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Abstract

We show that Continuous Timed Petri Nets (CTPN) can be modeled by
generalized polynomial recurrent equations in the (min,+) semiring. We es-
tablish a correspondence between CTPN and Markov decision processes.
We survey the basic system theoretical results available: behavioral (input-
output) properties, algebraic representations, asymptotic regime. A particu-
lar attention is paid to the subclass of stable systems (with asymptotic linear
growth).

1 Introduction

The fact that a subclass of Discrete Event Systems equations write linearly in the
(min,+) or in the (max,+) semiring is now almost classical [9, 2]. The (min,+) lin-
earity allows the presence of synchronization and saturation features but unfortu-
nately prohibits the modeling of many interesting phenomena such as “birth” and
“death” processes (multiplication of tokens) and concurrency. The purpose of this
paper is to show that after some simplifications, these additional features can be
represented by polynomial recurrences in the (min,+) semiring.

We introduce a fluid analogue of general Timed Petri Nets (in which the quanti-
ties of tokens are real numbers), called Continuous Timed Petri Nets (CTPN). We
show that, assuming a stationary routing policy, the counter variables of a CTPN
satisfy recurrent equations involving the operators min;+;�. We interpret CTPN
equations as dynamic programming equations of classical Markov Decision Prob-
lems: CTPN can be seen as the dedicated hardware executing the value iteration.

We set up a hierarchy of CTPN which mirrors the natural hierarchy of optimiza-
tion problems (deterministic vs. stochastic, discounted vs. ergodic). For each level
and sublevel of this hierarchy, we recall or introduce the required algebraic and an-
alytic tools, we provide input-output characterizations and give asymptotic results.

The paper is organized as follows. Inx2, we give the dynamic equations satisfied
by general Petri Nets under the earliest firing rule. The counter equations given here
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are much more tractable than the dater equations obtained previously [1]. Similar
equations have been introduced by Baccelli et al. [3] in a stochastic context.

In x3, we introduce the continuous analogue of Timed Petri Nets. We discuss
various natural routing policies, and show that they lead to simple recurrent equa-
tions.

In x4, we present the first level of the hierarchy: Continuous Timed Event
Graphs with Multipliers (CTEGM), characterized by the absence of routing de-
cisions. We single out several interesting subclasses. 1. Ordinary Timed Event
Graphs (TEG) are probably the simplest and best understood class of Timed Dis-
crete Event Systems. TEG are exactly causal finite dimensional recurrent linear
systems over the (min,+) semiring. They correspond to deterministic decision
problems with finite state and additive undiscounted cost. Their asymptotic theory
is mere translation of the (min,+) spectral theory. Their input-output relations are
inf-convolutions with (min,+) rational sequences. 2. We introduce the subclass of
CTEGM with potential, which reduce to TEG after a change of units (they are lin-
earized by a non linear change of variable in the (min,+) semiring). The importance
and tractability of the (non continuous) version of these systems, called expansible
[23] was first recognized by Munier. 3. �-discounted TEG are the TEG-analogue
of uniformly discounted deterministic optimization problems. They represent sys-
tems with constant birth (or death) rate �. 4. We consider general CTEGM. Their
input-output relations are affine convolutions (minima of affine functions of the
delayed input). The transfer operators are rational series with coefficients in the
semiring of piecewise affine concave monotone maps. To CTEGM correspond de-
terministic decision problems where the actualization rate (and not only the transi-
tion cost) is controlled. Last, certain routing policies, called injective, reduce CTPN
to CTEGM. Related resource optimization problems (optimizing the allocation of
the initial marking) are discussed in x4.7.

In x5, we examine the second level of the hierarchy: general CTPN, which cor-
respond to stochastic decision problems. Algebraically, CTPN are (min,+) polyno-
mial systems whose outputs admit Volterra series expansions. They are character-
ized by simple behavioral properties (essentially monotonicity and concavity). We
focus on the following tractable subclasses. 1. Undiscounted TPN are the Petri Net
analogue of stochastic control problems with undiscounted (ergodic) cost. They are
characterized by a structural condition (as many input as output arcs at each place)
plus a compatibility condition on routings. Undiscounted TPN admit an asymptot-
ically linear growth. The asymptotic behavior can be obtained by transferring the
results known for the value iteration: we give a “critical circuit” formula similar
to the TEG case (the circuits have to be replaced by recurrent classes of station-
ary policies). 2. Similar results exist for TPN with potential (obtained from undis-
counted TPN by diagonal change of variable). 3. CTPN with fixed birth/death rate
� correspond to the well studied class of discounted Dynamic Programming recur-
rences.
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2 Recurrent Equations of Timed Petri Nets

p1

p2

q1 q2 q3

q5 q6 q4

Figure 1: Notation for Petri Nets. P = fp1; p2g, Q = fq1; : : : ; q6g, pout
1 =

fq1; q4; q5g, pin
1 = fq1; q2; q3g, pout

2 = fq5; q6g, Mq5p1 = 2, Mp1q2 = 3, mp1 = 3,
mp2 = 1.

Definition 2.1 (TPNM). A Timed Petri Net with Multipliers (TPNM) is a valued
bipartite graph given by a 5-tuple N = (P;Q;M;m; � ).

1. The finite set P is called the set of places. A place may contain tokens which
travel from place to place according to a firing process described later on.

2. The finite set Q is called the set of transitions. A transition may fire. When it
fires, it consumes and produces tokens.

3. M 2 NP�Q[Q�P . Mpq (resp. Mqp) gives the number of edges from transition q
to place p (resp. from place p to transition q). In particular, the zero value for
M corresponds to the absence of edge.

4. m 2 N
P : mp denotes the number of tokens being initially in place p (initial

marking).

5. � 2 N
P : �p gives the minimal time a token must spend in place p before be-

coming available for consumption by downstream transitions1. It will be called
holding time of the place throughout this paper.

We denote by rout the set of vertices (places or transitions) downstream a vertex
r and rin the set of vertices upstream r. Formally,

rout = fs j Msr 6= 0g; rin = fs j Mrs 6= 0g :

In order to specify a unique behavior of the system, we equip TPN with routing
policies.

Definition 2.2 (Routing Policy). A routing policy at place p is a family
fmqp;�

p

qq0gq2pout;q02pin , where,

1. mp =
P

q2pout mqp is an integer partition of the initial marking. mqp tells the
number of tokens of the initial marking reserved for transition q.

1Without loss of modeling power, the firing of transitions is supposed to be instantaneous (i.e.
it involves no delay in consuming and producing tokens).
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2. f�p

qq0gq2pout is a partition of the flow from q0. That is, �p

qq0(n) tells the number
of tokens routed from q0 to q via p among the first n ones. More formally, �p

qq0

are nondecreasing maps N! N such that 8n,
P

q2pout �
p

qq0(n) = n.

A routing policy for the net is a collection of routing policies for places.

Then, the earliest behavior of the system is defined as follows. As soon as a
token enters a place, it is reserved for the firing of a given downstream transition
according to the routing policy. A transition q must fire as soon as all the places p
upstream q contain enough tokens (Mqp) reserved for transition q and having spent
at least �p units of time in place p (by convention, the tokens of the initial mark-
ing are present since time �1, so that they are immediately available at time 0).
When the transition fires, it consumes the corresponding upstream tokens and im-
mediately produces an amount of tokens equal toMpq in each place p downstream
q.

We next give the dynamic equations satisfied by the Timed Petri Net. We as-
sociate counter functions to nodes and arcs of the graph: Zp(t) denotes the cumu-
lated number of tokens which have entered place p up to time t, including the ini-
tial marking; Zq(t) denotes the number of firings of transition q having occurred up
to time t; Wpq(t) denotes the cumulated number of tokens arrived at place p from
transition q up to time t; Wqp(t) denotes the cumulated number of tokens arrived at
place p up to time t (including the initial marking) reserved for the firing of transi-
tion q. We introduce the notation

�pq
def
= Mpq; �qp

def
= M�1

qp ;

and we set bxc = supfn 2 Zj n � xg.

Assertion 2.3. The counter variables of a Timed Petri Net under the earliest firing
rule satisfy the following equations2

Zq(t) = min
p2qin

b�qpWqp(t� �p)c ; (2.1a)

Wpq(t) = �pqZq(t) ; (2.1b)

Zp(t) = mp +
X
q2pin

Wpq(t) ; (2.1c)

Wqp = mqp +
X
q02pin

�
p

qq0(Wpq0) : (2.1d)

We deduce from (2.1) the transition-to-transition equation

Zq(t) = min
p2qin

j
�qp

�
mqp +

X
q02pin

�p

qq0

�
�pq0Zq0(t� �p)

��k
: (2.2)

2We adopt the convention
P

q2;() = 0, so that (2.1c) becomes Zp(t) = mp when pin
= ;.

The transitions q such that qin
= ; will be considered as input transitions whose behavior is given

externally. Thus, Eq. (2.1a) should be ignored whenever q has no predecessors.
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If �p = 0 for some places, this equation becomes implicit and we may have diffi-
culties in proving the existence of a finite solution. We say that the TPN is explicit
if there is no circuits containing only places with zero holding times. This ensures
the uniqueness of the solution of (2.1) and (2.2) under any routing policy �.

Input-Output Partition We partition the set of transitionsQ = U[X [Y where
U is the set of transitions with no predecessors (input transitions), Y is the set of
transitions with no successors (output transitions) and X = Q n (U [ Y). We de-
note by u (resp. x, y) the vector of input (resp. state, output) counters Zq; q 2 U

(resp. X , Y). Throughout the paper, we will study the input-output behavior of the
system. That is, we look for the minimal trajectory (x; y) generated by the input
history u(t); t 2 Z. This encompasses the autonomous regime traditionally con-
sidered in the Petri Net literature, when the system is frozen at an initial condition
Zq(t) = vq 2 R for negative t, and evolves freely according to the dynamics (2.1)
for t � 0. This can be obtained as a specialization of the input-output case by ad-
joining an input transition q0 upstream each original transition q, setting uq0(t) = vq
for t < 0, uq0(t) = +1 otherwise.

3 Modeling of Continuous Timed Petri Nets

We shall address the continuous version of TPN (in which the number of tokens are
real numbers instead of integers). Such continuous models occur naturally when
fluids rather than tokens flow in networks (see [2, x1.2.7],[24] for an elementary
example). They also arise as approximation of (discrete) Petri Nets since they pro-
vide an upper bound for the real behavior.

A continuous TPN (CTPN) is defined as a TPN, but the marking m, the mul-
tipliers M and the counter functions are real-valued (the multipliers must be non-
negative: Mrs 2 R

+). This allows one to define some simple stationary routing
policies. We shall single out three classes of policies.

General Stationary Routing A stationary routing policy is of the form
�

p

qq0(n) = �
p

qq0 � n for some constants �pqq0 � 0 such that for all q0 2 pin,P
q2pout �

p

qq0 = 1 That is, the flow from q0 at place p goes to q with proportion �pqq0 .
The counter functions of a CTPN satisfy the following equations

Zq(t) = min
p2qin

�qpWqp(t� �p) ; (3.1a)

Wqp(t) = mqp +
X
q02pin

�
p

qq0Wpq0(t) ; (3.1b)
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together with (2.1c), (2.1b). EliminatingW , we get a transition-to-transition equa-
tion

Zq(t) = min
p2qin

0
@�qpmqp +

X
q02pin

�qp�
p

qq0�pq0Zq0(t� �p)

1
A : (3.2)

Dually, an equation involving only the variables Wqp can be obtained:

Wqp = mqp +
X
q02pin

min
p02(q0)in

�
�
p

qq0
�pq0�q0p0Wq0p0(t� �p0)

�
: (3.3)

The following special cases of stationary routing are worth mentioning.

Origin Independent Routing When the routing at place p does not take into ac-
count the origin of the token but only its numbering, we get the condition

8p; q; 8q0; q00 2 pin; �pqq0 = �pqq00; �pqq0mp = mqp : (3.4)

We shorten �pqq0 to �pq . The dynamics of the system (3.1) can be rewritten with the
aggregated variables Zp (instead of Wqp):

Zq(t) = min
p2qin

�qp�
p
qZp(t� �p) ; (3.5a)

Zp(t) = mp +
X
q2pin

�pqZq : (3.5b)

Such routing policies depending only on the numbering of tokens (and leading to
similar equations) have been studied by Baccelli et al. in a stochastic context [3].
We note that when �p � 1, (3.5) reads as the coupling of a conventional linear
system with a (min;�) linear system, namely3

ZQ(t) = �0QP 
 ZP(t� 1) ; (3.6)

ZP(t) = m+ �PQZQ(t) ; (3.7)

where (A 
 x)i =
L

j Aij 
 xj = minj Aijxj is the matrix product of the dioid4

Rmin;�
def
= (R+� [ f+1g;min;�).

Example 3.1. The origin independent routing �p5q3 = �p5q4 = 1=2 reduces the CTPN
in Fig 2a to that of Fig 2d.

3We denote by ZQ (resp. ZP) restriction of Z to transitions (resp. to places). The convention
for �pq is similar. We have set (�0QP)qp = �pq�qp.

4A dioid [9, 2] is a semiring whose addition is idempotent: a� a = a.
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(b)

(c)

(a)

(d)

Marking mq4 p 5Marking mq3 p5

Marking m p 5

f p
5(q4 ) =

q1

f p
5(q3 ) =

q2

q3

p3 p1 p2 p4

p3 p1 p5 p2 p4

q4

q1 q2

q1 q2

q3 q4

p3 p1 p2 p4

q1 q2

q3 q4

p3 p1 p2 p4

q1 q2

q3 q4

f p 5 (q4 ) = q2

f p 5 (q3 ) = q1

Origin  independent  routing

Bijective routing

Bijective routing 

Figure 2: A Balanced Petri Net under various Routing Policies

Injective Routing We say that the routing function �p at place p is injective if
there is a map fp : pout ! pin such that

8q; �
p

qq0 6= 0) q0 = fp(q) : (3.8)

That is, all the tokens routed to q at place p come for a single transition f(q). Such
routings occur frequently when tokens correspond to resources (e.g. pallets) which
follow some well defined physical routes. An injective routing exists iff5 jpoutj �

jpinj. Indeed, the following stronger condition is often satisfied in practice (e.g. in
Fig. 2a).

Definition 3.2 (Balanced TPN). A TPN is balanced if 8p, jpjout = jpjin.

In this particular case, we shall speak of bijective routing policies (since fp be-
comes a bijection pout ! pin). We shall see later on that injective and bijective
routing policies lead to tractable classes of systems.

4 Timed Event Graphs and (min,+) Linear Systems

4.1 Ordinary and Generalized Timed Event Graphs

Definition 4.1 (Timed Event Graphs). A Continuous Timed Event Graph with
Multipliers (CTEGM) is a CTPN such that there is exactly one transition upstream
and one transition downstream each place. An (ordinary) Continuous Timed Event

5We denote by jXj the cardinal of a set X.
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Graph (CTEG) is a CTEGM such that all arcs have multiplier one: Mpq;Mqp 2

f0; 1g. More generally, we define the place multipliers6

�p
def
= �poutp�ppin : (4.1)

A (rate �)-CTEG is a CTEGM with unit holding times and constant place multipli-
ers. A CTEGM admits a potential if there exists a vector v 2 (R+�)Q[P (potential)
such that

8r; s 2 Q[ P; r 2 sout ) vr = �rsvs : (4.2)

We set

�p
def
= �poutpmp : (4.3)

Assertion 4.2. The dynamics of a CTEGM writes

Zq(t) = min
p2qin

�
�p + �pZpin(t� �p)

�
: (4.4a)

We have the following specializations:

Zq(t) = min
p2qin

�
�p + Zpin(t� �p)

�
(TEG case), (4.4b)

Zq(t) = min
p2qin

�
�p + �Zpin(t� 1)

�
(rate � case), (4.4c)

Zq(t) = vqmin
p2qin

�
v�1p mp + v�1

pin Zpin(t� �p)
�

(Potential case). (4.4d)

The last equation shows that CTEGM with potential reduces to ordinary CTEG
after the diagonal change of variable Zq = vqZ

0
q . This change of variables should

be interpreted as a change of units (vq firings of transition q being counted as a single
one).

Example 4.3. If one mixes white and red paints in equal proportions to produce
pink paint, the main concern is to say that with 3 liters of red for a single liter of
white, there is 2 liters of red which are useless (that is, the min is the appropriate
operator) but then 2 liters of pink can be produced, hence the right thing to do is to
count pink paint by pairs of liters.

Theorem 4.4. CTPN under injective routing policies reduce to CTEGM. Balanced
CTPN with unit multipliers reduce to (ordinary) TEG.

Proof. Define the new set of placesP 0 = Q�P , with the incidence relation qin =

f(qp) j p 2 ping, (qp)in = fp(q). Then, the dynamics (3.2) reduce to (4.4a), with
�qp = �qp�pfp(q), The specialization to the TEG case is immediate.

Example 4.5. The Petri Net of Figure 2a admits two possible bijective routing poli-
cies at place p5 which lead to the two Timed Event Graphs of Fig. 2b and 2c respec-
tively.

6Since pout and pin are singletons, the notation will be used to designate their single members.
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4.2 Dynamic Programming Interpretation of CTEGM

We exhibit a correspondence between the above classes of Event Graphs and clas-
sical deterministic decision problems.

Given a CTEGM, we consider the discrete time controlled process qn over an
horizon t with

1. finite state space Q;

2. set of admissible control histories Pad = fp1; : : : ; pt j 8n; pn 2 qin
n g;

3. backward dynamics qn�1 = pin
n where pn 2 qin

n .

In other words, the controlled process follows the edges of the net with the reverse
orientation, backward in time. The control at state (transition) q consists in choos-
ing a place p upstream q, which leads to the (unique) transition q0 upstream p.

We shall consider the following 3 deterministic cost structures.

Additive

J add(p; t) = Z(0)q0 +

tX
n=1

�pn : (4.5)

Note that the initial costZ(0) coincides with the initial value of the counter function
of the CTEGM.

Additive with Constant Discount Rate

Jdisc(p; t) = �tZ(0)q0 +

tX
n=1

�t�n�pn : (4.6)

Additive with Controlled Discount Rate

J c-disc(p; t) =

 
tY

j=1

�pj

!
Z(0)q0 +

tX
n=1

 
tY

j=n+1

�pj

!
�pn : (4.7)

The value function associated with any of the above cost functions J is the map

Zq(t) = min
p2Pad; qt=q

J(p; t) :

Theorem 4.6. When �p � 1,

1. The counter of a CTEG coincides with the value function for the additive cost
J add.

2. The counter of a (rate �)-CTEG coincides with the value function for the dis-
counted cost Jdisc.
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3. The counter of a CTEGM coincides with the value function for the cost with con-
trolled discount rate J c-disc.

Remark 4.7. Minimizing J c-disc is known as a problem of shortest path with gains.
See [17, Chap. 3, x7] and the references therein.

4.3 Operatorial Representation of CTEGM

We introduce the set of signals S
def
= (R[ f+1g)Zto represent counter functions

(although this will be the case in most applications, we do not require the signals
to be either positive valued or nondecreasing).

Definition 4.8. An operator f : S ! S is

1. additive if it satisfies the min–superposition property

f(min(x; x0)) = min(f(x); f(x0)) ; (4.8)

2. linear if it is additive and satisfies the homogeneity property

f(� + x) = �+ f(x) :

Of course, “linear” refers to the (min,+) dioid Rmin
def
= (R [ f+1g;min;+).

Throughout the paper, we shall freely use the dioid notation a � b for min(a; b),
a
 b for a+ b, " = +1 for the zero element, e = 0 for the unit.

The following 3 families of operators play a central role in CTEGM:

� : �x(t)
def
= x(t) + � (shift in counting)

�� : ��x(t)
def
= x(t� � ) (shift in dating)

� : �x(t)
def
= � � x(t) (scaling),

(4.9)

where � 2 R; � 2 N; � 2 R
+�. We note that  and � are linear while � is only

additive. We have the commutation rules:

��� = ��� ; (4.10a)

��� = ��� ; (4.10b)

�� = ��� : (4.10c)

Additive operators equipped with pointwise min and composition form an idempo-
tent semiring, that we denote by O. The following subsemirings ofO are central.

1. The semiring generated by � ; � 2 R is isomorphic toRmin via the identification
of � to � .

2. The semiring generated by � ; �� ; � 2 R; � 2 R is isomorphic to the semiring
of polynomials in the indeterminate �,Rmin[�] (via the same identification).
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3. The semiring generated by � ; � 2 R+ and by the powers of ��, where � is a
given and fixed value of�, will be denoted byRmin[��]. It is a particular instance
of a classical structure in difference algebra: Ore polynomials7 [26, 19, 13].

4. The semiring generated by �; �; � 2 R; � 2 R+� is isomorphic to the semiring
of nondecreasing concave piecewise affine maps R [ f+1g ! R [ f+1g,
that we denote by Amin. A generic element inAmin is a map p =

Lk

i=1 �i
�i ,

p(x) = min
1�i�k

(�i + �ix) :

5. Finally, the semiring generated by � ; ��; �; � 2 R; � 2 N; � 2 R+� is isomor-
phic to the semiring of polynomialsAmin[�] .

We extend the operatorial notation to matrices by setting forA 2 On�p and x 2 Sp,

(Ax)i
def
= min

j
Aij(xj) : (4.11)

Note that for operator matricesA;A0; B and vectors of counters x; x0 of appropriate
sizes

(AB)x = A(Bx); (A�A0)x = Ax�A0x; A(x� x0) = Ax�Ax0 :;

More formally, vectors of counter functions are a left semimodule under the action
of additive matrix operators.

Theorem 4.9. The counter equations of a CTEGM write

x = Ax�Bu; y = Cx�Du (4.12)

where A;B;C;D are matrices with entries inO. More precisely,

1. the entries of A;B;C;D belong to Rmin[�] for an ordinary CTEG;

2. the entries belong to Rmin[��] for a (rate �)-CTEG;

3. the entries belong to Amin[�] for a general CTEGM.

7We recall that given a semiring S equipped with an automorphism � : S ! S, the semiring
of Ore polynomials in the indeterminate X, denoted by S[X;�], is the set of finite formal sumsP

n snX
n (all but a finite number of sn are zero), equipped with the usual componentwise sum

(s � s0)n
def
= sn � s0n and the skew Cauchy product (s 
 s0)n

def
=
L

p+q=n sp 
 �p
(sq). This

product is determined by the rule Xa = �(a)X for all a 2 S. IdentifyingX with �� and setting

�(�)
def
= � � � for � 2 Rmin, we see that X� = �(�)X is nothing but the rule ��� = ����

which follows from (4.10).
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Theorem 4.10 (Convolution Representation). An explicit SISO8 CTEGM ad-
mits an input output relation of the form

y(t) = inf
�2N

[h(� ) + u(t� � )] (Ordinary CTEG) (4.13)

y(t) = vy inf
�2N

[h(� ) + v�1u u(t� � )] (CTEG with potential) (4.14)

y(t) = inf
�2N

[h(� ) + ��u(t� � )] (CTEG with rate �) (4.15)

y(t) = inf
i2I

[�i + �iu(t� �i)] (General Case) (4.16)

where h is a map N ! R [ f+1g, vu; vy 2 R
+�, and where the family f�i 2

R; �i 2 R
+�; �i 2 Ng is such that there is only finitely many i such that �i = � for

any � 2 N.

We postpone the proof: these representation results will appear as consequences
of the more general behavioral properties of CTEGM operators given in x4.4.

Theorem 4.9 established a connection between various algebras of polynomial
type and various classes of Event Graphs. Theorem 4.10 now establishes a simi-
lar connection between input-output representations and certain formal series alge-
bras. Let us recall that given a semiring K and an indeterminate �, we denote by
K[[�]] the semiring of series with coefficients in K (set of formal sums

L
t2Nht�

t

with ht 2 K, equipped with pointwise sum and Cauchy product). The generic se-
ries of Amin[[�]] writes

h =
M
�2N

h��
� =

M
�

 M
i2I�

�i�
�i�

!
��

where for all � , I� is finite. Such series act naturally on S by interpreting the inde-
terminate � as the shift operator

hu(t) =
M
�2N

h� (u(t� � )) = inf
�2N

min
i2I�

(�i� + �i�u(t� � )) :

Theorem 4.10 asserts that (i)- CTEGM operators correspond to the action of
Amin[[�]] on counter functions, (ii)- CTEG operators correspond to the action of
Rmin[[�]], (iii)- �-CTEG operators correspond to the action of the dioid of Ore se-
ries Rmin[[��]] (defined as Ore polynomials, without the finiteness condition).

4.4 Behavioral Characterizations of CTEGM

Theorem 4.11. The input-output map H : u! y of a SISO explicit CTEGM sat-
isfies the following properties.

8Single Input-Single Output. The extension to the Multiple Inputs Multiple Outputs (MIMO)
case is immediate.
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1. Stationarity. H�� = ��H.

2. Causality. u(t) = v(t);8t� � ) 8t � �; Hu(t) = Hv(t).

3. Additivity. H(min(u; v)) = min(Hu;Hv).

4. Scott continuity. For any filtered9 family fuigi2I , H(infi2I ui) = infi2IHui.

5. Concavity. H(
Pn

i=1 �iui) �
P

i �iHui, 8�i � 0;
P

i �i = 1.

A CTEG with rate � satisfies the additional property

6. �-homogeneity. For all constant �, H(��t + u) = ��t +Hu, with an obvious
convention10.

A CTEGM with potential satisfies the alternative additional property11

7. (vu; vy)-homogeneity. For all � 2 R,H(�vu + u) = �vy +H(u).

Note that the specialization of the �-homogeneity to � = 1 gives the standard
homogeneity property � + u ! � + y. So does the specialization of the (vu; vy)-
homogeneity to the case of constant potential v.

Proof. The additivity of H is an immediate consequence of the additivity of
A;B;C;D and the uniqueness of the solution of x = Ax � Bu; y = Cx � Du.
The other properties can be proved along the same lines by transferring to H the
properties valid for A;B;C;D.

The following converse theorem shows that the properties listed are accurate.

Theorem 4.12. A mapH which satisfies properties 1–5 in Theorem 4.11 is a non-
increasing limit of CTEGM operators12. An operator which satisfies 1–6 (resp. 1–
5,7) is a nonincreasing limit of rate � CTEG operators (resp. with potential v).

The main point of the proof consists in the following general “convolution” rep-
resentation lemma for additive continuous stationary operators.

Lemma 4.13. Let D denote a complete13 dioid,H : DZ! DZ. The following as-
sertions are equivalent. 1.H is stationary, causal, additive, and Scott continuous;

9A family is filtered if any finite subfamily admits a lower bound in the family. Note that
the Scott continuity together with additivity is equivalent to the preservation of arbitrary inf:
H(infi ui) = infiHui for an arbitrary family. The Scott topology is presented in details in [16].
What we call here Scott continuity is in fact Scott continuity with respect to the algebraic order �
of the (min,+) semiring, defined by a � b () a � b = b ( which is reversed with respect to
natural order).

10�t denotes the map t 7! �t.
11�+ u denotes the signal t 7! � + u(t).
12I.e. there exists a nonincreasing sequence Hi � Hi+1; i 2 N of input-output operators of

CTEGM such thatH = infi2I Hi.
13A dioid D is complete if an arbitrary subset admits a least upper bound (for the order a �

b () a� b = b) and if the product is Scott continuous.
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2. there exists a family of additive Scott continuous maps h� ;D ! D; � 2 N such
that

Hu(t) =
M
�2N

h� (u(t� � )) : (4.17)

Proof. Clearly, 2)1. Conversely. We introduce the Dirac function

e :Z! D; e(t) =

(
e if t = 0

" otherwise.

We have the decomposition of an arbitrary signal u 2 DZon the basis of shifted
Dirac functions:

u =
M
�2Z

u(� )��e :

The additivity, stationarity and Scott continuity assumptions yield

Hu =
M
�2Z

��H(u(� )e) : (4.18)

Now, let us decompose the output corresponding to u = xe (with x 2 D) on the
basis f��eg�2Z:

H(xe) =
M
�2Z

h� (x)�
�
e :

This together with (4.18) gives

Hu =
M
�;� 02Z

h� (u(� ))�
�+� 0

e

i.e.

Hu(t) =
M
�2Z

h� (u(t� � )) :

The sum can be obviously restricted to � 2 N due to causality. The additivity and
continuity of h� are immediate.

To complete the proof of Theorem 4.12, it suffices to observe that the additivity,
concavity, and potential properties, valid forH, transfer to each h� . Then, the con-
cave monotone real valued map h� admits a representation as a denumerable infi-
mum of increasing affine functions:

h�(x) = inf
n2N

(�n� + �n�x); where �n 2 R[ f+1g; �n� > 0 : (4.19)
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The operator Hn =
L

��n;k�n 
�k��k��

� arises from a CTEGM operator (since
it obtained by a finite number of parallel/series composition of elementary ; �; �
operators). It follows from (4.17)–(4.19) that limn # Hnu = Hu. This proves the
first assertion of Theorem 4.12. The �-rate and potential special cases are imme-
diate.

Finally, we note that the construction of the above proof explicitly yields the
convolution representations stated in Theorem 4.10, with the exception of the ad-
ditional finiteness condition that h� is a finite sum of �i�i. This last result stems
from the rationality features that we next introduce.

4.5 Rational Operators

A natural problem is to characterize the subclass of series ofAmin[[�]]which arise as
transfer operators of CTEGM (called transfer series). We recall that given a semir-
ing of formal seriesK[[�]], the semiring of rational series [4] denoted byKrat[[�]] is
the least subsemiring containing polynomials and stable by the operation�;
; �,

where a�
def
=
L

n2Na
n is defined only on series with zero constant coefficient. An

immediate fixed-point argument14 shows that the input and output counters given
by (4.12) satisfy y = hu, where h = CA�B �D is the transfer series of the sys-
tem. Therefore, rephrasing the Kleene-Schützenberger theorem [4], we claim that
transfer series and rational series coincide.

Assertion 4.14. The transfer series of explicit SISO CTEGM (resp. �-CTEG,
CTEG) are precisely the elements ofArat

min[[�]] (resp. Rrat
min[[��]],R

rat
min[[�]]).

One important problem is to characterize these particular classes of rational se-
ries. The answer is known in the case of Rmin[[�]] and Rmin[[��]]. We say that a
series is ultimately periodic with rate � if there exists a constant � and a positive
integer c (cyclicity) such that for t large enough

ht+c = �
1 � �c

1� �
+ �cht : (4.20)

When � < 1, this periodicity property means that ht converges towards �=(1��)

with rate � and that the rate is attained exactly after a finite time. The specializa-
tion to � = 1 (in fact, � = 1�) yields ht+c = �c + ht. The merge of k series
h(0); : : : ; h(k�1) is the series with coefficients hi+nk = h

(i)
n for 0 � i � k � 1; n 2

N.

Theorem 4.15. A series in Rmin[[��]] is rational iff it is a merge of ultimately �-
periodic series.

14The unique solution of x = Ax� Bu is x = A�Bu. The existence of A� and the uniqueness
of the solution follow from the assumption that there are no circuits with zero holding times.
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The CTEG case (i.e. � = 1) is proved in [9, 2] for the subclass of monotone15

series hn+1 � hn. It was already noticed by Moller [22] in the non monotone case.
It is essentially known to the tropical community [20]. The �-generalization was
announced in [13]. The proof will appear in a paper in preparation [15].

No such simple characterization seems to exist forArat
min[[�]]: the coefficient h�

of �� in h is an element of Amin, but its complexity16 grows in general as � !1.

4.6 Asymptotic Behavior of CTEGM

We consider the autonomous case Z = AZ with boundary condition 8t �

0; Z(t) = v 2 RQ, where A belongs to one of the above matrix operator algebras.
We associate several additive weights with the circuit C = (q1; p1; q2; : : : ; qk; pk),

jCj� =
P

i �qipi Total normalized marking
jCj� =

P
i
�pi Total holding time

jCjl =
P

i
1 = k Length

jCjm;v =
P

impiv
�1
pi

Total weighted marking

where the latest quantity will be used only when the graph admits potential v. The
following periodicity theorem is central. The CTEG case is a consequence of the
(max,+)-Perron Frobenius theorem [25, 8, 2, 10]. Another proof has been given by
Chretienne [7]. The inequality variant below (4.24) can be found in [12, Ch. IV,
Lemma 1.3.8],[14]. The �-discounted case is due to Braker and Resing [5, 6].

Theorem 4.16. Consider a strongly connected CTEG. There exists N � 0 and
c � 1 (cyclicity) such that, for all initial condition v,

t � N ) Z(t+ c) = �c+ Z(t) ; (4.21)

where

� = min
C

jCj�

jCj�
(4.22)

(the minimum is taken over the elementary circuits of the graph). Alternatively, �
is the unique scalar for which there exists a finite vector v solution of the spectral
problem17

vq = min
p2qin

�
�qp � ��p + vpin

�
; (4.23)

15The results are stated in the so calledMax
in [[; �]]dioid which is isomorphic to the dioid of series

in one indeterminate � with coefficients inRmin
def
= (R[ f�1g;min;+) such that hn+1 � hn.

16The minimal number of monomials in a sum h� =
L

i 
�i�i.

17With the (min,+) notation, when �p � 1, (4.23) rewrites as Av = � 
 v where Aqq0 =L
p2qin\(q0)out �qp.
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or it is the solution of the LP problem

�! max; 8p 2 qin; vq � �qp � ��p + vpin : (4.24)

For a strongly connected CTEG with potential, the periodicity property (4.21) be-
comes Zr(t+ c) = �rc+ Zr(t), where

�rv
�1
r = min

C

jCjm;v

jCj�
: (4.25)

For a strongly connected CTEG with rate �, the periodicity property (4.21) be-
comes

t � N ) Zq(t+ c) = �q
1� �c

1 � �
+ �cZq(t) (4.26)

where �q 2 R+ (the dependence in q is essential).

The asymptotic behavior of general CTEGM is more subtle. We shall not at-
tempt to treat it here.

Remark 4.17. When � < 1, from (4.26) we get limt!1 Zq(t) = �q=(1 � �). It is
well known that one obtains the average cost value as the limit of the discounted
case, i.e. 8q, lim�!1� �q = �.

Remark 4.18. When the graph has a potential v, for all circuit C, the quantity jCjm;v

used in the periodic throughput formula is an invariant of the net (the firing of one
transition leads to a new marking m0 with the same weight).

4.7 Resource Optimization Problems

As a by product of the above characterizations of the throughput�, it is possible to
address resource optimization problems. The most classical problem [8, 18, 21, 12]
relative to TEG consists in optimizing a linear cost function J(m) associated with
the initial marking, under the constraint � � �0. Physically, the initial marking
represents resources (number of machines, pallets, processor, storage capacities),
and the problem consists in minimizing the cost of the resources in order to guar-
antee a given throughput �0. By appealing to (4.24), this class of problems reduces
to linear programming, with integer and real variables.

We will discuss here new resource optimization problems which arises for more
general TPN due to the presence of routing decisions. We restrain to balanced TPN
with unit multipliers. When a bijective routing f is fixed, the only remaining deci-
sion consists in the assignment of the initial marking mp to the downstream tran-
sitions: mp =

P
q2pout mqp. We thus consider the problem of finding the alloca-

tion of the initial marking which maximizes the performance of the system. We
only consider internally stable systems in the sense of [2] (such that tokens do not
accumulate indefinitely in places). Then, there is a single periodic throughput �r
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associated with every simply connected component r of the graph (characterized
by (4.22)). We denote by R the set of simply connected components. The most
natural performance measure to be optimized will be a linear combination of these

throughputs, c�
def
=
P

r2R cr�r where cr � 0 are given weights.

Theorem 4.19. The resource assignment problem for a balanced CTPN with unit
multipliers under the bijective policy f reduces to the following Linear Program-
ming problem. Given fmp; �pgp2P , c and f , denoting by r(q) the simply connected
component of transition q under policy f , solve

max
vq ;�r;mqp

c� ;�
mp =

P
q2pout mqp ; 8p ;

vq � mqp � �r(q)�p + vfp(q) ; 8q;8p 2 qin ;

where fvqgq2Q, fmqpgq2pout;p2P , and f�rgr2R are real (finitely) valued variables.

Proof. Easy consequence of the characterization (4.24).

The same resource assignment problem for discrete (non continuous) TEG leads to
a similar LP problem with mixed integer and real variables.

Example 4.20. For the routing policy of Fig. 2b, we obtain two strongly connected
components with rates

�1 = min

�
mq3p5 +mp3

�p5 + �p3
; �1

�
; where �1 =

mp1 +mp3

�p1 + �p3
(4.27)

�2 = min

�
mq4p5 +mp4

�p5 + �p4
; �2

�
; where �2 =

mp2 +mp4

�p2 + �p4
: (4.28)

Maximizing the throughput in place p5 reduces to

max
mq3p5+mq4p5=mp5

(�1 + �2) : (4.29)

The bijective policy shown of Fig. 2c gives a unique strongly connected component
and a throughput

� = min

�
�1; �2;

mp3 +mp4 +mp5

�p3 + �p4 + 2�p5

�
(4.30)

independent of the allocation of mp5 .

5 Time Behavior of Continuous Timed Petri Nets

5.1 Stochastic Control Interpretation

We interpret the evolution equations of a CTPN as the dynamic programming equa-
tion of the following stochastic extension of the deterministic decision process de-
scribed in x4.2. The control at state (transition) q selects an upstream place p 2 qin.
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Then, q moves randomly (in backward time) to one of the upstream transitions
q0 2 pin. More precisely,

1. the dynamics is given by a controlled Markov chain in backward time: the prob-
ability P p

qq0 of the transition q ! q0 from time n to time n�1 under the decision
p is given by

P
p

qq0 = ��1qp �qp�
p

qq0�pq0

where �qp > 0 is a normalization factor18 (chosen such that
P

q02pin P
p

qq0 = 1).

2. The setPad of admissible control histories is the set of sequences p1; : : : ; pt such
that pn 2 qin

n and the decision pn is a feedback of qn.

3. We consider a mean cost at state q of the form

J(p; t; q) = E

�� tY
j=1

�qjpj

�
Z(0)q0 +

tX
n=1

� tY
j=n+1

�qjpj

�
�qnpn

���qt = q
�
:

Assertion 5.1. For a CTPN such that �p � 1, the counter function coincides with
the value function:

Zq(t) = inf
p2Pad

J(p; t; q) : (5.1)

As in the case of Event Graphs, we shall pay a particular attention to simple cost
functions.

Definition 5.2. A CTPN is undiscounted if �qp � 1. It is �-discounted if �p � 1

and �qp � �. It admits a potential if there exists a vector v 2 (R+�)Q such that the
change of variable Zq = vqZ

0
q makes the CTPN undiscounted.

Clearly, the cost function of an undiscounted (resp. �-discounted) CTPN writes

J(p; t; q) = E

�
Z(0)q0 +

tX
n=1

�qnpn

���qt = q
�
; (5.2)

resp. J(p; t; q) = E

�
�tZ(0)q0 +

tX
n=1

�t�n�qnpn

���qt = q
�
: (5.3)

Theorem 5.3. 1. A CTPN becomes undiscounted under a stationary routing iff it
satisfies the following equilibrium condition:

8p;
X
q2pout

Mqp =
X
q2pin

Mpq : (5.4)

18Note that in the CTEGM case, for q = pout, we have �qp = �poutp�ppin so that �qp coincides
with �p as defined in (4.1).
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Then, the only origin independent routing policy which makes the net undiscounted
is given by19:

8q0 2 pin; �
p

qq0 =
MqpP

q002pout Mq00p

: (5.5)

2. A CTPN with �p � 1 becomes �-discounted under a stationary routing iff

8p;
X
q2pin

Mqp = �
�X
q2pout

Mpq

�
: (5.6)

3. There exists a stationary routing under potential v iff

8p;
X
q2pout

vqMqp =
X
q2pin

Mpqvq : (5.7)

4. A CTEGM with routing � admits a potential v iff for all q 2 Q; p 2 qin,

vq =
X
q02pin

�qp�
p

qq0�pq0vq0 : (5.8)

Proof. We prove item 3 (which contains item 1 as a special case). The CTPN has
potential v iff for all p, the matrix

P
p

qq0 = v�1q M�1
qp �

p

qq0Mpq0vq0

is stochastic. Summing up as q0 2 pin, we get vqMqp =
P

q02pin �
p

qq0Mpq0vq0 . Sum-
ming up as q 2 pout and using the fact that the transpose of �p�;� is stochastic, we get
the necessary condition (5.7). Then, the origin independent routing policy

�
p

qq0 =
vqMqpP

q002pout vq00Mq00p

8q0 2 pin (5.9)

turns out to be admissible, which shows that the condition is also sufficient. The
other points are left to the reader.

5.2 Input-Output Representation of CTPN

Pursuing the program previously illustrated with additive systems (CTEGM), we
provide an algebraic input-output representation for CTPN. In view of the dynam-
ics of CTPN (see (3.2)), we introduce (min,+) polynomials and formal series in
several commutative indeterminates. Given a family of indeterminates fzigi2I
(not necessarily finite), we denote by (R+)(I) the set of almost zero sequences

19This is a fairness condition which states that tokens are routed equally to the downstream arcs,
counted with their multiplicities.
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�i 2 R
+; i 2 I (such that I(�)

def
= fi 2 I j �i 6= 0g is finite). A generalized20

formal series in the commutative indeterminates zi with coefficients in Rmin is a
sum

s =
M

�2(R+)(I)

s�
O
i2I(�)

z�i

i ; s� 2 Rmin : (5.10)

It is a polynomial whenever s� = " for all but a finite number of �. The numerical
function associated with a series s is the map S : RI ! R[ f�1g,

S(z) = inf
�

�
s� +

X
i2I(�)

�izi

�
: (5.11)

When s is a nonzero polynomial, the infimum in (5.11) is finite. This defines a
proper notion of finitely valued (min,+) polynomial function. Polynomial functions
are stable by pointwise min, pointwise sum and composition. It is clear that (3.2)
is nothing but a polynomial induction of the form

x(t) = A(x(t); : : : ; x(t� �); u(t); : : : ; u(t� � )); (5.12)

y(t) = C(x(t); : : : ; x(t� � ); u(t); : : : ; u(t� � )) ; (5.13)

whereA;C are polynomial functions and �
def
= maxp �p. Thus, CTPN and (min;+)

recurrent stationary polynomial systems coincide. For simplicity, we shall limit
ourselves to SISO systems (the MIMO case is not more difficult, although the no-
tation is more intricate). We introduce the family of indeterminates u� ; � 2 N. The
series s given by (5.10) is a Volterra series [11] if for all � , the series is a polyno-
mial in the indeterminate u� (equivalently, if the indeterminate u� appears in (5.10)
with a finite number of exponents). The evaluation su of the Volterra series s at the
input u is obtained by substituting u(t� � ) for the indeterminate u� .

Theorem 5.4 (Volterra Expansion). The output of an explicit SISO CTPN is ob-
tained as the evaluation of a Volterra series:

y(t) = su(t) = inf
�

�
a� +

X
�2I(�)

��u(t� � )
�
: (5.14)

A case of particular interest arises for inputs with finite past: u(� ) = " for � �
T0. Then, for all t, the Volterra expansion of y(t) is obviously finite.

5.3 Behavioral Properties of CTPN

Theorem 5.5. The input-output mapH of a MIMO CTPN is

1. stationary,

20We allow nonnegative real valued exponents �i, not only integer ones.
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2. causal,

3. monotone: u � v) Hu � Hv,

4. Scott continuous,

5. concave (see Theorem 4.11 for the definitions).

Undiscounted CTPN satisfy the following property.

6. Homogeneity: H(� + u) = �+H(u).

CTPN with potential v satisfy the following.

7. (vu; vy)-homogeneity: H(�vu + u) = �vy +Hu.

All these properties are immediate consequences of the (MIMO extension) of
the Volterra expansion (5.14). Again, these properties are accurate: it could be
shown that an map satisfying the above properties is a limit of CTPN operators,
but we shall not attempt to detail this statement here.

5.4 Asymptotic Properties of Undiscounted Petri Nets

Theorem 5.6. For a strongly connected undiscounted CTPN, we have

lim
t!1

1

t
Zq(t) = �; 8q ;

where � is a constant. The periodic throughput � is characterized as the unique
value for which a finite vector v is solution of

v = min
p

(��p � ��p + P pv) : (5.15)

Indeed, the asymptotic behavior of Z(t) is known in much more details [27].
Note that the effective computation of � from (5.15) proceeds from standard algo-
rithms (Policy Improvement [28], Linear Programming).

Proof. This is an adaptation of standard stochastic control results [28, Chap. 33,
Th. 4.1]. The growth rate � is independent of the initial point q for the subclass of
communicating systems21. This assumption is equivalent to the strong connectivity
of the net.

There is an equivalent characterization of � which exhibits the analogy with the
CTEG case in a better way. A feedback policy (or policy22, for short) is a map u :

Q! P . The policy is admissible if u(q) 2 qin, that is, if setting pn = u(qn) yields

21The system is communicating if for all q; q0, there is a policy u and an integer k such that
(Pu

qq0)
k > 0 —i.e. q has access to q0.

22This feedback policy has nothing to do with the routing policy introduced in x3.
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and admissible policy for the stochastic control problem presented in x5.1. With a
policy u are associated the following vectors and matrices

�uq
def
= �qu(q) ; �uq

def
= �u(q) ; P u

qq0
def
= P

u(q)

qq0 :

We denote by R(u) the set of final classes23 of the matrix P u. For each class r 2
R(u), we have a unique invariant measure �ru with support r (i.e. �ruP u = �ru,
and �ru

q = 0 if q 62 r.)

Theorem 5.7. For a strongly connected undiscounted CTPN, we have

� = min
u

min
r2R(u)

�ru�u

�ru�u
: (5.16)

Thus, � is the minimal ratio of the mean marking over the mean holding time in
the places visited following a stationary policy. In the CTEG case, the final classes
are precisely circuits and the invariant measures are uniform on the final classes,
so that (5.16) reduces to the well known (4.22).

The proof of Theorem 5.7 uses the fact that the rate� is obtained asymptotically
for stationary policies, together with the following lemma.

Lemma 5.8. Let u denote a policy such that P u admits a positive invariant mea-
sure �. The unique � such that there exists a finite vector v:

v = �u � ��u + P uv (5.17)

is given by

� =
��u

��u
: (5.18)

Proof. Left multiplying (5.17) by the row vector �, we get that � is necessarily
equal to (5.18). Conversely, we are reduced to prove the existence of a solution
(�; v) whenP u is irreducible. Then 1 is a simple eigenvalue ofP u, hence, Im(P u�

I) is jQj�1 dimensional. Moreover, �u 62 Im(P u�I) (for �u = P uv�v) ��u =

�(P uv � v) = 0, a contradiction). Hence, R�u+ Im(P u � I) = RQ.

It is not surprising that the terms at the right-hand side of (5.16) are indeed invari-
ants of the net.

Theorem 5.9 (Invariants). Given an undiscounted CTPN, for all policy u and for
all final class r associated with u,

Iur
def
= �ur�u =

X
q2r

�ur�uq (5.19)

is invariant by firing of transitions.

23The classes of a matrix A are by definition the strongly connected components of the graph of
A. A class is final if there is no other class downstream.
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Proof. After firing once transition q 2 r (the case when q 62 r is trivial), Iur in-
creases by

��ur
q +

X
q02(qout)out\r

�ur
q0 P

u
q0q

which is zero because �ur is an invariant measure of P u with support r.

Example 5.10. The CTPN shown in Fig. 2a is equivalent to that of Fig. 2d un-
der a fair routing policy independent of the origin of the tokens. In this particular
case, we obtain the same periodic throughput � as in the case of the bijective rout-
ing shown in Fig. 2c (see (4.30)). This can be seen from the following table and
Formula (5.16).

Policy Final classes Invariant measures Invariants
u1(q3) = p1
u1(q4) = p2

r1 = fq1; q3g,
r2 = fq2; q4g

�u1r1 = [
1
2
; 0; 1

2
; 0]

�u1r2 = [0; 1
2
; 0; 1

2
]

Iu1r1 =
1
2
(mp1 +mp3 )

Iu1r2 =
1
2
(mp2 +mp4 )

u2(q3) = p1
u2(q4) = p5

r1 �u1r1 Iu1r1

u3(q3) = p5
u3(q4) = p2

r2 �u1r2 Iu1r2

u4(q3) = p5
u4(q4) = p5

r3 = fq1; q2; q3; q4g�
u4r3 = [

1
4
; 1
4
; 1
4
; 1
4
] Iu4r3 =

1
4
(mp3 +mp2 +mp5 )

Finally, we indicate how the above results can be extended to CTPN with potential.
With a feedback policy u we associate the matrix Ru: Ru

qq0 = �qu(q)�
u(q)

qq0 �u(q)q0 if
q0 2 u(q)in (Ru

qq0 = 0 otherwise); we denote byR(u) the set of final classes of Ru;
which each final class r we associate a left eigenvector of Ru: �ru = �ruRu with
support r; and we define �u; �u as in Theorem 5.7. We denote by diag v the diagonal
matrix with diagonal entries (diag v)qq = vq. Then, the folllowing formula is an
immediate consequence of Theorem 5.7.

Corollary 5.11. For a strongly connected CTPN with potential v, we have

lim
t!1

1

t
Zq(t) = �q; where v�1q �q = min

u
min

r2R(u)

�ru�u

�ru(diag v)�u
: (5.20)

The terms �ru�u which determine the throughput are of course invariants of the
net. More generally, it follows from standard dynamic programming results that
the counter functions of �-discounted CTPN exhibit a geometric growth (or con-
vergence) with rate �. The geometric growth of other classes of CTPN could be
obtained by transferring existing results about non normalized dynamic program-
ming inductions [29].
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