
TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

Modeling and Analysis of Timed Petri Nets using

Heaps of Pieces

St�ephane Gaubert, Jean Mairesse

Abstract|We show that safe timed Petri nets can be rep-

resented by special automata over the (max,+) semiring,

which compute the height of heaps of pieces. This extends to

the timed case the classical representation �a la Mazurkiewicz

of the behavior of safe Petri nets by trace monoids and trace

languages. For a subclass including all safe Free Choice Petri

nets, we obtain reduced heap realizations using structural

properties of the net (covering by safe state machine com-

ponents). We illustrate the heap-based modeling by the

typical case of safe jobshops. For a periodic schedule, we

obtain a heap-based throughput formula, which is simpler

to compute than its traditional timed event graph version,

particularly if one is interested in the successive evaluation

of a large number of possible schedules.

Keywords| Timed Petri nets, automata with multiplici-

ties, heaps of pieces, (max,+) semiring, scheduling.

I. Introduction

U

NTIMED and timed Petri nets have been actively

studied for a long time, in particular as a modeling

and analysis tool for Discrete Event Systems. Two dif-

ferent kinds of algebraic objects have been introduced for

untimed and timed Petri nets respectively.

(1) The untimed behaviors of Petri nets can be repre-

sented by languages (sets of possible �ring sequences). In

the case of a net with bounded markings, the language of

the net is recognized by a �nite automaton, the reachability

graph. (2) The timed behavior of a net can be represented

by dater functions which provide the occurrence time of all

the possible events in the system. The most satisfactory

results are relative to the subclass of timed Event Graphs,

which can be modeled by �nite dimensional recurrent linear

systems over the (max,+) semiring, see [2], [12].

There exists a striking connection between the two cases:

both (max,+) linear systems and conventional automata

are specializations of (max,+) automata, i.e. automata

with multiplicities [20] over the (max,+) semiring. This

observation leads to the natural question, which was left

unsolved in [21]:

What is the modeling power of (max,+) automata in

terms of timed Petri nets?

The purpose of this paper is to propose the following

answer:

Timed safe Petri nets are special (max,+) automata,

which compute the height of heaps of pieces.

This work was partially supported by the European Community

Framework IV programme through the research network ALAPEDES

(\The ALgebraic Approach to Performance Evaluation of Discrete

Event Systems")

S. Gaubert is with INRIA, Domaine de Voluceau, B.P. 105, 78153

Le Chesnay Cedex, France. E-mail: Stephane.Gaubert@inria.fr

J. Mairesse is with CNRS, LIAFA, Universit�e Paris 7, Case

7014, 2 place Jussieu, 75251 Paris Cedex 05, France. E-mail:

mairesse@liafa.jussieu.fr

As a by-product, we will obtain new automata-based per-

formance evaluation algorithms.

This representation theorem is best understood by com-

parison with the following existing approaches.

1. Trace languages. In the landmark paper [31],

Mazurkiewicz observed that trace monoids (that is, free

partially commutative monoids) and their subsets (trace

languages) are a natural model of the logical behavior of

safe Petri nets. Trace monoids, in which certain letters

commute, and others do not, allow one to identify the dif-

ferent sequential representations of the same concurrent

events.

2. Heaps of pieces. In [40], Viennot observed that trace

monoids are isomorphic to heap monoids, that is, monoids

in which the generators are pieces (in the nearly usual

understanding: these pieces are solid rectangular-shaped

blocks), and where the concatenation consists in piling up

one heap above the other. This yields a very intuitive

graphical representation of trace monoids.

3. (Max,+) linear representations. A next step was the

observation that the height of heaps of pieces is recognized

by a heap automaton, a special type of (max,+) automaton,

the result holding for general, polyomino-shaped, pieces.

This was proved in Gaubert and Mairesse [22], and in a

di�erent form, by Brilman and Vincent [41], [7].

The heap representation theorem for safe timed Petri

nets that we give can be seen as a synthesis of these three

results. The essential idea is that considering general pieces

in heap automata enables to model time through the height

of a piece.

More precisely, one of the main results of the paper goes

as follows. Let G be a safe timed Petri net, with set of

transitions T and set of �ring sequences L � T

�

. Then the

map y

G

: L! R

+

, which associates to a �ring sequence the

date of completion of the last event in the net, is recognized

by a heap automaton (less formally, a piece is associated

to each letter in T and y

G

(w) is the height of the heap

obtained by piling up the pieces corresponding to the letters

of w).

Heap representations are particularly well adapted to al-

gebraic computations. As a typical illustration, we derive

an heap-based performance evaluation method for safe job-

shops. The assignment of the jobs on the machines is

�xed but not the order on which the jobs are processed

by the machines (the schedule). With each periodic sched-

ule, the classical modeling associates an event graph (i.e.

a (max,+) linear system) whose size grows with the period

of the schedule, see [12], [27], [2]. On the other hand, the

representation by heap model is independent of the (even

non periodic) schedule which is considered. This is par-

2 TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL

ticularly interesting for the successive evaluation of a large

number of schedules. For a periodic schedule, we propose

a new heap-based algorithm to compute the throughput of

the jobshop, which is simpler than the re�ned variants of

the traditional (event graph based) method.

It is worth noting that heaps of pieces are essentially an

extension of the Gantt charts traditionally used in schedul-

ing. Whereas conventional Gantt charts only display the

resource (machine) occupation times, heaps of pieces con-

tain the complete time information for both resources and

jobs, which allows us to write dynamical equations.

Let us mention the related independent work of Hul-

gaard [28], who studied the subclass of safe Free Choice

Petri nets. He did not put forward the automata or heap

models, but he did introduce (for time analysis purposes)

dater variables and dynamical equations similar to the ones

used here, see the discussion in Remark IV.8 below.

A very di�erent algebraic approach is that of Baccelli,

Foss and Gaujal [3]; Cohen, Gaubert and Quadrat [13],

[14]; and Libeaut and Loiseau, see [29, Chap. 2]. Essen-

tially, the counter function (vector of numbers of �rings,

as a function of time) of general (non-necessarily safe) Free

Choice or Fluid Petri nets satis�es some combination of

implicit (min,+) and (+,�)-linear dynamical equations,

which become explicit under certain assumptions on the

timing or routing policy. In a certain sense, this approach,

which computes the number of �rings (logical time) as a

function of the physical time, is dual, or inverse, to the au-

tomata approach proposed here, which computes the dates

(physical times) as a function of the schedule (logical time).

Surprisingly, these two points of view lead to completely

di�erent technical developments.

The paper is organized as follows. In x II, we introduce

heap models and (max,+) automata. In x III, we recall

basic facts about Petri nets and their representation by

trace monoids. The main result, \safe timed Petri nets can

be represented by heaps of pieces", is proved in x IV-A.

In this representation, the size of the heap model is equal

to the number of places in the Petri net. In x IV-B, we show

the existence of a much smaller heap representation for the

subclass of nets which can be covered by safe State Machine

Components. It includes in particular all safe Free Choice

Petri nets.

In x V, we apply these results to the typical example

of jobshops, proposing a new performance evaluation algo-

rithm. In x VI, we discuss at a more algebraic level the

models used in the paper and their interplay.

To conclude, let us mention related general references.

The reader is referred to [2], [15], [42], [30], [25], [23], for

an account of the theory of the (max,+) semiring. The

theory of automata with multiplicities is dealt with in [4],

[20], [37]. The (max,+) automata used in this paper are

generalizations of \cost automata", or automata with mul-

tiplicities over the tropical semiring (N [f+1g;min;+) .

They have been widely studied for their connections with

classical decidability problems in language theory (see [35],

[38], and the references therein). A Discrete Event Sys-

tems oriented presentation can be found in [21]. General

accounts of Petri net theory can be found in [5], [33], [16]

or in the proceedings [6].

II. Heap Models and (max,+) Automata

The following heap model generalizes the heaps of pieces

of Viennot [40].

Imagine an horizontal axis with a �nite number of slots.

A piece is a solid (possibly non connected) \block" occu-

pying some of the slots, with staircase-shaped upper and

lower contours, see Fig. 1. With an ordered sequence of

pieces, we associate a heap by piling up the pieces, start-

ing from an horizontal ground. This piling occurs in the

intuitive

1

way: a piece is only subject to vertical transla-

tions and occupies the lowest possible position, provided it

is above the ground and the pieces previously piled up.

Let us propose a more formal de�nition.

De�nition II.1: A heap model is a 5-tuple H =

(T ;R; R; l; u), where:

� T is a �nite set whose elements are called pieces.

� R is a �nite set whose elements are called slots.

� R : T ! P(R) gives the subset of slots occupied by a

piece. We assume that each piece occupies at least one slot:

8a 2 T ; R(a) 6= ;.

� l : T � R �! R [f�1g gives the height of the lower

contour of the piece at the di�erent slots. u : T � R �!

R[f�1g (with u � l) gives the height of the upper contour

of the piece. By convention, l(a; r) = u(a; r) = �1 if

r 62 R(a) and min

r2R(a)

l(a; r) = 0.

A piece a occupies a region of the R� R

+

plane, of the

form f(r; y) 2 R(a) � R

+

j � + l(a; r) � y � � + u(a; r)g,

where � 2 R

+

depends on the pieces already piled up, and

� = 0 if there is no other piece.

We will interpret a length k word

2

w = a

1

; : : : ; a

k

2 T

�

as a heap, i.e. as a sequence of k pieces a

1

; : : : ; a

k

piled up

in this logical order.

We de�ne the upper contour of the heap w as the R-

dimensional row vector x

H

(w), where x

H

(w)

r

is the height

of the heap on slot r. The horizontal ground assumption

yields x

H

(e) = (0; � � � ; 0) (recall that e denotes the empty

word). The height of the heap w is

y

H

(w) = max

r2R

x

H

(w)

r

:

A useful interpretation of a heap model consists in view-

ing pieces as tasks and slots as resources. Each task a

requires a subset of the resources (given by R(a)) during a

certain amount of time (u(a; r) � l(a; r) for a resource r 2

R(a)). In the simplest case where l(a; r) = 0;8r 2 R(a),

the execution of a task begins as soon as all the required

resources, used by earlier tasks, become free. For more

details along these lines, see [22], [7].

1

It corresponds for example to the mechanism of the Tetris game.

2

We recall the following standard notations. Given a �nite set (al-

phabet) T , we denote by T

n

the set of words of length n on T . We

denote by T

�

= [

n2N

T

n

the free monoid on T , that is, the set of

�nite words equipped with concatenation. The unit (empty word)

will be denoted by e. The length of the word w will be denoted by

jwj. We shall write jwj

a

for the number of occurrences of a given

letter a in w.

GAUBERT AND MAIRESSE:MODELING AND ANALYSIS OF TIMED PETRI NETS 3

Borrowing the terminology of [2], the maps y

H

and x

H

are called the dater functions of the heap model.

The piling mechanism and the di�erent notations are

best understood graphically and on an example, see Fig. 1.

Example II.2: Let us consider the following heap model.

� T = fa; b; c; dg, R = f1; 2; 3; 4g;

� R(a) = f1; 2; 3g, R(b) = f1; 2g, R(c) = f2; 4g, R(d) =

f2; 3; 4g;

� u(a; :) = [1; 1; 3;�1]; l(a; :) = [0; 0; 0;�1];

u(b; :) = [3; 2;�1;�1]; l(b; :) = [0; 0;�1;�1];

u(c; :) = [�1; 2;�1; 2]; l(c; :) = [�1; 0;�1; 0];

u(d; :) = [�1; 1; 3; 1]; l(d; :) = [�1; 0; 0; 0] :

We have represented, in Fig. 1, the heap associated with

the word w = abcd. Piece c is an example of a non con-

nected (but \rigid") piece.

b

b

a

c

d

a

c

d

Fig. 1. Heap of pieces associated with the word w = abcd.

We can read directly on Fig. 1 the values x

H

(w) =

[4; 6; 8; 6] and y

H

(w) = 8.

De�nition II.3: The (max,+) semiring

3

R

max

is the set

R [f�1g, equipped with the operation max, written ad-

ditively (i.e. a� b = max(a; b)) and the usual sum, written

multiplicatively (i.e. a
 b = a + b). In this semiring,

0 = �1, 1 = 0.

Note that R

max

is a dioid, i.e. a semiring with an

idempotent addition (a � a = a). We shall use through-

out the paper the matrix and vector operations induced

by the semiring structure. For matrices A;B of appro-

priate sizes, (A � B)

ij

= A

ij

� B

ij

= max(A

ij

; B

ij

),

(A
 B)

ij

=

L

k

A

ik

 B

kj

= max

k

(A

ik

+ B

kj

), and for

a scalar a, (a
A)

ij

= a
A

ij

= a+A

ij

. We will omit the

 sign, writing for instance AB instead of A
B as usual.

Given a set S, we denote by 1

S

the S-dimensional column

vector whose entries are all equal to 1.

De�nition II.4: Given a �nite alphabet T , a (max,+)

automaton

4

is a 4-tuple A = (Q; I; F;M), where

3

A set K equipped with two operations � and
 is a semiring if �

is associative and commutative,
 is associative and distributive with

respect to �, there is a zero element 0 (a� 0 = a; a
 0 = 0
 a = 0)

and a unit element 1 (a
 1 = 1
 a = a).

4

This is the specialization to the (max,+) semiring of the classical

notion of automaton with multiplicity [20], or recognizable series [37],

� Q is a �nite set (of states);

� I 2 R

1�Q

max

and F 2 R

Q�1

max

are the initial and �nal vectors,

respectively;

� M is a morphism T

�

! R

Q�Q

max

.

The morphismM is uniquely speci�ed by the �nite family

of Q � Q matrices, M(a); a 2 T . Then, for a word w =

a

1

: : : a

n

, we have

M(w) =M(a

1

: : : a

n

) =M(a

1

) : : :M(a

n

) ;

the matrix product being interpreted in the (max,+) semir-

ing.

Let us de�ne the vectors x

A

(w) = IM(w) 2 R

1�Q

max

and

the scalars y

A

(w) = IM(w)F 2 R

max

associated with the

(max,+) automaton A. We say that x

A

and y

A

are recog-

nized

5

by the automaton A.

We have

x

A

(e) = I ;

x

A

(wa) = x

A

(w)M(a) ;

y

A

(w) = x

A

(w)F :

Hence a (max,+) automaton may be seen as a (max,+)

linear system whose dynamics is driven by letters.

With a heap model H = (T ;R; R; l; u), we associate the

morphism M : T

�

! R

R�R

max

, de�ned by

M(a)

sr

=

8

>

<

>

:

1 if s = r 62 R(a),

u(a; r)� l(a; s) if r 2 R(a); s 2 R(a),

0 otherwise.

Theorem II.5: Let H = (T ;R; R; l; u) be a heap model.

The (max,+) automaton (R; 1

t

R

; 1

R

;M) recognizes the up-

per contour x

H

and the height y

H

:

8w 2 T

�

;

x

H

(w) = 1

t

R

M(w) ;

y

H

(w) = 1

t

R

M(w)1

R

:

(1)

A variant of this result was proved in [22], see also [7]. We

say that (R; 1

t

R

; 1

R

;M) is the heap automaton associated

with the heap model. For the sake of completeness, we give

an abridged version of the argument.

Proof: The following dynamical equation should be

clear from the physical description of the system:

x

H

(wa)

r

=

8

>

<

>

:

x

H

(w)

r

if r 62 R(a)

max

s2R(a)

(x

H

(w)

s

+ u(a; r)� l(a; s))

if r 2 R(a).

(2)

For example, let us consider the case of a piece a with an

horizontal base (l(a; s) = 0; s 2 R(a)). When adding piece

a to a heap w, one has �rst to compute the height of the

base of the piece which is equal to max

s2R(a)

x

H

(w)

s

. Then

[4]. For more details along these lines, see x VI.

5

Classically, in automata theory, only the map y

A

is said to be

recognized. It is convenient here to extend the de�nition of recogniz-

ability.

4 TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL

the height of the heap wa on slot r 2 R(a) is obtained as

max

s2R(a)

x

H

(w)

s

+ u(a; r). Clearly, we have:

8r 2 R; x

H

(e)

r

= 1 ;

y

H

(w) = max

r

x

H

(w)

r

= x

H

(w)1

R

:

(3)

We identify in (2) and (3) a dynamics of the form (1).

We mention for further use the following elementary com-

mutation property, which holds for all a; b 2 T :

R(a) \ R(b) = ; =) M(a)M(b) =M(b)M(a) : (4)

An alternative \dual" automaton representing the heap

model, obtained by associating dater variables to pieces,

instead of slots, was given in [22].

Example II.6: Let T = fa; b; c; dg, Q = f1; 2; 3; 4g, I =

1

t

Q

; F = 1

Q

.

M(a) =

2

6

6

4

1 1 3

1 1 3

1 1 3

1

3

7

7

5

; M(b) =

2

6

6

4

3 2

3 2

1

1

3

7

7

5

;

M(c) =

2

6

6

4

1

2 2

1

2 2

3

7

7

5

; M(d) =

2

6

6

4

1

1 3 1

1 3 1

1 3 1

3

7

7

5

;

(the 0 entries are omitted).

One easily veri�es that the (max,+) automaton

(Q; I; F;M) represents the heap model given in Ex. II.2.

We have

M(abcd) =

2

6

6

4

4 6 8 6

4 6 8 6

4 6 8 6

0 3 5 3

3

7

7

5

;

x

A

(abcd) = IM(abcd) = [4; 6; 8; 6]; y

A

(abcd) = 8 :

This provides an algebraic con�rmation of the values ob-

tained graphically in Fig. 1.

Remark II.7: Heap automata, as introduced in Theo-

rem II.5, are (max,+) automata of a speci�c form. The

morphism M of a heap automaton veri�es:

M(a) = I � [

~

l(a; :)]

t

u(a; :) ;

where I is the identity matrix de�ned by I

ii

= 1; I

ij

=

0; i 6= j, where

~

l(a; i) = �l(a; i) if l(a; i) 6= 0 and

~

l(a; i) =

l(a; i) = 0 otherwise, and where

~

l(a; :); u(a; :) are viewed as

row vectors.

III. Untimed and Timed Petri Nets

A. De�nitions

We next recall some classical facts about untimed and

timed Petri nets.

De�nition III.1: A Petri net (PN) is a 4-tuple G =

(P ; T ;F ;M), where :

� P is a �nite set, whose elements are called places.

� T is a �nite set, whose elements are called transitions.

� F � (P � T) [(T � P) is a relation between places and

transitions.

� M is a map P ! N. The integer M(p) is called the

initial marking of place p.

We will use the term Petri net to denote both the un-

marked and the marked net. We will sometime denote the

marked net by (G;M) instead of G to insist on the value of

the initial marking.

A Petri net is traditionally represented as a bipartite

directed graph. There are two di�erent kinds of nodes,

places p 2 P , (represented by circles) and transitions a 2 T

(represented by rectangles). An element of F is an arc from

a place to a transition or from a transition to a place. It

is therefore natural to speak of \input places", \output

transitions" and so on. We use the notations

�

p; p

�

(resp.

�

a; a

�

) for the set of input and output transitions of place

p (resp. input and output places of transition a). The

markingM(p) is displayed by drawingM(p) tokens in place

p.

We will use the classical notions of (oriented) path, cir-

cuit, connectedness and strong-connectedness of graph the-

ory. An example of a strongly connected Petri net is pro-

vided in Fig. 2.

d

p

4

a

p

1

b

p

2

p

3

p

5

p

6

c

Fig. 2. Strongly connected safe Petri net

A Petri net is a dynamic object. The underlying struc-

ture (P ; T ;F) is never modi�ed, but the marking M

evolves according to the following �ring rule.

1. Transition a is enabled atM if there is at least one token

in each of its input places.

2. An enabled transition a can �re. The �ring of a trans-

forms M into M

0

(written M

a

�! M

0

) by removing one

token from each of the input places and adding one token

in each of the output places of a.

We say that a word w = a

1

a

2

� � � a

n

2 T

�

is a �ring se-

quence starting from marking M

0

if there is a sequence of

markings M

0

= M

0

;M

1

; : : : ;M

n

= M

00

such that transi-

tion a

i

is enabled at M

i�1

and M

i�1

a

i

�!M

i

. We abbrevi-

ate this by M

0

w

�! M

00

. A marking M

00

is reachable from

a marking M

0

if there is a �ring sequence w 2 T

�

such

that M

0

w

�!M

00

. We denote by R(M

0

) the set of markings

reachable from M

0

.

We call language

6

of the Petri net (G;M) the set L � T

�

of �ring sequences starting from M .

6

More properly, the P-type free labeled language, according to the

terminology of Peterson [34]. Various kinds of Petri net languages

have been de�ned (according to various kinds of acceptance conditions

GAUBERT AND MAIRESSE:MODELING AND ANALYSIS OF TIMED PETRI NETS 5

De�nition III.2: A Petri net (G;M) with language L is:

� live if 8w 2 L;8t 2 T ; 9u 2 T

�

, such that wut 2 L,

i.e. if whatever the past �rings (= w) are, it is possible

to �nd a �ring sequence from the current state, containing

transition t;

� bounded if the set R(M) is �nite. Equivalently, if 9k such

that 8M

0

2 R(M);8p 2 P ; M

0

(p) � k;

� safe (or 1-bounded) if a place will not hold more than

one token: 8M

0

2 R(M);8p 2 P ; M

0

(p) � 1.

Example III.3: The Petri net represented in Fig. 2 is live

and safe. Its language is L = (ab [cd)

�

(e [a [c).

Let us recall some classical subclasses of Petri nets.

1. A circuit is a PN such that j

�

tj = jt

�

j = j

�

pj = jp

�

j = 1

for all t 2 T ; p 2 P .

2. A State Machine (SM) is a PN such that j

�

tj = jt

�

j = 1

for all t 2 T .

3. An Event Graph (EG) is a PN such that j

�

pj = jp

�

j = 1

for all p 2 P .

4. A Free Choice net (FC) is a PN such that p

�

\q

�

6= ;)

p

�

= q

�

for all p; q 2 P .

SM are also known as S-systems and EG as marked graphs,

decision-free Petri nets or T-systems. Our de�nition of FC

corresponds to what is often called extended Free Choice

nets in the literature. It follows from the de�nitions that

EG � FC and SM � FC.

In Fig. 3, we illustrate the basic notions of concurrency,

choice (or decision) and synchronization. In case (I), tran-

sitions a and b are concurrently enabled, i.e. they can �re

independently. In case (II), we say that there is a choice

between transitions a and b or that a and b are in con-

ict. In case (III), there is a synchronization at transition

a. Among Petri nets, SM allow choice but not synchro-

nization whereas EG allow synchronization but not choice.

FC are the natural generalizations of both SM and EG.

(II) (III)(I)

a

a b

a b

Fig. 3. (I) Concurrency. (II) Choice. (III) Synchronization.

B. Execution semantics and traces

Let us consider a Petri net where n transitions, a

1

to a

n

,

are concurrently enabled, see Fig. 3,(I). We assume that

all of them have to �re before any new transition becomes

enabled. Then, the same behavior, i.e. the �ring of the

n transitions, can be described by any of the following n!

�ring sequences: a

�(1)

; � � � ; a

�(n)

where � is a permutation

of f1; : : : ; ng.

This simple example shows that �ring sequences, which

provide a sequential description of the behavior, are not

really adapted in the presence of concurrency.

on �nal markings and the di�erent labeling functions that one may

consider).

The problem of modeling concurrency in a more e�cient

way has long been considered. A classical approach, pro-

posed by Mazurkiewicz [31], [32], uses the notion of trace

monoid. For a general and recent reference on traces,

see [18].

De�nition III.4: Let T be an alphabet equipped with

a reexive symmetric relation called dependence relation

and denoted by D. We denote by I the complement of

D, called independence relation. The trace monoid T

�

=

�

is the quotient of the free monoid T

�

by the least congru-

ence � containing the relations ab � ba; 8(a; b) 2 I. The

elements of T

�

=

�

will be called traces.

Two words are representatives of the same trace if they

can be obtained one from the other by repeatedly inter-

changing adjacent independent letters. Indeed, one can

easily show that the reexive and transitive closure of the

relation uabv � ubav, 8(a; b) 2 I; u; v 2 T

�

is compatible

with the monoid structure of T

�

. Hence, this reexive and

transitive closure is precisely the trace relation �. See [18,

Chap. 1,x 1.3] for details.

Given a Petri net (P ; T ;F ;M), we de�ne the following

independence relation:

I = f(a; b) 2 T

2

j (

�

a [a

�

) \ (

�

b [b

�

) = ;g ; (5)

and the associated trace monoid T

�

=

�

. Two transitions are

independent i� they do not share input or output places.

For safe Petri nets

7

, the congruence � generated by I

identi�es �ring sequences which di�er only by the sequen-

tial ordering of concurrent events. In particular, if w

1

� w

2

then w

1

2 L , w

2

2 L (where L is the language of the

Petri net). A trace whose representatives are �ring se-

quences is called a �ring trace. The set of �ring traces is

denoted by (L=

�

).

It is very convenient to visualize trace monoids using

heap models, as it was originally proposed by Viennot

in [40]. Let us detail this for the trace monoid T

�

=

�

as-

sociated with a safe Petri net (P ; T ;F ;M). Consider the

heap model H(T

�

=

�

) with:

� set of pieces T ;

� set of slots P ;

� R(a) =

�

a [a

�

, a 2 T ;

� l(a; r) = 0; u(a; r) = 1; r 2 R(a).

Two words w

1

; w

2

2 T

�

are equivalent (w

1

� w

2

) if and

only if they provide the same heap. In the heap associated

with w 2 L, the pieces associated with one level (i.e. the

pieces occupying a common vertical position) correspond

to the events (i.e. the transition �rings) occurring concur-

rently.

Example III.5: Let us consider the Petri net of Fig. 2.

We have represented in Fig. 4 the heap of pieces associated

with the �ring sequence abcdabcd. Note that there is no

concurrency at all in this Petri net. It is purely sequential

and the independence relation I de�ned in (5) is empty.

7

In a non-safe Petri net, two transitions a; b such that

�

a\

�

b 6= ; can

be concurrently enabled if their common input places hold more than

one token. It is possible to introduce another dependence relation to

take care of this, see Diekert [17]. Such re�nements are not needed

here as we consider only safe Petri nets.

6 TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL

a

p

5

p

2

p

6

p

4

b

c

d

a

c

d

b

p

1

p

3

Fig. 4. Heap of pieces for the word w = abcdabcd.

C. Timing

A timed Petri net (TPN) is a net with �ring times as-

sociated with transitions and/or holding times associated

with places. Several �ring semantics have been considered

in the literature. We restrict our attention to safe Petri

nets and consider a semantic which coincides with the one

of Ramchandani [36] for this subclass.

Let a be a transition with �ring time �

a

and whose out-

put places p 2 a

�

have holding times �

p

. We assume that

transition a becomes enabled at instant t. A �ring occurs

in three steps.

1. At instant t, the �ring of a may be initiated. If initiated,

it removes one token from each input place.

2. One token is added in each of the output place at instant

t+ �

a

.

3. The token added in place p 2 a

�

can contribute to the

enabling of the transitions in p

�

after instant t+ �

a

+ �

p

.

Between t and t+�

a

, the tokens can be considered as being

`frozen' in their original input place. The tokens and the

transition a can not be involved in any other �ring between

t and t+ �

a

. A natural question to ask is what happens if

transition a is not initiated at instant t. First, a may never

�re. Second, in order to �re, transition a needs to get

disabled in a �rst time (because of the safeness property,

this happens precisely when the token of one of the places

in

�

a participates in the �ring of another transition), then

re-enabled later on.

Let us investigate some other consequences of this se-

mantic. First of all, if a transition �res, it does so \as soon

as possible". We say that the Petri net operates with an

earliest �ring rule. Second, the decisions on which transi-

tions are to �re is not based on time considerations. All

logically feasible choices can be considered. This contrasts

with several models studied in the literature. For exam-

ple, in the so-called race policy, see for instance [1], a place

with several output transitions allocates its token to the

transition which is able to complete its �ring �rst.

We denote by (G;M; �) a timed Petri net, where � is a

map T [P ! R

+

, providing the �ring and holding times of

transitions and places. By convention, the timed evolution

of the Petri net starts at instant 0, in marking M , the

holding times of the initial tokens being completed.

Example III.6: Let us consider the Petri net of Fig. 2.

We associate with its transitions, the following �ring times:

�

a

= 1; �

b

= 2; �

c

= 2; �

d

= 1 :

We associate with the places the holding times:

�

1

= 1; �

2

= 0; �

3

= 0; �

4

= 2; �

5

= 0; �

6

= 0 :

Let us assume that the initial marking is the one shown

in Fig. 2. Transitions a and c are enabled. If we choose

to �re transition c, the �ring will be initiated at time 0,

completed at time 2, and transition d will become enabled

at time 2.

IV. Heap Representation for Safe Timed Petri

Nets

A. Heap representation theorem

In this section, we state the main representation theo-

rem of the paper: �ring times of safe timed Petri nets are

recognized by heap automata.

Let G = (T ;P ;F ;M; �) denote a safe timed Petri net,

with set of �ring sequences L � T

�

. The timed behavior

of the net is de�ned as follows: for a �ring sequence or

schedule w = a

1

: : : a

k

2 L, we start at time 0, and �re the

transitions a

1

; : : : ; a

k

in this order, applying the earliest

�ring semantic described in x III-C above.

With each place p, and for w 2 L, we associate the real

nonnegative numbers:

z(w)

p

= instant at which the last token arrived in place

p under the schedule w becomes available for the �ring of

downstream transitions.

z

0

(w)

p

= last instant of presence of a token in place p,

under the schedule w.

We set z

0

(w)

p

= z(w)

p

= 0, if no token was ever present

in place p. We set

x

G

(w)

p

=

(

z(w)

p

if M

w

!M

0

, with M

0

(p) = 1

z

0

(w)

p

if M

w

!M

0

, with M

0

(p) = 0

(6)

In words, this is the completion time of the last \event"

at place p, under schedule w, an \event" being either the

availability, or the departure of a token.

We call x

G

the dater function of the Petri net. The

makespan or execution time of the �ring sequence w is nat-

urally de�ned by

y

G

(w) = max

p

x

G

(w)

p

:

This is the completion time of the last \event" in the Petri

net under schedule w.

Theorem IV.1 (Heap Representation for Safe TPN) Let

G = (T ;P ;F ;M; �) be a safe timed Petri net with language

L. Then, the heap model H = (T ;P ; R; l; u), with

8a 2 T ; R(a) = a

�

[

�

a ;

8a 2 T ;8p 2 a

�

; u(a; p) = �

a

+ �

p

;

8a 2 T ;8p 2

�

a n a

�

; u(a; p) = 0 ;

8a 2 T ;8p 2 R(a); l(a; p) = 0 ;

GAUBERT AND MAIRESSE:MODELING AND ANALYSIS OF TIMED PETRI NETS 7

is such that

8w 2 L; x

G

(w) = x

H

(w); y

G

(w) = y

H

(w) : (7)

Equation (7) states that the dater vector of the net coin-

cides with the upper contour of the associated heap.

Let us consider the heap model obtained from H by re-

placing u and l by û(a) = 1; a 2 R(a) and

^

l(a) = 0; a 2

R(a), respectively. This is precisely the heap model asso-

ciated with the trace monoid T

�

=

�

of the Petri net, i.e.

H(T

�

=

�

), see x III-B. The pieces of the heap model H are

obtained by a deformation of the pieces of the heap model

H(T

�

=

�

), incorporating the timing information.

Proof of Theorem IV.1: Let us consider w 2 L; a 2 T ;

such that wa 2 L. We have,

x

G

(wa)

p

=

8

>

<

>

:

x

G

(w)

p

if p 62 a

�

[

�

a

max

p

0

2

�

a

x

G

(w)

p

0

+ �

a

+ �

p

if p 2 a

�

max

p

0

2

�

a

x

G

(w)

p

0

if p 2

�

a n a

�

.

(8)

Indeed, the �ring of transition a after w is initiated at

instant

T = max

p

0

2

�

a

x

G

(w)

p

0

;

from which (8) follows. The dynamics (8) would coincide

verbatim with the one of the heap model H given above

(see (2)), if the term max

p

0

2

�

a

x

G

(w)

p

0

was replaced by

max

p

0

2

�

a[a

�

x

G

(w)

p

0

. Hence, it remains to check that

max

p

0

2

�

a[a

�

x

G

(w)

p

0

= max

p

0

2

�

a

x

G

(w)

p

0

;

or equivalently

8p

00

2 a

�

n

�

a; x

G

(w)

p

00

� max

p

0

2

�

a

x

G

(w)

p

0

:

Since p

00

2 a

�

n

�

a, the �ring of a at time T adds one

token to the marking of p

00

. Since the net is safe, there

is at most one token in each place, for any logically ad-

missible execution of the system. We conclude that the

exit time of the last token in place p

00

under the �ring

sequence w must be strictly less than T . Using the de�n-

ing relation (6), x

G

(w)

p

00

is equal to the last instant of

presence of a token in p

00

, under w. We conclude that

x

G

(w)

p

00

� T = max

p

0

2

�

a

x

G

(w)

p

0

.

Due to the commutation in (4), the heap associated with

w 2 T

�

, and a fortiori x

H

(w) and y

H

(w), depend only on

the equivalence class of w in T

�

= �. Although this heap,

x

H

(w), and y

H

(w) are de�ned for all w 2 T

�

, they have

no meaning in terms of the Petri net if w 62 L.

Example IV.2: Let us illustrate the previous construc-

tion with the Petri net G = (T ;P ;F ;M) represented in

Fig. 2 and the numerical values of Ex. III.6.

The heap model associated with G is H = (T ;P ; R; l; u)

with

R(a) =

�

a [a

�

= fp

1

; p

2

; p

3

; p

4

g; R(b) = fp

1

; p

2

; p

3

g;

R(c) = fp

3

; p

5

; p

6

g; R(d) = fp

3

; p

4

; p

5

; p

6

g :

u(a; :) = [0; 1; 0; 3; 0; 0]; u(b; :) = [3; 0; 2; 0; 0; 0];

u(c; :) = [0; 0; 0; 0; 2; 0]; u(d; :) = [0; 0; 1; 3; 0; 1] :

We have represented the heap of pieces associated with

the schedule w = abcdabcd in Fig. 5. For the clarity of the

�gure, pieces with parts of zero width have been materi-

alized by replacing zero by a `small' but strictly positive

height. This heap is a deformation of the one of Fig. 4.

The reader could check directly (by simulation of the Petri

d

b
a

c

d

a
b

c

p

5

p

6

p

4

p

3

p

2

p

1

Fig. 5. Heap of pieces associated with the word w = abcdabcd.

net) that the height of the heap, y

G

(w) = 16, attained at

slot 4, corresponds to the last occurrence of an event in the

system (the availability of the token in p

4

, after the �ring

of the last occurrence of d in the schedule w).

B. The minimal realization problem

The size of the heap representation in Theorem IV.1 is

equal to the number of places of the Petri net, a possibly

large number. This raises naturally the following minimal

realization problem: what is the minimal size of a heap

representation of a given safe timed Petri net ?

As a partial answer to this probably di�cult problem, we

will show that simple (usually small) heap representations

can be built from structural invariants, for a subclass of

nets.

To formalize this rigorously, we introduce the following

de�nition.

De�nition IV.3 (Heap Realization) We say that a timed

Petri net (G;M) with language L, has a Heap Realization

of size k if there is a heap model H with k slots, such that

8w 2 L; y

G

(w) = y

H

(w) :

That is, the execution time of the �ring sequence w co-

incides with the height of the heap of pieces w. It is not

required that x

H

= x

G

, which gives the potential for a

smaller heap realization.

The following notions are classical, see [16, x5.1].

De�nition IV.4 (State Machine Covering) A state ma-

chine component of a Petri net G is a subnet G

0

of G, that

is a state machine, and satis�es

�

p [p

�

� G

0

for every place p of G

0

.

8 TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL

We say that G

1

; : : : ;G

k

is a (cardinality k) state-machine

covering of a Petri net G, if

1. G

1

; : : : ;G

k

are state-machine components of G;

2. every arc of G belongs to at least one component G

i

,

1 � i � k.

We say that the covering is safe (resp. live) if it is composed

of safe (resp. live) state-machine components.

It follows from this de�nition that a state machine compo-

nent is uniquely de�ned by its set of places. Note that a

safe (resp. live) SM is a SM with at most (resp. at least)

one token.

Theorem IV.5 (Reduced Realization Theorem) Let G =

(P ; T ;F ;M; �) be a safe timed Petri net with language

L and having a safe state machine covering (G

1

; : : : ;G

k

).

Then, G admits a heap realization of size k given by the

heap model H = (T ; f1; : : : ; kg; R; l; u), where

8a 2 T ; R(a) = fi j a 2 G

i

g ;

8a 2 T ;8i 2 R(a); l(a; i) = 0 ;

8a 2 T ;8i 2 R(a); u(a; i) = �

a

+ �

p(a;i)

;

where p(a; i) is the unique place such that (a; p(a; i)) 2 G

i

.

Proof: We �rst prove the result when the state-

machine components are not only safe but live. Then, there

is exactly one token at any time in each state-machine com-

ponent and we may speak unambiguously of the token in

G

i

. With this token, we associate a dater function ~z

i

. If w

is a �ring sequence, we denote by ~z(w)

i

the time at which

token i becomes available in its current place p 2 G

i

, after

the �ring of the last transition a 2 w such that p 2 a

�

(it

is the \completion time" of schedule w for the token i). It

is clear that max

i

~z(w)

i

= y

G

(w). Hence, it is enough to

prove that ~z(w) = x

G

(w), for w 2 L. We set ~z(e)

i

= 0 (re-

call that e denotes the empty word). Clearly, ~z(e) = x

H

(e).

Let us consider w 2 L; a 2 T such that wa 2 L. We have

~z(wa)

i

=

(

~z(w)

i

if i 62 R(a)

max

p

0

2

�

a

x

G

(w)

p

0

+ �

a

+ �

p

if i 2 R(a)

:

(9)

We recall that p(a; i) is the unique place such that

(a; p(a; i)) 2 G

i

. For all places p

0

2

�

a, there exists at least

one state machine component G

j

such that (p

0

; a) 2 G

j

.

Thus,

max

p

0

2

�

a

x

G

(w)

p

0

= max

j: 9p

00

;(p

00

;a)2G

j

~z

j

(w) : (10)

Arguing as at the end of the proof of Theorem IV.1 (using

the safe character of the net), we get that

max

j:9p

00

;(p

00

;a)2G

j

~z(w)

j

= max

j: 9p

00

;(p

00

;a)2G

j

or (a;p

00

)2G

j

~z(w)

= max

j2R(a)

~z(w)

j

: (11)

Substituting (10) in (9), and using (11), we get that ~z sat-

is�es precisely the dynamical equations (2) of the Heap

model H. This concludes the proof of the theorem, when

the state-machine covering is live.

For a general safe but not-live covering, there is either 0

or 1 token in each state-machine component. All the tran-

sitions within unmarked state-machine components will

never �re. It is now immediate to adapt the above ar-

gument, setting ~z(w)

i

= �1, for any unmarked state-

machine component G

i

.

Example IV.6: Let us illustrate Theorem IV.5. We con-

sider the Petri net G = (T ;P ;F ;M) of Fig. 2, with the

timings de�ned in Ex. III.6.

This net admits a decomposition into 4 SM-components,

G

i

; i = 1; : : : ; 4, with respective sets of places:

P

1

= fp

1

; p

2

g;P

2

= fp

2

; p

3

; p

5

g;P

3

= fp

4

g;P

4

= fp

5

; p

6

g :

Let us consider the associated heap model H as in Theo-

rem IV.5. It is exactly the heap model de�ned in Ex. II.2

and Ex. II.6. The set of slots is R = f1; 2; 3; 4g, slot i cor-

responding to the SM-component G

i

. The heap associated

with the schedule abcd was represented in Fig. 1. As a fur-

ther illustration, the heaps associated with abcdabcd and

abcdcdab are represented in Fig. 6,(1,2).

c

d

a

c

a

b

d

b

a

d

c

d

c

bb

a

a

b

a

c

d

c

d

b

Fig. 6. (1,2): Heaps of pieces for the words abcdabcd and abcdcdab.

(3): Minimal Heap realization

It is interesting to note that the heap realization given

above is not minimal. A smaller realization is shown on

Fig. 6,(3). Note that this size 3 realization is not associ-

ated with a state machine covering of the net (here, the

cardinality of a state machine covering is at least equal to

4). This shows that Theorem IV.5 provides only a partial

answer to the minimal realization problem.

The next classical result (see for example [16, Th. 5.6]),

shows that the reduced realization of Theorem IV.5 can be

applied to all live and safe Free Choice nets.

Proposition IV.7: A live and safe Free Choice net admits

a live and safe state machine covering.

In the case of an event graph, the same result applies

when replacing state machine coverings by circuit cover-

ings. The problem of �nding the covering of minimal cardi-

nality in Prop. IV.7 (or, in general, for Petri nets admitting

such coverings) appears to be a di�cult one.

GAUBERT AND MAIRESSE:MODELING AND ANALYSIS OF TIMED PETRI NETS 9

Remark IV.8: In his thesis, Hulgaard proposed a similar

approach for safe FC [28, Chap. 7]. He de�ned an analogue

of the vector x

G

(w) and of the matricesM(a), and derived

dynamical equations similar to (9). The main di�erence is

that he uses rectangular matrices which depend not only

on the transition to �re but also on the current marking.

C. Heap realization and P-semiow

There is a close connection between the size of the heap

realization in Theorem IV.5 and a classical invariant, the

P-semiow. A P-semiow is a column vector x 2 N

P

such that

P

p2

�

a

x(p) =

P

p2a

�

x(p); 8a 2 T . That is,

the weighted marking (usual algebra)

P

p

x(p)M(p) of the

places is invariant by the �ring of a transition.

Let G be a safe timed Petri net admitting a SM covering

fG

1

; : : : ;G

k

g. We consider the strictly positive vector x =

x

G

1

+ � � � + x

G

k

, where x

G

i

2 R

P

max

is the characteristic

vector of G

i

, de�ned by:

x

G

i

(p) =

(

1 if p 2 G

i

0 otherwise

:

The vector x is a P-semiow. The invariant

P

p

x(p)M(p)

is equal to k times the size of the heap realization of G.

However, it is not true that each P-semiow of a Petri net

can be represented as the sum x

G

1

+ � � �+x

G

l

of the charac-

teristic vectors of a SM covering. A fortiori, the problem of

�nding a safe SM covering of minimal cardinality can not

be reduced to the classical problem of �nding a minimal

P-semiow.

We de�ne the expansion

~

G of the Petri net G with respect

to x as follows:

Each place p 2 P such that x(p) > 1 is replaced by x(p)

places. Each of these x(p) places have the same input and

output transitions as the original place p. They also have

the same number of tokens and the same holding time as

p.

The �ring sequences and the temporal behaviors of

~

G and

G are exactly the same (given a �ring sequence w, the �ring

instants of the transitions are the same). Furthermore, the

graph

~

G admits a SM partition

8

(

~

G

1

; : : : ;

~

G

k

). This is best

understood with an example.

Example IV.9: Let us consider the Petri net of Fig. 2.

A state machine covering of this Petri net was provided

in Example IV.6. The associated characteristic vector is

x = (1; 2; 1; 1; 2; 1). Hence, we have to duplicate p

2

and

p

5

. We have represented the expanded Petri net with its

SM-partition in Fig. 7.

The reduced heap automaton H associated with

~

G is the

same as the one associated with G. Now, the number of

tokens of

~

G is constant and there is a simple interpretation

for (x

H

)

i

(or (x

~

H

)

i

): it is the dater function of the token

of

~

G

i

.

8

Same de�nition as a SM covering except that each arc belongs to

exactly one SM component.

G

2

p

2 ~p

2

~p

5

p

5

G

4

G

1

G

3

p

1

p

6

p

4

p

3

Fig. 7. Expansion of the Petri net of Fig. 2.

V. An Application to the Modeling and

Performance Analysis of Jobshops

The results presented above �nd a natural domain of ap-

plication in scheduling theory. A good introduction to the

subject is provided by the books [8], [10]. We �rst show how

heap representations can be used to design performance

evaluation methods. We explain informally the method on

a small manufacturing model, and we compare it with the

classical approach. Then, we consider the general subclass

of safe jobshops. We describe the classical performance

evaluation algorithm and a new heap automata based one,

and we derive complexity bounds for both of them.

A. An Elementary example

Let us consider the Petri net of Fig. 8, that the reader

certainly recognizes as being the one discussed extensively

above.

M

p

2

d

c

S

J

2

J

1

p

4

p

3

p

5

p

6

a

b

p

1

Holding and Firing Times

a b c d p

1

p

2

p

3

p

4

p

5

p

6

1 2 2 1 1 0 0 2 0 0

Fig. 8. A two jobs | two resources manufacturing system

This Petri net can be interpreted as a manufacturing

system processing two job types J

1

, J

2

, using two (het-

erogeneous) resources: one specialist S and one machine

M .

There are four elementary tasks a; b; c; d. The production

sequence for job J

1

is ab which means that the elementary

tasks a and b have to be performed in this order to complete

one job J

1

. The production sequence for job J

2

is cd.

10 TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Let w 2 T

�

. For each job type J

i

; i = 1; 2; we set

jwj

J

i

= number of type J

i

jobs completed

under the schedule w. (12)

Then, given an in�nite schedule

9

z = a

1

a

2

a

3

: : : 2 T

!

,

with a

1

; a

2

; : : : 2 T , we de�ne the asymptotic throughput of

the jobs of type J

i

:

�

i

= lim inf

n!1

ja

1

: : : a

n

j

J

i

execution time of a

1

: : : a

n

: (13)

We are interested in �nding the in�nite schedules maximiz-

ing the throughput, under a production ratio constraint

(e.g. one job J

1

for one job J

2

, in the average). We re-

strain this problem, by requiring the schedules to be pe-

riodic. That is, one only considers periodic sequences of

the form v

!

= vvvv : : : , where v is a �nite production pat-

tern satisfying the ratio constraint. In this case, as detailed

below, the lim inf in (13) becomes a limit (this will follow

from the (max,+) linear representation, together with the

(max,+) cyclicity theorem).

For instance, let us consider minimal length patterns

with ratio 1=1. There are two possible forms for such pat-

terns: abcd and cdab. Moreover, we note that the asymp-

totic performance is invariant by cyclic conjugacy of the

pattern. That is, for all words u; v, (uv)

!

and (vu)

!

have

the same asymptotic throughput, which follows from the

identities (uv)

!

= u(vu)

!

, (vu)

!

= v(uv)

!

(the two be-

haviors di�er only by a �nite number of tasks). Hence,

there is only one behavior to consider:

L

1

= (abcd)

!

:

One might of course consider longer patterns. E.g. periodic

sequences whose pattern consists in the production of 2 jobs

J

1

and 2 jobs J

2

are given by:

L

2

= (abcdabcd)

!

[(abcdcdab)

!

:

We will not consider as such the schedule optimization

problem (which is a di�cult combinatorial one), but we

will show how the heap-based modeling makes easier the

subproblem of the performance evaluation of a given peri-

odic schedule. This is best understood by comparison with

the timed Event Graph modeling, that we next recall.

A.1 Illustrating the classical approach

For a given periodic schedule, one is able to build a timed

Event Graph representing the system, and then to compute

the periodic throughput of this timed Event Graph. Let us

consider for example the schedule (abcd)

!

. This function-

ing is represented by the timed Event Graph displayed in

Fig. 9, which is obtained from the timed Petri net of Fig. 2

by replacing the resource places p

3

and p

4

by circuits, forc-

ing the periodic sequence abcdabcd : : :

Let x(n) 2 R

T

max

be the vector providing the dates of the

completion of the n-th �ring of the transitions. The vector

9

We denote by T

!

the set of in�nite words over the alphabet T .

p

31

a

p

2

d

c

p

6

p

5

p

1

b

p

41

p

42

p

32

Holding and Firing Times:

a b c d p

1

p

2

p

31

p

32

p

41

p

42

p

5

p

6

1 2 2 1 1 0 0 0 2 2 0 0

Fig. 9. Timed Event Graph for the schedule (abcd)

!

x(n) evolves according to a (max,+) linear dynamic:

x

a

(n) = �

a

(�

1

x

b

(n� 1)� (�

31

� �

41

)x

d

(n� 1))

x

b

(n) = �

b

�

2

x

a

(n)

x

c

(n) = �

c

(�

32

x

b

(n)� �

6

x

d

(n� 1))

x

d

(n) = �

d

(�

5

x

c

(n)� �

42

x

a

(n)) :

Setting �(n) = [x

b

(n); x

d

(n)]

t

, eliminating x

a

and x

c

, and

taking the numerical values of Fig. 9, we obtain the sub-

system �(n) = A�(n� 1), with

A =

�

4 5

7 8

�

; �(A) = 8 ;

where �(A) denotes the (unique) (max,+) eigenvalue of the

(irreducible) matrix A (see [2], [12], particularly the intro-

ductive section x1.3 of [2], for details on the (max,+) spec-

tral theory and its applications to discrete event systems).

It follows from the cyclicity theorem in [2] that for i = 1; 2;

and u 2 T , the asymptotic throughputs are

�

i

= lim

n!1

n

x(n)

u

=

1

�(A)

=

1

8

: (14)

For a schedule with a longer period, one would have

to perform a similar analysis on a larger timed EG. For

instance, the timed EG corresponding to the schedule

w = (abcdcdab)

!

is shown on Fig. 10.

A.2 Illustrating the automata approach

We associate with the timed Petri net of Fig. 8 the re-

duced heap model and automaton given in Ex. IV.6 above.

As opposed to what was done in the classical approach,

one considers a single Petri net (the original one, Fig. 8)

and a single algebraic representation (the heap model).

Only the order in which the products of the matrices

M(u); u 2 T ; are performed is modi�ed from one schedule

to the other.

GAUBERT AND MAIRESSE:MODELING AND ANALYSIS OF TIMED PETRI NETS 11

b

1

c

1

d

1

c

2

d

2

p

61

p

62

p

21

p

51p

42

p

32

p

11

p

12

p

31

p

41

p

22

p

34

p

44

p

33

p

43

p

52

a

2

b

2

a

1

Fig. 10. Timed Event Graph for the schedule (abcdcdab)

!

In particular, for a periodic schedule (v)

!

, the asymp-

totic throughput of job J

i

is given by

�

i

=

jvj

J

i

�(M(v))

:

For instance, the matrix M(abcd) was given in Ex. II.6.

Its eigenvalue is �(M(abcd)) = 8, providing a throughput

�

i

= 1=8, which con�rms the value obtained in Eqn (14).

Similarly, one may compute the matrix M(abcdcdab)

and obtain �(M(abcdcdab)) = 15, yielding a throughput

�

i

= 2=15 > 1=8. This improvement of the throughput can

be visualized on the heaps of pieces of Fig. 6.

These computations could be performed equivalently,

and more simply, with the three dimensional matrices cor-

responding to the minimal realization, see Fig. 6,(3).

More generally, one can easily check that the optimal pe-

riodic schedule of period 4n and satisfying a 1/1 ratio con-

straint is v

!

n

with v

n

= ab(cd)

n

(ab)

n�1

. It can be inferred

from the heaps of Fig. 6 that the associated throughput is

�

1

= �

2

=

n

7n+ 1

;

so that �

i

increases to 1=7 as n ! +1. This is of in-

dependent interest. It shows that we can always improve

on the throughput by increasing the length of the pattern.

Hence there exists no optimal schedule with a �nite period

(despite the fact that all durations are integer valued). An

example of the same kind (but for a non-safe Petri net) was

exhibited in Carlier and Chretienne [9, xVI-1].

We next turn our attention to the general class of job-

shops.

B. Performance evaluation of safe jobshops

De�nition V.1: A jobshop is speci�ed by:

� a �nite set R of resources (machines);

� a �nite set T of elementary tasks;

� for each task a 2 T , a duration �(a) and a single machine

R(a) 2 R on which a is to be executed;

� a �nite set J � T

�

of production sequences or jobs.

Each job J = a

1

: : : a

k

2 J is composed of a �nite number

of tasks a

1

: : : a

k

, to be executed in this order. We require

10

that a task a 2 T belongs to a unique job J(a) 2 J .

We say that a unit of job J is produced each time the

production sequence J is completed.

This model is equivalent to the one of [27]. We will make

a restriction by assuming that the work in process for each

job is equal to one, that is, at most one unit of each job is

processed simultaneously. We call such jobshops safe, this

assumption being equivalent to the safeness of the natural

Petri net representation of the system, shown in Fig. 11.

unmarked chain

machine jRj

machine 1

job jJ j

job 1

Fig. 11. Generic safe Petri net associated with a safe jobshop

We also assume that the jobshop, or equivalently the

Petri net, is connected. It means that there is no proper

subset of jobs sharing no resources with some other jobs.

The extension to the non-connected case is straightforward.

The Petri net admits a natural covering by live and safe

state machine components, each job and machine corre-

sponding to a component. Hence, jobshops admit reduced

heap realizations (see Theorem IV.5):

H = (T ;R

0

; R

0

; l; u); R

0

= R [J ;

R

0

(a) = R(a) [J(a);

l(a; r) = 0; u(a; r) = �(a); 8r 2 R(a) :

(15)

We will be interested in periodic schedules of the form

v

!

2 T

!

, where v belongs to L, the language of the Petri

net, and is a pattern corresponding to the exact comple-

tion of several jobs (i.e. without leaving some production

sequence un�nished) and meeting a �xed ratio constraint.

In line with (12), for each production sequence J , we

will denote by jvj

J

the number of units of J completed un-

der v. The asymptotic throughput of job J is de�ned as

in (13), replacing J

i

by J . The following result is an im-

mediate consequence of the heap representation theorem,

together with the cyclicity theorem for powers of matri-

ces [2, x 3.7.5, Th. 3.112].

Theorem V.2 (Throughput Formula) For a safe jobshop

with heap realization (15) and associated matrix represen-

tation M, the asymptotic throughput of job J is given by

�

J

= jvj

J

� �(M(v))

�1

;

10

We may always assume this. If the same physical task occurs in

two jobs, we have to represent it by two distinct letters.

12 TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL

where �(M(v)) is the (max,+) eigenvalue of M(v).

As the jobshop is assumed to be connected, the ma-

trix M(v) is irreducible, hence it has a unique eigenvalue,

see [2]. As a byproduct of this theorem, we obtain an al-

gorithm to compute �

J

.

Algorithm V.3 (Automata-based)

Input: a jobshop, a pattern v 2 L.

1. Build the Heap model (15), and its associated matrices

M(a), a 2 T .

2. Compute the product of matrices M(v). Complexity

11

:

O(jvj(jJ j+ jRj)).

3. Compute the eigenvalue ofM(v), �(M(v)), using Karp

algorithm. Complexity: O(jJ j+ jRj)

3

.

Output: �

J

= jvj

J

� �(M(v))

�1

.

Total complexity: O(jvj(jJ j+ jRj) + (jJ j+ jRj)

3

).

The jvj � 1 products of matrices in M(v) can be com-

puted in a sparse way. Indeed, the matrices M(a), a 2 T ,

di�er from the identity matrix only on two row and two

column indices, so that the complexity of an operation

MM(a) for any matrix M of size jJ j+ jRj is O(jJ j+ jRj).

For details on Karp algorithm, see e.g. [2, Th. 2.19].

For comparison, we next give the most e�cient variant

known to us of the \classical" performance evaluation algo-

rithm. The general method is borrowed from [2], but the

re�nements which greatly reduce the execution time can

not be found in the literature.

Algorithm V.4 (Classical or Event Graph-based)

Same input and output as Algorithm V.4.

1. Build the timed EG representation of the system, fol-

lowing [2, x 2.6] or [27].

2. Write the (max,+) linear representation

x(n) = A

0

x(n)�A

1

x(n� 1) ; (16)

where x denotes the vector of dater functions of the tran-

sitions of the timed Event Graph, [2, x 5.1].

3. Let C denote the set of transitions with at least one

token in one downstream place. Compute the C � C sub-

matrix A of A

�

0

A

1

. Complexity: O(jvj(jJ j+ jRj)) + (jJ j+

jRj)

2

).

4. Compute the eigenvalue �(A), using Karp algorithm.

Complexity: O(jJ j+ jRj)

3

.

Total complexity: O(jvj(jJ j+ jRj) + (jJ j+ jRj)

3

).

The timed EG built in step 1 of Algorithm V.4 has jvj

transitions and jJ j + jRj tokens. Hence, the matrices A

0

and A

1

in Eqn (16) are of dimension jvj�jvj. For live timed

event graphs, the matrix A

0

has no circuits. Then, we can

derive from (16) the canonical form

x(n) = A

�

0

A

1

x(n� 1) ;

where A

�

0

= A

0

0

�A

0

�A

2

0

�� � ��A

jvj�1

0

(see [2, Th. 3.17]).

By construction of C, if j 62 C, (A

�

0

A

1

)

ij

= 0, for all i.

Hence, A

�

0

A

1

has only one nontrivial diagonal block A, in

position C � C, and the growth rate of (A

�

0

A

1

)

k

coincides

with the growth rate of A

k

.

11

This is the execution time, the usual operations (comparison,

addition, etc) counting for one unit.

The cardinal jCj varies with the marking but is of order

jJ j+ jRj. To compute (A

�

0

A

1

)

CC

, we have 1) to select the

rows of indices i 2 C of A

�

0

, 2) to multiply each row of

index i 2 C of A

�

0

by each column of index j 2 C of A

1

.

Since the matrix A

0

has no circuits, using a rank function,

we can compute a row of A

�

0

in time O(E), where E is the

number of arcs of the graph of A

0

(see [24, Chap. 2,x2.4]).

Here we have E = O(jvj). We conclude that the complexity

of computing jCj rows of A

�

0

is O(jvj(jJ j+ jRj)). On each

column of A

1

, there are at most two terms di�erent from

0. Thus, computing the jCj

2

entries of (A

�

0

A

1

)

CC

takes a

time O(jvj(jJ j+ jRj)) + (jJ j+ jRj)

2

).

The total complexities of both algorithms are the same.

However, we did not take into account the \modeling" com-

plexities for both methods. This aspect can be considered

as a strong argument in favor of the automata-based algo-

rithm. A new timed Event graph must be built for each

new schedule in the traditional method, whereas the heap

realization M is built only once, and remains valid for all

(even non-periodic!) schedules. Moreover, the size of the

timed EG grows with the length of the pattern, whereas

the size of the heap automaton remains constant.

Remark V.5: Additional features can be incorporated to

the jobshop of Def. V.1, the above modeling by heap au-

tomaton remaining valid. First, a task may require several

resources at the same time to be executed. Second, there

might be general precedence relations between the tasks of

a job (it corresponds to replacing the live and safe circuits

in Fig. 11 by live and safe Event Graphs).

Example V.6: We illustrate Theorem V.2 with the job-

shop described in [27], x III. There are three machines:

R = fM

1

;M

2

;M

3

g, four production sequences J =

fJ

1

; : : : ; J

4

g, J

1

= a

1

a

2

a

3

, J

2

= b

1

b

2

, J

3

= c

1

c

2

, J

4

=

d

1

d

2

. The resource allocation and time execution maps are

given in the following table:

Task a

1

a

2

a

3

b

1

b

2

c

1

c

2

d

1

d

2

R M

1

M

2

M

3

M

3

M

2

M

1

M

3

M

1

M

3

� 1 3 3 1 2 2 1 2 1 .

One requires a production mix of 1=4; 1=4; 1=4; 1=4 between

J

1

; J

2

; J

3

; J

4

. A schedule satisfying this constraint (and

compatible with the order of precedence of the elementary

tasks) is v

!

, with v = a

1

a

2

a

3

b

1

b

2

c

1

c

2

d

1

d

2

. The matrix of

the resource automaton of a

1

is (omitting the 0 entries):

M(a

1

) =

0

B

B

B

B

B

B

B

@

M

1

M

2

M

3

J

1

J

2

J

3

J

4

M

1

1 1

M

2

1

M

3

1

J

1

1 1

J

2

1

J

3

1

J

4

1

1

C

C

C

C

C

C

C

A

We leave it to the reader to write the other matrices, and

just give

M(v) =

0

B

B

B

B

B

B

B

@

7 10 9 5 10 10 10

0 3 2 0 3 3 3

0 0 3 4 0 5 5

7 10 9 5 10 10 10

6 9 8 0 9 9 9

3 6 5 0 6 6 6

0 0 0 2 0 3 3

1

C

C

C

C

C

C

C

A

:

GAUBERT AND MAIRESSE:MODELING AND ANALYSIS OF TIMED PETRI NETS 13

We have �(M(v)) = 9, which yields the throughput of

1=9, as in xV of [27]. We used a toy implementation

12

in

Maple V.3. There are

�

3+2+2+2

3;2;2;2

�

= 9!=(3!(2!)

3

) = 7560

schedules (a schedule is a word in the shu�e product L of

the four words a

1

a

2

a

2

, b

1

b

2

, c

1

c

2

, d

1

d

2

). But the perfor-

mance of a schedule only depends on its equivalence class

modulo the partial commutations xy � xy, for the cou-

ples of tasks (x; y) belonging either to the same job or

to the same machine. There are only 216 such equiva-

lence classes. Moreover, since the periodic throughput is

invariant by cyclic conjugacy of the pattern (recall that

two words of the form uv and vu are cyclic conjugates), we

only kept one word by class of cyclic conjugacy (192 words

remained). Finally, we had to compute the matrix product

M(w) for these 192 words. We found an optimal through-

put of 1=7, attained for instance for the cyclic schedule ~v

!

,

with ~v = a

1

d

1

b

1

a

2

b

2

c

1

a

3

d

2

c

2

. This approach has been de-

veloped in [26]. It can be combined with branch and bound

techniques that are classical in scheduling.

Remark V.7: It is essential to note that the heap repre-

sentation coincides (up to a 90

�

rotation) with a version

of the Gantt charts, where both the occupation of jobs and

machines are represented. Traditional Gantt charts are ex-

actly the restriction to the machine columns of heaps of

pieces representations.

As an illustration, we have represented below the tradi-

tional Gantt chart for the model treated at length in this

paper (Ex. II.2, Ex. II.6, Ex. III.5, Ex. IV.2, Ex. IV.6, xV-

A) and the schedule abcdcdabab. The two added pieces ab

seem to \oat" in the air because one critical modeling vari-

able is lacking. Indeed, the smallest heap representation is

of size three, see Fig. 6,(3).

a

b

b

c

d

c

d

a

b

a

Fig. 12. (Conventional) Gantt charts are not (max,+) linear.

VI. Epilogue: Algebraic Status of Petri Net

Heap Representations

In order to apply the machinery of automata to per-

formance evaluation problems, we next discuss at a more

algebraic level the di�erent models used in this paper. 1)

At the logical level, the set of admissible behaviors of a

Petri net G is described by its language L, which is rec-

ognized by a \classical" automaton (deterministic Boolean

automaton), the marking automaton. 2) At the time level,

the execution time of an admissible sequence w 2 L is rec-

ognized by a heap automaton. It is very natural to embed

both models in a common algebraic framework, as follows.

12

Available on the author's web pages:

http://amadeus.inria.fr/gaubert/jobshop.html, and

http://www.liafa.jussieu.fr/~mairesse/jobshop.html

A. (Max,+) automaton and heap automaton

Classically, a (max,+) automaton A = (Q; I; F;M) over

the alphabet T can be represented by a �nite R

max

-valued

and T -labeled graph as follows. One draws a �nite graph

with nodes q 2 Q. There are three types of arcs. For each

q such that I

q

6= 0, one draws an input arc valued by the

scalar I

q

(with no label). Such a node q is called initial.

Dually, for each q such that F

q

6= 0, one draws an output

arc valued by the scalar F

q

(with no label). Such a node q

is called �nal. For each triple (q; a; q

0

) 2 Q � T � Q such

that M(a)

qq

0

6= 0, one draws an arc from q to q

0

, labeled

with the letter a and valued by the scalar M(a)

qq

0

.

The weight of a path p = (q

1

a

1

! q

2

: : : q

n

a

n

! q

n+1

) is

the product w(p) = I

q

1

M(a

1

)

q

1

q

2

: : :M(a

n

)

q

n

q

n+1

F

q

n+1

,

evaluated in the R

max

semiring. The label of this path is the

product of the labels of the edges: `(p) = a

1

: : : a

n

. Then,

the multiplicity of the word w is equal to the max of the

weights of the paths of label w: y

A

(w) =

L

p:`(p)=w

w(p).

Example VI.1: As an illustration, we provide in Fig. 13

the graphical representation of the (max,+) automaton of

Ex. II.6.

1a; 1d

q

4

q

3

q

1
q

2

1a; 2b

1c; 1d

3a 1a

1d

3d

1a; 2b; 1c; 1d 1a; 2b; 1c; 1d

3a; 1b;1c; 3d 1a; 1b; 2c; 1d

1a; 2b

2c; 1d

3a; 3d

Fig. 13. (Max,+) automaton.

B. Boolean automaton and marking automaton

Starting from a (max,+) automaton, by specialization to

the Boolean semiring

13

, one obtains the classical notion of

(nondeterministic) automaton: the multiplicity of w is 1 if

the word w is accepted, i.e. if there is a path with label

w from an initial state to a �nal state, and 0 otherwise.

The language of a (Boolean) automaton is the set of words

accepted by this automaton.

A Boolean automaton is deterministic if for all (q; a) 2

Q�T , there is at most one q

0

such that M(a)

qq

0

6= 0, and

if there is a unique q such that I

q

6= 0.

Let G = (P ; T ;F ;M) be a safe Petri net. The mark-

ing automaton

14

of (G;M) is the deterministic Boolean au-

tomaton (R(M); I

0

; 1

R(M)

;M

0

), where the initial vector I

0

13

The Boolean semiring B = (ffalse; trueg; or; and) is isomorphic to

the subsemiring (f0; 1g;�;
) of R

max

.

14

Also known as marking graph or reachability graph.

14 TO APPEAR IN THE APR. 1999 ISSUE OF IEEE TRANSACTIONS ON AUTOMATIC CONTROL

is de�ned by I

0

M

= 1, and I

0

m

= 0 form 6=M , and the mor-

phismM

0

is de�ned byM

0

(a)

M

0

M

00

= 1 ifM

0

a

�!M

00

and

M

0

(a)

M

0

M

00

= 0 otherwise, for all a 2 T .

By construction, a word w 2 T

�

is a �ring sequence

of the Petri net (G;M) i� it is accepted by the marking

automaton. The language of the Petri net, de�ned in x III,

is the language of the marking automaton. We remark

that by de�nition of the independence relation I (see (5)),

matrices associated with independent transitions commute:

(a; b) 2 I =) M

0

(a)M

0

(b) =M

0

(b)M

0

(a) : (17)

Example VI.2: The marking automaton of the Petri net

of Fig. 2 is shown on Fig. 14. The state corresponding to

marking m is denoted by the couple (m(p

1

);m(p

6

)).

(1,1)

a

c

b

d

(1,0)

(0,1)

Fig. 14. Marking automaton of the Petri net of Fig. 2.

The language of the automaton, L = (ab[cd)

�

(e[a[c),

coincides with the language of the net (see Ex. III.3).

C. Heap representation theorems revisited

We extend the daters of the net x

G

and y

G

, which were

preciously only de�ned on L, by setting, for any w 2 T

�

nL,

8p 2 P ; x

G

(w)

p

= 0; y

G

(w) = 0. We have the following

generalization of Theorem IV.1.

Theorem VI.3: The daters (x

G

)

p

; p 2 P , and y

G

of a safe

timed Petri net are recognized by a (max,+) automaton.

Proof: We prove that y

G

is (max,+) recognizable

(the argument for the entries of x

G

is identical). Consider

the characteristic dater of the language L: charL(w) =

0 if w 62 L, charL(w) = 1 if w 2 L. The dater

charL is recognized by the marking automaton B =

(R(M); I

0

; 1

R(M)

;M

0

). Let H = (R; 1

t

R

; 1

R

;M) be any

heap automaton recognizing y

G

. Classically [20], the prod-

uct y

G

(w) = y

H

(w)charL(w) is recognized by the tensor

product of the automata H and B, which is the automaton

C = (R� R(M); I

00

; F

00

;M

00

), with:

I

00

(r;m)

= (1

t

R

)

r

I

0

m

= I

0

m

; F

00

(r;m)

= (1

R

)

r

(1

R(M)

)

m

= 1;

M

00

(a)

(r;m);(s;m

0

)

=M(a)

rs

M

0

(a)

mm

0

: (18)

Due to the commutations in (4) and (17), M

00

(a)M

00

(b) =

M

00

(b)M

00

(a), for all (a; b) 2 I. This implies that y

G

,

seen as a function from the trace monoid T

�

= �! R

max

,

is recognizable. Such functions are well studied objects,

see [19] and the chapter of Duchamp and Krob in [18].

Remark VI.4: As it was discussed above, the dimension

of H is the number of places (normal representation) or ap-

proximately the number of tokens (reduced realization) of

the Petri net G. On the other hand, the dimension of B can

be extremely large, the only bound a priori being 2

P

which

is deduced from the safeness assumption. A natural idea is

to look for reduced representations of the marking automa-

ton B. Assume that n transitions are concurrently enabled

and need to �re before any new transition becomes enabled.

Then, the corresponding part of the marking automaton,

which contains 2

n

states, can be reduced to only n states

by selecting a single �ring sequence. Reduced marking au-

tomata can be incorporated to the modeling proposed in

this paper. We have not insisted on this point as it is a

well-documented problem, see e.g. Valmari [39] for a sys-

tematic way to construct a reduced marking automaton.

Theorem VI.3 allows us to apply the machinery of au-

tomata to safe timed Petri nets. In particular, the algo-

rithms given in [21, xV] and [22, x3.2] enable us to compute

very simply the worst case Lyapunov exponent

max

= lim sup

n

max

w2A

n

\L

y

H

(w)

n

; (19)

which measures the maximal growth rate of the makespan,

for long sequences of admissible events (in L). Indeed,

max

is equal to the maximal (max,+) eigenvalue of

L

a2A

M

00

(a), whereM

00

is the morphism de�ned in (18).

Other interesting quantities, such as the optimal case

Lyapunov exponent (which, dually, measures the minimal

growth rate of the makespan for long schedules)

min

= lim inf

n

min

w2A

n

\L

y

H

(w)

n

; (20)

can (in certain cases) be attacked with automata tech-

niques, either along the lines of Cerin and Petit [11], or

using the determinization techniques of [21]. But the di�-

culty of the computation of the optimal Lyapunov exponent

min

if one order of magnitude above that of

max

.

In Eqn (19) and (20), we can consider a languageL which

is more general than the language of the Petri net. For ex-

ample, as in xV-A, we can consider a language L

1

\ L

2

where L

1

is the language of the Petri net and L

2

is a lan-

guage corresponding to a ratio constraint. We postpone

the discussion of these questions to a companion paper.

Concluding remarks

Let us indicate some possible extensions of this work.

1. It remains to develop heuristics and performance bounds

for scheduling, based on heap and automata representa-

tions. 2. Matrix representations allow us to apply stan-

dard time parallelization methods (breaking long matrix

products in subproducts, mapped on di�erent processors)

to the parallel simulation of stochastic Petri nets. 3. The

main limitation of the heap-modeling presented here is the

restriction to safe Petri nets. A natural question consists

in characterizing the subclasses of non safe Petri nets for

which such a heap modeling remains valid.

GAUBERT AND MAIRESSE:MODELING AND ANALYSIS OF TIMED PETRI NETS 15

Acknowledgments

This work was initiated at BRIMS, Hewlett-Packard

Laboratories, Bristol, were the �rst author was visiting and

the second author was doing a post-doc. The authors thank

Jeremy Gunawardena for his hospitality during their so-

journ at BRIMS. The authors thank Eric Hautecloque and

the referees of this paper for their useful comments.

References

[1] M. Ajmone-Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte,

and A. Cumani. The e�ect of execution policies on the semantics

and analysis of stochastic Petri nets. IEEE Trans. on Software

Engin., 15(7):832{846, 1989.

[2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchro-

nization and Linearity. Wiley, 1992.

[3] F. Baccelli, S. Foss, and B. Gaujal. Free Choice Petri Nets:

an Algebraic Approach. IEEE Trans. on Automatic Control,

41(12):1751{1778, 1996.

[4] J. Berstel and C. Reutenauer. Rational Series and their Lan-

guages. Springer, 1988.

[5] G. W. Brams. R�eseaux de Petri, Th�eorie et pratique, Tome 1.

Masson, Paris, 1983.

[6] W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets:

Central Models and Their Properties. Number 254 in LNCS.

Springer, 1987.

[7] M. Brilman and J.M. Vincent. Dynamics of synchronized par-

allel systems. Comm. Statist. Stochastic Models (13)3:605{617,

(1997).

[8] P. Brucker. Scheduling Algorithms. Springer, 1995.

[9] J. Carlier and P Chretienne. Timed Petri net schedules. In

Advances in Petri Nets. Number 340 in LNCS, pages 62{84.

Springer, 1988.

[10] P. Chretienne, E. Co�man, J. Lenstra, and Z. Liu, editors.

Scheduling Theory and Its Applications, Wiley, 1995.

[11] C. C�erin and A. Petit. Speedup of recognizable trace languages.

Proc. MFCS 93. Number 711 in LNCS, Springer, 1993.

[12] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot. A linear

system-theoretic view of discrete-event processes and its use for

performance evaluation in manufacturing. IEEE Trans. Auto-

matic Control, (30):210{220, 1985.

[13] G. Cohen, S. Gaubert, and J.P. Quadrat. Algebraic system anal-

ysis of timed Petri nets. Appears in [25].

[14] G. Cohen, S. Gaubert, and J.P. Quadrat. Asymptotic through-

put of continuous timed Petri nets. Proceedings of the 34th Con-

ference on Decision and Control, New Orleans, Dec. 1995.

[15] R. Cuninghame-Green. Minimax Algebra. Number 166 in Lect.

Notes in Economics and Math. Systems, Springer, 1979.

[16] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of

Cambridge Tracts in Theoretical Comp. Sc. Cambridge Univ.

Press, 1995.

[17] V. Diekert. Combinatorics on traces. Number 454 in LNCS.

Springer, 1990.

[18] V. Diekert and G. Rosenberg, editors. The book of traces. World

Scienti�c Publ., 1995.

[19] M. Droste and P. Gastin. On recognizable and rational formal

power series in partially commuting variables. Proceedings of

ICALP'97, number 1256 in LNCS, p. 682-692, 1997.

[20] S. Eilenberg. Automata, languages and machines, volume A.

Academic Press, New York, 1974.

[21] S. Gaubert. Performance evaluation of (max,+) automata. IEEE

Trans. on Automatic Control, 40(12), 1995.

[22] S. Gaubert and J. Mairesse. Task resource models and (max,+)

automata. Appears in [25].

[23] S. Gaubert and M. Plus. Methods and applications of (max,+)

linear algebra. In R. Reischuk and M. Morvan, editors, Proceed-

ings of STACS'97, number 1200 in LNCS, Springer, 1997.

[24] M. Gondran and M. Minoux. Graphes et algorithmes. Eyrolles,

Paris, 1979. Engl. transl. Graphs and Algorithms, Wiley, 1984.

[25] J. Gunawardena, editor. Idempotency. Publications of the New-

ton Institute. Cambridge University Press, 1998.

[26] E. Hautecloque. Empilements de pi�eces, semianneau (max,+)

et ordonnancement. M�emoire ENSTA et DEA \Mod�elisation et

M�ethodes Math�ematiques en

�

Economie", Universit�e de Paris I,

1997.

[27] H. Hillion and J.M. Proth. Performance evaluation of job shop

systems using timed event graphs. IEEE Trans. Automatic Con-

trol, 34(1):3{9, 1989.

[28] H. Hulgaard. Timing Analysis and Veri�cation of Timed Asyn-

chronous Circuits. PhD thesis, University of Washington, 1995.

[29] L. Libeaut. Sur l'utilisation des dio��des pour la commande des

syst�emes �a �ev�enements discrets. Th�ese de Doctorat, Universit�e

de Nantes, Sept. 1996.

[30] V. Maslov and S. Samborski��, editors. Idempotent analysis, vol-

ume 13 of Adv. in Sov. Math. AMS, 1992.

[31] A. Mazurkiewicz. Concurrent program schemes and their inter-

pretations. Research report DAIMI Rep. PB-78, Aarhus Univ.,

1977.

[32] A. Mazurkiewicz. Trace theory. In Petri Nets, Applications and

Relationship to other Models of Concurrency, number 255 in

LNCS, pages 279{324. Springer, 1987.

[33] T. Murata. Petri nets: Properties, analysis and applications.

Proceedings of the IEEE, 77(4):541{580, 1989.

[34] J. Peterson. Petri Net Theory and the Modeling of Systems.

Prentice-Hall, 1981.

[35] J.E. Pin. Tropical semirings. Appears in [25].

[36] C. Ramchandani. Analysis of asynchronous concurrent systems

by timed Petri nets. PhD thesis, MIT, Boston, 1974.

[37] A. Salomaa and M. Soittola. Automata Theoretic Aspects of

Formal Powers Series. Springer, 1978.

[38] I. Simon. On semigroups of matrices over the tropical semiring.

Theor. Infor. and Appl., 28(3-4):277{294, 1994.

[39] A. Valmari. Stubborn sets for reduced state space generation.

In Advances in Petri nets, number 483 in LNCS, pages 491{515.

Springer, 1991.

[40] G.X. Viennot. Heaps of pieces, I: Basic de�nitions and combi-

natorial lemmas. In Labelle and Leroux, editors, Combinatoire

�

Enum�erative, number 1234 in Lect. Notes in Math., pages 321{

350. Springer, 1986.

[41] J.M. Vincent. Some ergodic results on stochastic iterative dis-

crete events systems. DEDS: Theory and Applications, 7(2):209{

233, 1997.

[42] U. Zimmermann. Linear and Combinatorial Optimization in

Ordered Algebraic Structures. North Holland, 1981.

