croissant

(2005), Lewis (2007), Gatheral, Laurence et al. (2009), ...
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• Large time to maturity asymptotics: Tehranchi (2009), Forde and Jacquier

(2009)

• Singular perturbation methods for fast-mean reverting asymptotics: see

lectures of J.P. Fouque

• Extreme strike asymptotics: see lectures of R. Lee
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• Large time to maturity asymptotics: Tehranchi (2009), Forde and Jacquier

(2009)

• Singular perturbation methods for fast-mean reverting asymptotics: see

lectures of J.P. Fouque

• Extreme strike asymptotics: see lectures of R. Lee

I In this lecture, we focus on small-time asymptotics in SV models by large

deviations methods.
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Stochastic Volatility Model

Log stock price Xt = lnSt (and zero interest rate):

dXt = −
1

2
σ2(Yt)dt+ σ(Yt)dW

1
t

dYt = η(Yt)dt+ γ(Yt)dW
2
t ,

with X0 = x0, Y0 = y0, (W1,W2) Brownian motion (eventually correlated)

on (Ω,F ,P).

I Compute approximation of call option price and implied volatility when time

to maturity is small.

97



Large deviations for the log-stock price

lim
t→0

t lnP[Xt − x0 ≥ k] = −I(k), k ≥ 0,

• For general SV models, this LDP is derived from Freidlin-Wentzell theory

and Varadhan sample path LD, and the rate function I(k) is determined by

the distance-minimizing geodesic from (0, y0) to the line {x = k} on R2 for

the Riemannian metric associated to the inverse of diffusion coefficient of

(X,Y ): I(k) = 1
2d(k)2.

→ Differential geometry problem, but no explicit solution in general!
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Large deviations for the log-stock price

lim
t→0

t lnP[Xt − x0 ≥ k] = −I(k), k ≥ 0,

• For general SV models, this LDP is derived from Freidlin-Wentzell theory

and Varadhan sample path LD, and the rate function I(k) is determined by

the distance-minimizing geodesic from (0, y0) to the line {x = k} on R2 for

the Riemannian metric associated to the diffusion coefficient of (X,Y ): I(k)

= 1
2d(k)2.

→ Differential geometry problem, but no explicit solution in general!

• For the Heston model and more generally for affine SV models, the LDP

can be derived directly from explicit computation of the moment generating

function and Ellis-Gartner theorem (see details later).
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Corollary 1: Pricing for out-the-money call options of small maturity:

lim
t→0

t lnE[(St −K)+] = −I(x) = lim
t→0

t lnP[St ≥ K].

where

x = ln(K/S0) > 0

is the log-moneyness.

Similar result for out-of-the money put options.
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Proof of lower bound.

For any ε > 0, we have

E[(St −K)+] ≥ E[(St −K)+1St−K≥ε] ≥ εP[St ≥ K + ε].
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Proof of lower bound.

For any ε > 0, we have

E[(St −K)+] ≥ E[(St −K)+1St−K≥ε] ≥ εP[St ≥ K + ε].

By using the LDP for Xt − x0 = ln(St/S0), we then get

t lnE[(St −K)+] ≥ t lnP[St ≥ K + ε]

= t lnP
[
Xt − x0 ≥ ln

(K + ε

S0

)]
→ −I

(
ln
(K + ε

S0

))
as t→ 0.

By sending ε to zero, and from the continuity of I, we obtain the desired

lower bound.
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Proof of upper bound.

Apply Hölder inequality for any p, q > 1, 1/p+ 1/q = 1:

E[(St −K)+] = E[(St −K)+1St≥K] ≤
(
E[(St −K)p+]

)1
p
(
E[1St≥K]

)1
q

≤
(
E[Spt ]

)1
p
(
P[St ≥ K]

)1
q
.
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Proof of upper bound.

Apply Hölder inequality for any p, q > 1, 1/p+ 1/q = 1:

E[(St −K)+] = E[(St −K)+1St≥K] ≤
(
E[(St −K)p+]

)1
p
(
E[1St≥K]

)1
q

≤
(
E[Spt ]

)1
p
(
P[St ≥ K]

)1
q
.

Taking ln and multiplying by t, this implies

t lnE[(St −K)+] ≤
t

p
lnE[Spt ] +

(
1−

1

p

)
t lnP[St ≥ K]

Fom the LDP for Xt − x0 = ln(St/S0), it follows that

lim sup
t→0

t lnE[(St −K)+] ≤ −
(

1−
1

p

)
I(x).

By sending p to infinity, we obtain the required upper-bound and so finally

the desired result.
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Implied volatility

Recall that the implied volatility σ
imp
t = σ

imp
t (x) of a call option on St with

strike K = S0e
x, and time to maturity t is determined from the implicit

relation:

E[(St −K)+] = CBS(t, S0, x, σ
imp
t ) = E[(S

σ
imp
t
t −K)+]

= S0Φ(d1(t, x, σimpt ))− S0e
xΦ(d2(t, x, σimpt )),

where

d1(t, x, σ) =
−x+ 1

2σ
2t

σ
√
t

, d2(t, x, σ) = d1(t, x, σ)− σ
√
t,

and Φ(d) =
∫ d
−∞ϕ(x)dx is the cdf of the normal law N (0,1).

Corollary 2:

lim
t→0

σ
imp
t (x) =

|x|√
2I(x)

, x 6= 0.
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Sketch of Proof.

• Standard estimate on the cdf Φ(d) =
∫ d
−∞ϕ(x)dx of the normal law:

Φ(−d) = 1−Φ(d) ∼
ϕ(d)

d
, as d→∞.

• Call option price E[(St−K)+] goes to zero as t goes to zero (out-the-money)

=⇒

σ
imp
t

√
t → 0, and so d1 = d1(t, x, σimpt ), d2 = d2(t, x, σimpt ) → −∞,

as t goes to zero.
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Proof of lower bound

From the large deviation estimate for the call option pricing, and the relation

defining the implied volatility, we have for any ε > 0, and t small enough:

exp
(
−
I(x) + ε

t

)
≤ E[(St −K)+] ≤ S0Φ(d1) ∼

S0

−d1
ϕ(−d1)
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Proof of lower bound

From the large deviation estimate for the call option pricing, and the relation

defining the implied volatility, we have for any ε > 0, and t small enough:

exp
(
−
I(x) + ε

t

)
≤ E[(St −K)+] ≤ S0Φ(d1) ∼

S0

−d1
ϕ(−d1)

Now, since −d1 ∼ x

σ
imp
t

√
t

and ϕ(d) = e−d
2/2/
√

2π, we get by taking ln, and

sending t to zero:

−(I(x) + ε) ≤ −
x2

2 lim inft→0 |σ
imp
t |2

.

We then send ε to zero, and get the lower bound:

lim inf
t→0

|σimpt |2 ≥
x2

2I(x)
.
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Proof of upper bound

For all ε > 0, and t small enough,

exp
(
−
I(x)− ε

t

)
≥ E[(St −K)+] = E[(S

σ
imp
t
t −K)+]

≥ εP[S
σ
imp
t
t ≥ K + ε] = εΦ(d2,ε) ∼

ε

−d2,ε
ϕ(−d2,ε)

where

d2,ε = −
ln
(
K+ε
S0

)
+ 1

2|σ
imp
t |2t

σ
imp
t

√
t

∼ −
ln
(
K+ε
S0

)
σ
imp
t

√
t
→ −∞,

as t goes to zero.
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Proof of upper bound

For all ε > 0, and t small enough,

exp
(
−
I(x)− ε

t

)
≥ E[(St −K)+] = E[(S

σ
imp
t
t −K)+]

≥ εP[S
σ
imp
t
t ≥ K + ε] = εΦ(d2,ε) ∼

ε

−d2,ε
ϕ(−d2,ε)

where

d2,ε = −
ln
(
K+ε
S0

)
+ 1

2|σ
imp
t |2t

σ
imp
t

√
t

∼ −
ln
(
K+ε
S0

)
σ
imp
t

√
t
→ −∞,

as t goes to zero. Taking ln, sending t to zero, and then ε to zero, we get

the upper bound:

lim sup
t→0

|σimpt |2 ≤
x2

2I(x)
.
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Heston model (CIR process for Y ):

dXt = −
1

2
Ytdt+

√
Yt(

√
1− ρ2dW1

t + ρdW2
t )

dYt = κ(θ − Yt)dt+ σ
√
YtdW

2
t ,

with X0 = x0 ∈ R, Y0 = y0 > 0, ρ ∈ (−1,1), κ, θ, σ > 0 and 2κθ > σ2.

I In this case, the LDP for Xt − x0 can be derived directly from explicit

calculation of the moment generating function (literature on affine processes:

Filipovic, Teichmann, Keller-Ressel, Andersen and Piterbarg, etc ...), and

Ellis-Gärtner-theorem.
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Logarithm moment generating function

Γt(p) := lnE
[

exp
(
p(Xt − x0)

)]
, p ∈ R.
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Logarithm moment generating function

Γt(p) := lnE
[

exp
(
p(Xt − x0)

)]
, p ∈ R.

We rewrite as:

Γt(p) = lnE
[

exp
(
−
p

2

∫ t
0
Ysds+ pρ

∫ t
0

√
YsdW

2
s + p

√
1− ρ2

∫ t
0

√
YsdW

1
s

)]
= lnE

{
exp

(
−
p

2

∫ t
0
Ysds+ pρ

∫ t
0

√
YsdW

2
s

)
E
[

exp
(
p
√

1− ρ2
∫ t

0

√
YsdW

1
s

)∣∣∣(W2
s )s≤t

]}
= lnE

[
exp

(
−
p

2

∫ t
0
Ysds+ pρ

∫ t
0

√
YsdW

2
s +

p2(1− ρ2)

2

∫ t
0
Ysds

)]
= lnE

[
exp

(
pρ
∫ t

0

√
YsdW

2
s −

p2ρ2

2

∫ t
0
Ysds

)
exp

(p(p− 1)

2

∫ t
0
Ysds

)]
,

where we used the law of iterated conditional expectation in the second
equality, and the fact that Yt is measurable with respect to W2.

113



By Girsanov’s theorem, we then get

Γt(p) = lnEQ
[

exp
(p(p− 1)

2

∫ t
0
Ysds

)]
,

where under Q, the process Y satisfies the sde

dYt = (κθ − (κ− ρσp)Yt)dt+ σ
√
YtdW

2,Q
t ,

with W2,Q a Brownian motion.

→ exponential of functionals of CIR process
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By Girsanov’s theorem, we then get

Γt(p) = lnEQ
[

exp
(p(p− 1)

2

∫ t
0
Ysds

)]
,

where under Q, the process Y satisfies the sde

dYt = (κθ − (κ− ρσp)Yt)dt+ σ
√
YtdW

2,Q
t ,

with W2,Q a Brownian motion.

→ exponential of functionals of CIR process

→ Γt(p) = φ(t, p) + y0ψ(t, p), with φ(., p), ψ(., p) solutions to the Riccati

system:

∂ψ

∂t
=

p(p− 1)

2
− (κ− ρσp)ψ +

σ2

2
ψ2, ψ(0, p) = 0

∂φ

∂t
= κθψ, φ(0, p) = 0.
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The Riccati equation is solved under the condition:

δ = δ(p) := (κ− ρσp)2 − σ2p(p− 1) ≥ 0

and the solution is given by:

ψ(t, p) = p(p− 1)
sinh

(√
δ

2 t
)

(κ− ρσp) sinh
(√

δ
2 t
)

+
√
δ cosh

(√
δ

2 t
),

φ(t, p) =
κθ

σ2

[
(κ− ρσp−

√
δ)t+ 2 ln

( √
δe

√
δ

2 t

(κ− ρσp) sinh
(√

δ
2 t
)

+
√
δ cosh

(√
δ

2 t
))],

which are defined for t ∈ [0, T ∗) until the moment explosion time

T ∗ = T ∗(p) =

 ∞, if κ− ρσp ≥ 0,
1√
δ

ln
(
κ−ρσp−

√
δ

κ−ρσp+
√
δ

)
, if κ− ρσp < 0.
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In the case δ(p) < 0, the functions φ and ψ are extended by analytic contin-

uation by substituting
√
δ by i

√
−δ, which yields:

ψ(t, p) = p(p− 1)
sin

(√−δ
2 t

)
(κ− ρσp) sin

(√−δ
2 t

)
+
√
−δ cos

(√−δ
2 t

),
φ(t, p) =

κθ

σ2

[
(κ− ρσp− i

√
−δ)t

+ 2 ln
( √

−δe
i
√
−δ
2 t

(κ− ρσp) sin
(√−δ

2 t
)

+
√
−δ cos

(√−δ
2 t

))],
and this analytic continuation holds for t ∈ [0, T ∗) until the moment explo-

sion time

T ∗ = T ∗(p) =
2√
−δ

[
π1κ−ρσp>0 + arctan

( √−δ
ρσp− κ

)]
.
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Recalling that a moment generating function is analytic in the interior of its

convex domain (when its is not empty), we deduce that Γt is explicitly given

by

Γt(p) =

{
φ(t, p) + y0ψ(t, p), t < T ∗(p), p ∈ R

∞, t ≥ T ∗(p), p ∈ R.
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Recalling that a moment generating function is analytic in the interior of its

convex domain (when its is not empty), we deduce that Γt is explicitly given

by

Γt(p) =

{
φ(t, p) + y0ψ(t, p), t < T ∗(p), p ∈ R

∞, t ≥ T ∗(p), p ∈ R.

Now, in view of deriving a LDP for Xt−x0 (when t goes to zero) by means of

Ellis-Gärtner theorem, we need to determine the limiting logarithm moment

generating function:

Γ(p) := lim
t→0

tΓt(p/t).

→ Substitute p by p/t and send t to zero in the above calculations.
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Γ(p) =


p
σ

y0√
1−ρ2 cot

(
σp
√

1−ρ2

2

)
−ρ
, for p ∈ (p−, p+)

∞, otherwise.

where p− < 0 (resp. p+) is defined by

p− (resp. p+) =



2 arctan

(√
1−ρ2

ρ

)
σ
√

1−ρ2
, if ρ < 0 (resp. > 0)

−πσ , if ρ = 0

2 arctan

(√
1−ρ2

ρ

)
± 2π

σ
√

1−ρ2
, if ρ > 0 (resp. < 0)
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Γ(p) =


p
σ

y0√
1−ρ2 cot

(
σp
√

1−ρ2

2

)
−ρ
, for p ∈ (p−, p+)

∞, otherwise.

where p− < 0 (resp. p+) is defined by

p− (resp. p+) =



2 arctan

(√
1−ρ2

ρ

)
σ
√

1−ρ2
, if ρ < 0 (resp. > 0)

−πσ , if ρ = 0

2 arctan

(√
1−ρ2

ρ

)
± 2π

σ
√

1−ρ2
, if ρ > 0 (resp. < 0)

I One checks that Γ is steep, so that by Ellis-Gärtner theorem, Xt − x0

satisfies a LDP with rate function:

I(x) = sup
p∈(p−,p+)

[px− Γ(p)], x ∈ R.
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Level, slope and curvature of the small-time implied volatility at-the-

money in the Heston model

By Taylor expansion of the small-time implied volatility formula:

σ
imp
0 (x) =

|x|√
2I(x)

,

around x = 0 (at-the-money), and explicit expressions of Γ and its Fenchel-

Legendre transform I(x), we obtain:

σ
imp
0 (x) =

√
y0

[
1 +

ρσ

4y0
x+

σ2

24y2
0

(
1−

5

2
ρ2
)
x2 +O(x3)

]

(Durrleman (2004))
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Some variations and extensions

• Corrections terms for the small-time asymptotics in the Heston model:

Forde, Jacquier, Lee (2010),

• Small time asymptotics for fast-mean reverting SV models: Feng, Forde,

Fouque (2009)

• Affine stochastic volatility models with jumps: see forthcoming talk by A.

Jacquier
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Lecture III. Large deviations in risk management

1. Large portfolio losses in credit risk

2. Long term investment

• Asymptotic arbitrage and large deviations

• Beating a benchmark: a large deviations approach
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1. Large portfolio losses in credit risk

• Basic problem in measuring portfolio credit risk: Determine the distribution

of losses from default over a fixed horizon.

• Credit portfolios are often large: e.g. exposure to thousands of obligors

• Default probabilities of high-quality credits are small!

I Rare but significant large loss events.

I Computation of the small probabilities of large losses: relevant for calcula-

tion of VaR, and related risk measures.
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Notations

n = number of obligors to which portfolio is exposed,

Yk = default indicator (= 1 if default, 0 otherwise) for k-th obligor,

pk = p = marginal probability that k-th obligor defaults, i.e. pk = P[Yk = 1],

ck = 1 = loss resulting from default of the k-th obligor,

Ln = c1Y1 + . . .+ cnYn = total loss from defaults.

→ Estimation of tail probabilities:

P[Ln > `n]

in the limiting regime at increasingly high loss thresholds `n, and rarity of

large losses resulting from a large number n of obligors and multiple defaults.
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Dependence modelling among obligors: Normal copula model

Yk = 1{Xk>xk},

Xk = ρZ +
√

1− ρ2εk, k = 1, . . . , n.

where Z ; N (0,1), εk are independent N (0,1) distribution, and Z is inde-

pendent of εk, k = 1, . . . , n.

Z: systematic risk factor, common to all obligors

εk: idiosyncratic risk factor associated with the k-th obligor.

ρ ∈ [0,1): factor loading on the single factor Z.
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Case of independent obligors: ρ = 0

The default indicators Yk are i.i.d. ; B(p)

→ Ln ; B(n, p), and Ln
n → p.

→ The loss event {Ln ≥ ln} becomes rare (without being trivially impossible)

if e.g. we let `n = nq with q ∈ (p,1).
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Case of independent obligors: ρ = 0

The default indicators Yk are i.i.d. ; B(p)

→ Ln ; B(n, p), and Ln
n → p.

→ The loss event {Ln ≥ ln} becomes rare (without being trivially impossible)

if e.g. we let `n = nq with q ∈ (p,1).

I Cramer’s theorem: large deviation of loss probability

lim
n→

1

n
lnP[Ln ≥ nq] = −R(B(q)|B(p))

= −q ln
(q
p

)
− (1− q) ln

(1− q
1− p

)
< 0.
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Remark: Estimation of tail probability P[Ln > nq]

By denoting Γ(θ) = ln(1 − p + peθ) the Log-Laplace of B(p), we have an

IS (unbiased) estimator of P[Ln ≥ nq] by taking the average of independent

replications of

exp(−θLn + nΓ(θ))1Ln≥nq

where Ln is sampled with a default probability p(θ) = Pθ[Yk = 1] = peθ/(1−
p+ peθ).

Moreover, this estimator is asymptotically optimal, as n goes to infinity, for

the choice of parameter θq ≥ 0 attaining the argmax in θq − Γ(θ).
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Case of dependent obligors: ρ > 0

Conditionally on the factor Z, the default indicators Yk are i.i.d. with Bernoulli
distribution of parameter:

p(Z) = P[Yk = 1|Z] = P[ρZ +
√

1− ρ2εk > −Φ−1(p)|Z]

= Φ
(
ρZ + Φ−1(p)√

1− ρ2

)
,

with Φ c.d.f. of N (0,1).

→ Ln
n converges in law to p(Z) valued in (0,1).

→ The event {Ln ≥ ln} becomes rare (without being trivially impossible) if

ln = nqn, with qn < 1, qn ↗ 1 as n→∞.

We shall consider:

1− qn = O(n−a), with 0 < a ≤ 1.
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Theorem

lim
n→∞

1

lnn
lnP[Ln ≥ nqn] = −a

1− ρ2

ρ2
.

Comments:

• The loss probability decays like n−γ, with γ = a(1− ρ2)/ρ2.

• The decay rate is determined by the effect of the dependence structure in
the Gaussian copula model:

• When ρ is small (weak dependence between sources of credit risk), large
losses occur very rarely, which is formalized by a high decay rate.

• In the opposite case, this decay rate is small when ρ tends to one, which
means that large losses are most likely to result from systematic risk
factors.
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Sketch of proof of the upper-bound.

We introduce the conditional Log-Laplace of Yk :

Γ(θ, z) = lnE
[
eθYk|Z = z]

= ln(1− p(z) + p(z)eθ).
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Sketch of proof of the upper-bound.

We introduce the conditional Log-Laplace of Yk :

Γ(θ, z) = lnE
[
eθYk|Z = z]

= ln(1− p(z) + p(z)eθ).

Then, for any θ ≥ 0, we get by Chebichev’s inequality,

P[Ln ≥ nqn|Z] ≤ E
[
eθ(Ln−nqn)|Z

]
= e−n(θqn−Γ(θ,Z)),

so that by taking supremum over θ and taking expectation:

P[Ln ≥ nqn] ≤ E[e−nΓ∗(qn,Z)] =: E[eFn(Z)]

where Fn(z) = −nΓ∗(q, z), and

Γ∗(q, z) = sup
θ≥0

[θq − Γ(θ, z)]

=

{
0, if q ≤ p(z)

q ln
(

q
p(z)

)
+ (1− q) ln

(
1−q

1−p(z)

)
, if p(z) < q ≤ 1.

135



Shift the factor mean of Z to reduce the variance of eFn(Z): introduce the

change of measure Pµ under which Z ; N (µ,1):

P[Ln ≥ nqn] ≤ E[eFn(Z)] = Eµ
[
eFn(Z)−µZ+1

2µ
2]

≤ Eµ
[
eFn(µ)+(F ′n(µ)−µ)Z−µF ′n(µ)+1

2µ
2]
,

by concavity of Fn.
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Shift the factor mean of Z to reduce the variance of eFn(Z): introduce the

change of measure Pµ under which Z ; N (µ,1):

P[Ln ≥ nqn] ≤ E[eFn(Z)] = Eµ
[
eFn(Z)−µZ+1

2µ
2]

≤ Eµ
[
eFn(µ)+(F ′n(µ)−µ)Z−µF ′n(µ)+1

2µ
2]
,

by concavity of Fn. Choose µ = µn solution to:

µn = arg max
µ∈R

[Fn(µ)−
1

2
µ2], i.e. F ′n(µn) = µn,

so that

P[Ln ≥ nqn] ≤ eFn(µn)−1
2µ

2
n.

137



• Rate of convergence of (µn):

• µn ∼ zn, where zn is the solution to p(zn) = qn from which Fn is constant

equal to zero.

• Since qn converges to 1, this implies zn → ∞.

• By writing that O(n−a) = 1 − qn = 1 − p(zn) = 1 −Φ
(
ρzn+Φ−1(p)√

1−ρ2

)
, and

the standard estimate 1−Φ(d) ∼ ϕ(d)/d, we obtain:

lim
n→∞

µ2
n

lnn
= lim

n→∞
z2
n

lnn
= 2a

1− ρ2

ρ2
.
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I Recalling the bound:

P[Ln ≥ nqn] ≤ eFn(µn)−1
2µ

2
n,

we deduce the large deviation upper bound:

lim sup
n→∞

1

lnn
lnP[Ln ≥ nqn] ≤ −

1

2
lim
n→

µ2
n

lnn
= −a

1− ρ2

ρ2
.
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Remark: Estimation of tail probability P[Ln > nqn]

• Conditionally on Z, we have an IS (unbiased) estimator of P[Ln ≥ nqn|Z]

with

exp(−θqn(Z)Ln + nΓ(θqn(Z), Z))1Ln≥nqn,

where Ln is sampled with a default probability p(θqn(Z), Z) = p(Z)eθqn(Z)/(1−
p(Z) + p(Z)eθqn(Z)), and θqn(Z) ≥ 0 attaining the argmax in θqn − Γ(θ, Z).
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Remark: Estimation of tail probability P[Ln > nqn]

• Conditionally on Z, we have an IS (unbiased) estimator of P[Ln ≥ nqn|Z]

with

exp(−θqn(Z)Ln + nΓ(θqn(Z), Z))1Ln≥nqn,

where Ln is sampled with a default probability p(θqn(Z), Z) = p(Z)eθqn(Z)/(1−
p(Z) + p(Z)eθqn(Z)), and θqn(Z) ≥ 0 attaining the argmax in θqn − Γ(θ, Z).

• We further apply IS to the factor Z ∼ N (0,1) under P, by shifting the factor

mean to µ, and then considering the estimator

exp(−µZ +
1

2
µ2) exp(−θqn(Z)Ln + nΓ(θqn(Z), Z))1Ln≥nqn,

where Z is sampled from N (µ,1).

Moreover, this this estimator is asymptotically optimal, as n goes to infinity,

for the choice of parameter µ = µn.
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2. Long term investment

• Optimal investment in a financial market when the time horizon T tends to

infinity

I Exponential growth of the terminal wealth XT for T → ∞.

I Asymptotic arbitrage and large deviations

I Beating a benchmark over long run
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Asymptotic arbitrage and large deviations

Diffusion model for stock price

dSt = Σ(St)
(
dWt + λ(St)dt

)
,

on (Ω,F ,F = (Ft)t≥0,P), with W a standard Brownian motion.

λ is the market price of risk: the stock’s rate of return per unit volatility.

We assume that the Doléans-Dade exponential process

Zt = exp
(
−
∫ t

0
λ(Su)dWu −

1

2

∫ t
0
|λ(Su)|2du

)
, t ≥ 0,

is a martingale, so that from Girsanov’s theorem, for each T > 0, the measure

QT on FT defined by

dQT
dP

= ZT ,

is a probability measure equivalent to P on (Ω,FT ) s.t. (St)0≤t≤T is a local

martingale under QT : equivalent martingale measure.
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Question

• Which features of the above model imply exponential growth of a well

chosen portfolio wealth, as time horizon goes to infinity?

I Some conditions have to be imposed on the market price of risk. Indeed,

if the market price of risk vanishes, then the stock price is a local martingale,

and one cannot systematically win by betting on a local martingale in an

admissible way.
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Question

• Which features of the above model imply exponential growth of a well
chosen portfolio wealth, as time horizon goes to infinity?

I Some conditions have to be imposed on the market price of risk. Indeed,
if the market price of risk vanishes, then the stock price is a local martingale,
and one cannot systematically win by betting on a local martingale in an
admissible way.

• We say that S has a non-trivial market price of risk if there is c > 0 s.t.

lim
T→∞

P
[

1

T

∫ T
0
|λ(St)|2dt < c

]
= 0.

I This condition is trivially satisfied for the BS model with nonzero constant
market price of risk λ 6= 0. Also satisfied for ergodic diffusion processes with
invariant measure µ and if λ is not µ a.s. equal to zero, since

lim
T→∞

1

T

∫ T
0
|λ(St)|2dt =

∫
|λ(x)|2µ(dx).
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I If S has a non-trivial market price of risk, then there is an asymptotic

arbitrage in the following sense: there exists γ > 0, s.t. for each ε > 0, for T

large enough (T ≥ Tε), one can find some (admissible) terminal wealth XT ,

starting from zero initial capital s.t.

(i) XT ≥ −e−γT , (ii) P[XT ≥ eγT ] ≥ 1− ε. (4)

Interpretation: one may achieve exponential growth of a portfolio XT with

probability close to 1 (equal to 1− ε) as T goes to infinity (for T ≥ Tε), with

an exponentially decreasing maximal potential loss.

However, the relation between ε and Tε is not clarified, and the terminal

wealth XT is not explicitly given.
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•We say that the market price of risk satisfies a large deviations estimate

if there are constants c1, c2 > 0 s.t.

lim sup
T→∞

1

T
ln
(
P
[

1

T

∫ T
0
|λ(St)|2dt ≤ c1

])
< −c2.
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•We say that the market price of risk satisfies a large deviations estimate

if there are constants c1, c2 > 0 s.t.

lim sup
T→∞

1

T
ln
(
P
[

1

T

∫ T
0
|λ(St)|2dt ≤ c1

])
< −c2.

I This condition is trivially satisfied for the BS model with nonzero constant

market price of risk λ 6= 0. More generally for ergodic processes by Donsker-

Varadhan large deviations results.

I One may expect to strenghten asymptotic arbitrage result in (??) with an

exponential decay in time for the probability of falling short of the exponential

growth portfolio:

P[XT < eγ1T ] ∼ e−γ3T , i.e. P[XT ≥ eγ1T ] ∼ 1− e−γ3T
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Illustration with the BS model: constant market price of risk λ 6= 0.

Take γ ∈ (0, λ2/2), 0 < γ1 < γ, and set for all T > 0, AT = {ZT ≥ e−γT}, αT
= eγ1TQ[AcT ]/Q[AT ]. Then, the claim

XT = eγ1T1AcT
− αT1AT

is an admissible terminal wealth attainable from zero initial capital, and sa-

tisfies for any 0 < γ2 < γ − γ1:

XT ≥ −e−γ2T , for large T,

lim
T→∞

1

T
lnP[XT < eγ1T ] = −

1

2

(
λ

2
−
γ

λ

)2
.
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Constructive proof.

• Set AT := {ZT ≥ e−γT}. Then Q[AcT ] =
∫
{ZT≤e−γT}ZTdP ≤ e−γT , and so:

αT := eγ1T
Q[AcT ]

Q[AT ]
≤ e−(γ−γ1)T 1

1− e−γT

≤ e−γ2T for large T if γ2 < γ − γ1.
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Constructive proof.

• Set AT := {ZT ≥ e−γT}. Then Q[AcT ] =
∫
{ZT≤e−γT}ZTdP ≤ e−γT , and so:

αT := eγ1T
Q[AcT ]

Q[AT ]
≤ e−(γ−γ1)T 1

1− e−γT

≤ e−γ2T for large T if γ2 < γ − γ1.

• Consider the claim: XT := eγ1T1AcT
− αT1AT . Then,

XT ≥ −αT ≥ −e−γ2T

EQ[XT ] = eγ1TQ[AcT ]− αTQ[AT ] = 0.

→ By martingale representation theorem, XT is a terminal wealth attainable

from zero initial capital.
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• Large deviations estimate for the portfolio:

Since XT := eγ1T1AcT
− αT1AT , we see that

{XT < eγ1T} = AT := {ZT ≥ e−γT}.
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• Large deviations estimate for the portfolio:

Since XT := eγ1T1AcT
− αT1AT , we see that

{XT < eγ1T} = AT := {ZT ≥ e−γT}.

Thus,

P[XT < eγ1T ] = P[ZT ≥ e−γT ]

= P
[
− λWT −

λ2

2
T ≥ −γT

]
= Φ

(
−
(
λ

2
−
γ

λ

)√
T

)
.

By using again the estimate Φ(−d) ∼ ϕ(d)/d as d goes to infinity, we obtain:

lim
T→∞

1

T
lnP[XT < eγ1T ] = −

1

2

(
λ

2
−
γ

λ

)2
.
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Remark and extensions

• Explicit form of the terminal wealth

• The key point in the large deviation estimate for the terminal wealth is the

exponential decay of the probabilities

P[ZT ≥ e−γT ] = P
[1

T
lnZT = −

1

T

∫ T
0
λ(St)dWt −

1

2T

∫ T
0
|λ(St)|2dt ≥ −γ

]
.
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Remark and extensions

• Explicit form of the terminal wealth

• The key point in the large deviation estimate for the terminal wealth is the

exponential decay of the probabilities

P[ZT ≥ e−γT ] = P
[1

T
lnZT = −

1

T

∫ T
0
λ(St)dWt −

1

2T

∫ T
0
|λ(St)|2dt ≥ −γ

]
.

I In general, under some ergodic properties, this should follow in principle

from Donsker-Varadhan large deviations results.

I For particular affine ergodic processes, this can be derived directly from

explicit computation of the limiting moment generating functions of lnZT/T

and Ellis-Gärtner theorem.
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Example: geometric Ornstein-Uhlenbeck process for the stock price

(Platen-Rebolledo model)

St = exp(Yt),

where Y is the stationary Ornstein-Uhlenbeck process defined by

dYt = −κYtdt+ σdWt,

with parameters κ > 0, σ > 0.

→ Market price of risk: λ(St) = −1
σ

(
κYt − σ2

2

)
.
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Example: geometric Ornstein-Uhlenbeck process for the stock price

(Platen-Rebolledo model)

St = exp(Yt),

where Y is the stationary Ornstein-Uhlenbeck process defined by

dYt = −κYtdt+ σdWt,

with parameters κ > 0, σ > 0.

→ Market price of risk: λ(St) = −1
σ

(
κYt − σ2

2

)
.

→ One can then compute explicitly the limiting moment generating functions

of lnZT/T (see Florens-Pham 99), and get the large deviations estimate:

lim
T→∞

1

T
lnP[XT < eγ1T ] = lim

T→∞
1

T
P[ZT ≥ eγT ] = −

(
σ2

8 + κ
4 − γ

)
σ2

8 + κ
2 − γ

.

for 0 < γ1 < γ < σ2

8 + κ
4.
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Beating a benchmark: a large deviations approach

• Classical portfolio selection problem rely on expected utility criterion: e.g.

Samuelson, Merton.

→ need to specify the degree of risk aversion of the investor, which is by

nature subjective.

• Alternative popular approach: performance of the portfolio relative to the

achievement of a given benchmark or index

→ Beating a benchmark: maximize the probability for the portfolio value to

exceed a given index
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We look at such outperformance criterion when time horizon goes to infinity:

→ Of practical interest for institutional managers with long term horizon, e.g.

mutual funds

• Infinite horizon problems are usually more tractable than finite horizon prob-

lems

→ provide good insight for management problems with long but finite horizons
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Framework

Xπ
t : portfolio value with a proportion π invested in stock

Bt: index or benchmark

• The portfolio’s performance is measured by the ratio:
Xπ
t
Bt

• The ratio Xt
Bt

typically grows in time at an exponential rate

→ The relevant quantity over a long term horizon T is the logarithm of the

wealth/index ratio:

X̄π
T =

1

T
ln
Xπ
T

BT
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A large deviations portfolio selection criterion

• Given a threshold x, the outperformance probability is:

P[X̄π
T ≥ x].

→ This outperformance probability decays exponentially fast:

P[X̄π
T ≥ x] ' e−I(x,π)T , as T →∞.

→ The lower is the decay rate function I(x, π), the more chance there is of

realizing an index outperformance:
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A large deviations portfolio selection criterion

• Given a threshold x, the outperformance probability is:

P[X̄π
T ≥ x].

→ This outperformance probability decays exponentially fast:

P[X̄π
T ≥ x] ' e−I(x,π)T , as T →∞.

→ The lower is the decay rate function I(x, π), the more chance there is of

realizing an index outperformance:

I The asymptotic criterion for outperforming the index is:

v(x) := sup
π

lim
T→∞

1

T
lnP[X̄π

T ≥ x]

(= − inf
π
I(x, π))

→ Non standard large deviations control problem!
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A dual problem

Formal derivation:

Given a portfolio policy π, the rate function I(., π) associated to the large

deviations of the wealth/index log-ratio X̄π
T , i.e.

P[X̄π
T ≥ x] ' e−I(x,π)T

should be given by the Donsker-Varadhan formula:

I(x, π) = sup
λ

[λx− Γ(λ, π)]

where Γ(., π) is the Log-Laplace function:

Γ(λ, π) = lim sup
T→∞

1

T
lnE[eλTX̄

π
T ]
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Formal derivation of the dual problem (Ctd)

The large deviations criterion can then be written as:

v(x) := sup
π

lim sup
T→∞

1

T
lnP[X̄π

T ≥ x] = − inf
π
I(x, π)

= − inf
π

sup
λ

[θx− Γ(λ, π)],
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Formal derivation of the dual problem (Ctd)

The large deviations criterion can then be written as:

v(x) := sup
π

lim sup
T→∞

1

T
lnP[X̄π

T ≥ x] = − inf
π
I(x, π)

= − inf
π

sup
λ

[θx− Γ(λ, π)],

I By interverting infinum and supremum (!), we get the duality relation

v(x) = − sup
λ

[λx− Γ(λ)],

with the dual control problem on the moment generating function:

Γ(λ) = sup
π

Γ(λ, π) = sup
π

lim sup
T→∞

1

T
lnE[eλTX̄

π
T ].

→ This dual problem is rewritten after a change of probability measure as a

risk-sensitive control problem, and can be solved by dynamic programming

Bellman PDE methods.
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Optimal portfolio

This duality relation also suggests the following strategy for obtaining the
optimal portfolio:

• Solve the dual risk-sensitive control problem: Γ(λ) and find the associated
optimal control π̂(λ).

• The solution to the large deviations portfolio selection v(x) is then given by

v(x) = − sup
λ

[λx− Γ(λ)], (5)

with an optimal control determined π∗(x) by

π∗(x) = π̂(λ(x)), where λ(x) attains the supremum in (4), i.e.

Γ′(λ(x)) = x.

I This formal derivation can be proved rigorously.
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Connection with classical portfolio selection and risk aversion

The dual problem may be written also as:

Γ(λ) = lim
T→∞

1

T
lnE

[
Uλ

(
X
π̂(λ)
T

)]
,

where Uλ(x) = xλ is a power utility function with Constant Relative degree

of Risk Aversion (CRRA): 1− λ.
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Connection with classical portfolio selection and risk aversion

The dual problem may be written also as:

Γ(λ) = lim
T→∞

1

T
lnE

[
Uλ

(
X
π̂(λ)
T

)]
,

where Uλ(x) = xλ is a power utility function with Constant Relative degree

of Risk Aversion (CRRA): 1− λ.

I The duality relation with the Lagrange multiplier λ(x) can then written

formally as:

P [X̄π∗(x)
T ≥ x] ≈ E

[
Uλ(x)

(
X
π∗(x)
T

)]
e−λ(x)xT ,

→ 1− λ(x) can be interpreted as a CRRA for an investor who has an over-

performance target level x, and it is decreasing with x.

→ Relate the target level of growth rate to the degree of relative risk aversion

in expected utility theory.
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Example

A one-factor stock market model:

dS0
t

S0
t

= r(Yt)dt,
dSt

St
= µ(Yt)dt+ σ(Yt)dWt,

with a factor Y as an Ornstein-Uhlenbeck ergodic process:

dYt = κ(θ − Yt)dt+ ϑdW1
t , d < W1,W > = ρdt

κ > 0, ϑ > 0.

For simplicity, constant benchmark: B = 1.
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Dual problem: control problem on the limiting logarithm moment generating

function

• Wealth process X = Xπ controlled by π proportion invested in stock S:

dXt = Xt

[(
r(Yt) + (µ− r)(Yt)πt

)
dt+ πtσ(Yt)dWt

]

I Moment generating function of the wealth logarithm X̄π
T = 1

T lnXπ
T :

JT (λ, π) := E
[

exp(λTX̄π
T )
]

= EQπ
[
exp

( ∫ T
0
`(λ, Yt, πt)dt

)]
with `(λ, y, π) = λr(y) + λπ(µ− r)(y)− λ(1−λ)

2 (σ(y)π)2, and

dYt = (κ(θ − Yt) + λρϑσ(Yt)πt)dt+ ϑdWπ
t ,
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Dual problem: control problem on the limiting logarithm moment generating
function

• Wealth process X = Xπ controlled by π proportion invested in stock S:

dXt = Xt

[(
r(Yt) + (µ− r)(Yt)πt

)
dt+ πtσ(Yt)dWt

]

I Moment generating function of the wealth logarithm X̄π
T = 1

T lnXπ
T :

JT (λ, π) := E
[

exp(λTX̄π
T )
]

= EQπ
[
exp

( ∫ T
0
`(λ, Yt, πt)dt

)]
with `(λ, y, π) = λr(y) + λπ(µ− r)(y)− λ(1−λ)

2 (σ(y)π)2, and

dYt = (κ(θ − Yt) + λρϑσ(Yt)πt)dt+ ϑdWπ
t ,

I Dual control problem: Γ(λ) := supπ lim supT→∞
1
T ln JT (λ, π) →

Γ(λ) = sup
π

lim sup
T→∞

1

T
lnEQπ

[
exp

( ∫ T
0
`(λ, Yt, πt)dt

)]
.

→ Risk-sensitive control problem: Fleming, Mc Eneaney, Nagai, Sheu, ...
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Formal derivation of the Bellman equation ↔ risk-sensitive control (on

infinite horizon)

• Value function for the standard finite-time horizon problem:

vλ(T, y) := sup
π

EQπ
y

[
exp

( ∫ T
0
`(λ, Yt, πt)dt

)]

→ Hamilton-Jacobi-Bellman equation (HJB) for vλ from dynamic programming.

• Inverting supπ and lim sup
T→∞

, we expect that Γ(λ) = lim sup
T→∞

1

T
ln vλ(T, y), and

we make the heuristic logarithmic transformation:

ln vλ(T, y) = Γ(λ)T + ϕλ(y).

I Substitute into the HJB of vλ
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Bellman equation for the dual risk-sensitive control problem

→ search for a pair (Γ(λ), ϕλ) solution to:

Γ(λ) =
1

2
ϑ2ϕ′′λ(y) +

1

2
|ϑϕ′λ(y)|2 + k(θ − y)ϕ′λ(y) + λr(y)

+ max
π∈R

[
λσ(y)π(ρϑϕ′λ(y) +

(µ− r)(y)

σ(y)
)−

λ(1− λ)

2
(σ(y)π)2

]
.

with suitable growth condition on ϕλ.

→ Optimal control given by:

π̂(λ, y) =
(µ− r)(y)

σ(y)2(1− λ)
+

ρϑϕ′λ(y)

σ(y)(1− λ)
.
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Bellman equation for the dual risk-sensitive control problem

→ search for a pair (Γ(λ), ϕλ) solution to:

Γ(λ) =
1

2
ϑ2ϕ′′λ(y) +

1

2
|ϑϕ′λ(y)|2 + k(θ − y)ϕ′λ(y) + λr(y)

+ max
π∈R

[
λσ(y)π(ρϑϕ′λ(y) +

(µ− r)(y)

σ(y)
)−

λ(1− λ)

2
(σ(y)π)2

]
.(6)

with suitable growth condition on ϕλ.

→ Optimal control given by:

π̂(λ, y) =
(µ− r)(y)

σ(y)2(1− λ)
+

ρϑϕ′λ(y)

σ(y)(1− λ)
.

Remark.

No unique pair solution to HJB equation (5), even up to a constant for ϕλ!
A verification theorem is required to select the good one, and to ensure that
it provides indeed the candidate solution to the control problem.
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Bellman equation for the dual risk-sensitive control problem

→ search for a pair (Γ(λ), ϕλ) solution to:

Γ(λ) =
1

2
ϑ2ϕ′′λ(y) +

1

2
|ϑϕ′λ(y)|2 + k(θ − y)ϕ′λ(y) + λr(y)

+ max
π∈R

[
λσ(y)π(ρϑϕ′λ(y) +

(µ− r)(y)

σ(y)
)−

λ(1− λ)

2
(σ(y)π)2

]
.

with suitable growth condition on ϕλ.

→ Optimal control given by:

π̂(λ, y) =
(µ− r)(y)

σ(y)2(1− λ)
+

ρϑϕ′λ(y)

σ(y)(1− λ)
.

I For µ(y) and r(y) linear in y, σ constant → explicit solutions:

we look for a quadratic solution ϕλ:

ϕλ(y) =
1

2
A(λ)y2 +B(λ)y.
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Explicit calculations

Black-Scholes model: dSt = St(µdt+ σdWt).

The solution to the dual problem is

Γ(λ) =
1

2

λ

1− λ

(
µ− r
σ

)2
, λ ∈ [0,1).

The solution to the (primal) large deviations problem is

v(x) =

 −(
√
x−
√
x̄)2, if x ≥ x̄ := 1

2

(
µ−r
σ

)2

0, if x < x̄,

and the optimal portfolio proportion is constant given by:

π∗t (x) =

{
σ
√

2x, if x ≥ x̄
µ−r
σ2 , if x < x̄.

→ CPP (Constant Proportion Portfolio) strategy
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Platen-Rebolledo model: S = eY : dYt = κ(θ − Yt)dt+ σdWt

The solution to the dual problem is

Γ(λ) =
κ

2

[
1−
√

1− λ
]

+
λ

2

κθ − r + 1
2σ

2

σ

2

, λ ∈ [0,1).

The solution to the (primal) large deviations problem is

v(x) =

 −
(x−x̄)2

x−x̄+κ
4
, if x ≥ x̄ := 1

2

(
κθ−r+1

2σ
2

σ

)2

+ κ
4

0, if x < x̄,

and the optimal portfolio proportion is:

π∗t (x) =


−[4(x−x̄)+κ]

σ Yt +
κθ−r+1

2σ
2

σ2 , if x ≥ x̄

−κσYt +
κθ−r+1

2σ
2

σ2 , if x < x̄.
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