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In the modeling of human activities, in contrast to natural phenomena, quite fre-
guently only the operations max (or min) and + are needed. A typical example isthe
performance eval uation of synchronized processes such as those encountered in manu-
facturing (dynamic systems made up of storage and queuing networks). Another typical
exampleisthe computation of apath of maximum weight in agraph and more generally
of the optimal control of dynamica systems. We give examples of such situations. The
max-plus algebra which is a mathematical framework well suited to handle such situ-
ations. We present results on ¢) linear algebra, i¢) system theory, ¢ii) duality between
probability and optimization based on this algebra

1 Max-PlusLinear Algebra

Definition1. 1. A abelian monoid K isa set endowed with one operation ¢ whichis
associ ative, commutative and has azero element <.

2. A semiring is an abelian monoid endowed with a second operation ® whichis as-
sociative and distributivewith respect to & which has an identity element denoted
e, with e absorbing (thatisec @ a = ¢ ® € = ¢).

A dioidisasemiring which isidempotent (that isa & a = a, Ya € K).

A samifield isasemiring having its second operation invertibleon K, = K \ {¢}.

A semifield which isalso adioidis caled an idempotent semifield.

We will say that these structures are commutative when the product is al so commu-

tative.

7. Wecdl R,y [resp. Riin]theset R U {—oo} [resp. R U {40c0}] endowed with the
two operations® = max [resp $ = min] and @ = +.

8. Wecal R"*" andanalogously R” *™ theset of n x n matriceswith entriesbel onging

max min

to IR . endowed with @& denoting the max entry by entry and © defined by

o0k w

def def
[ABl;; = [A® B);; = mkaX[Aik + Bi;] = ®uAix @ By -

9. We call Spax [resp. Zmax] the set of functions [resp. increasing functions], from
R into R, endowed with & denoting the pointwise maximum and ® the sup-
convol ution defined by

[/ @ gl(x)

Eiroga) sup(f (& = 1) +¢(1)]



Anaogously we define Sy, [resp. Zmin]- The set Ifflm istherestriction of Z,,,;, tO
piecewise constant increasing functions with jJumps at positive integer abscissas.

10. Wecall C,, [resp. C,] theset of lower [resp. upper] semicontinuousand proper (never
equal to —oo [resp. oo]) convex [concave] functions endowed with the & operator
denoting the pointwise maximum [minimum] and © operator denoting the point-
wise sum.

11. Wecall C;, theset of lower semicontinuousand proper strictly convex functionshav-
ing 0 as infimum endowed with the @ operator denoting the inf-convolution of two
functions.

Clearly the dgebraic structure R, and R ,;,, are idempotent commutative semifields,
RAXD REXP S, ey Sminy Zmaxs Zminy, L2, Cr and C, are dioids, Cy is a commutar
tive monoid. Wewill call al these vectoria structuresbased onR ;. or R;,, max-plus
algebras. Working with these structures show that idempotency is as useful asthe exis-
tence of a symmetric element in the simplification of formulas and therefore that these

structures are very effective to make algebraic computations.

Application2. 1. Thesemathematical structuresintroducealinear a gebrapoint of view
to dynamic programming problems.
Given C'in[R7*" we call precedence graph G(C') the graph having ¢) n nodes, i)
oriented arcs (7, j) of weight C';; if C}; # € inthematrix C.
The min-pluslinear dynamica system

XM =CoX™, X] =e forj=1i X] =ecelsawhere, (1)

is adynamic programming equation. The number X7 is equal to the least weight
of all pathsfrom i to j (the weight of a path is the sum of the weightsits arcs) of
length m (composed of m arcs).

The minimal average weight by arc of paths having their lengthsgoingto infinity is
obtained by computing A solution of the spectral problem

ARX=00X.

The computation of the minimal weight of paths from ¢ to a region described by
d € R, (d; = eif]belongsto theregiond; = ¢ elsewhere) isequa to .X;
solution of

X=C0Xad.

2. The evauation of some systems where synchronization between tasks appears (as
in event graphs a subset of Petri nets) can be modeled linearly in R, or dually in
Rmin by

X" —FeoX"oGeoU™, Y™ = He XMt 2

INIR 5%, thenumber X* hastheinterpretation of theearliest date of them-th occur-
rence of theevent i (for example the starting time of atask on amachinein manufac-
turing) has happened. The max operator model sthe fact that tasks can be performed
as soon as all the preconditionsare fulfilled. The vector 7 models the timing of the
input preconditions. The vector Y denotes the timing of the outputs of the system.



INIR iy thenumber X7 hastheinterpretation of the maximum number of events of
kind ¢ that can occur before the date m. We can pass from (F, G, H ) over R, tO
the one over R ,;, by interchanging the role of the delays and the coefficients. (see
[7] for more details).

3. Clearlyitexistsinfinitedimensiona and/or continuoustimeversionsof theequation
(1). For ¢,y € Cy the problem

N-1
v’ = min Zc(ul)—i—d)(l‘N) | 2™ =z, 2T =o' —
U

i=m

may be called dynamic programming with independent instantaneous costs (¢ de-
pends only on » and not on «). Clearly v satisfiesthe linear recurrence in Cy

m

v =co vt WV =

bl v =

To solve some of these appli cationswe have to solve max-pluslinear equationsinR 72 <

or R*". The general one can bewritten A @ X &b = C @ X & d. Inthissection we
use three points of view (contraction, residuation, combinatoria) to study thiskind of
equations.

1.1 Spectral equations, Contraction and Residuation

Asinthe conventional algebraall thelinear iterationsare not contractions. We can char-
acterize the contractions using the max-plus spectral theory. To simplify the discussion
we give a simplified result under restrictive hypotheses on the connexity of the associ-
ated incidence graph. The genera result will be found for examplein [7].

Theorem 3. 1. IfthegraphG(C') associatedwiththematrixC' hasonlyastrongly con-
nected component there exists a unique A solutionof A @ X = C' ® X. It hasthe
graph interpretation

€l

A= max ——

¢ ISl
where |{],, denotes the weight of the circuit ¢ and |{]; itslength.

2. Wedenote (' thematrixdefinedby Oy & A\-1ac,c* ¥ Eacac?s. - .acn-!
where ' denotestheidentitymatrixand C+ & €'C*. A columni of [C'y]* suchthat
[C\]f: = e isaneigen vector. In C it exists at least such a column.

3. There exists ¢ such that for m large enough we have
e = e,

If G(C') has more than one strongly connected component, C' may have more than one
eigenvalue. The largest oneis called the spectral radius of the matrix C' and is denoted

by p(C).

Theorem 4. The equation X = CX @ d hasaleast solution X = [C,]*d,, when
p(C) < u. The solutionis uniquewhen p(C) < p.



The equation Az = d hasnot aways a solution but its greatest subsol ution can be com-
puted explicitly

z = A\d o max{z | Az < d} = min(d; — a;.) .
J

This computation, well known in residuation theory, defines a new binary operator \
which can be seen asthe dua operator of @. The \ isdistributivewith respect to A (de-
fined asthemin operator in theR . X context). With thistwo operatorsdual linear equa-
tions may be written.

Corollary5. Theequationy\ X = (C'\ X) Ad , hasasolutionassoonas y > p(C).
Thelargest X solution of thisequationis

X =[Cu" \pd = pd AN(Cu \ pd) A(Cu N Cpu\ pd) A -

Application6. In the event graphs framework described before this kind of eguations
appears when we compute the the latest date at which an event must occur if we want
respect due times coded in d (see [7] for more details).

1.2 Symmetrization of the Max-Plus Algebra

Because every idempotent group isreduced to the zero element it is not possibleto sym-
metrize the max operation. Neverthel ess we can adapt the idea of the construction of Z
from IN to build an extension of IR ., such that the general linear scalar equation has
always a solution.

Let usconsider the set of pairsIRZ _ endowed with the natural idempotent semiring
structure

(l‘/,l‘//) @ (y/’y//) — (l‘/ @ y',x”@ y//) ’
($/,$//) ® (y/’y//) — (x/y/ @ x//y//’x/y// @ $//y/) ,

with (¢, ¢) asthezeroelement and (¢, ¢) astheidentity element and s(z’, z") « (", 2").

Definition7. Let # = (2, 2") andy = (¥',y”). We say that = balances y (whichis
denotedx Vy)ifa' oy’ = 2" @ y.

Itisfundamental tonoticethat V isnot transitiveand thusis not acongruence. However,
we can introduce the congruence R onR2 . closely related to the balance relation:
/ /1 1 ! i / 1 ! /1
1ot roo ey ="y it £y £y,
(&, 2YR(Y,¥) & { («/,2") = (y/,y") otherwise,

We denote s £ B2 /R.
We distinguish three kinds of equivalence classes:

{(t,z") | #" < 1}, called positiveelements, represented by ¢;
{(«',t) | ' < t}, cdled negative elements, represented by < ¢;
{(t, 1)}, called balanced elements, represented by ¢°.



The set of positive [resp. negative, resp. balanced] elements is denoted S® [resp. S©,
resp. S*]. Thisyields the decomposition

S=SPuUSPuUsS"* .

Wealso denote S & 5% US® and Sy =8Y\{e}.
IfzxVyandz,y € SY,wehavexr = y. Wecall thisresult the reduction of balances.
We now consider asolution X, inIR? . of theequation AX & b6 = CX & d, then
the definition of the balance relationimpliesthat (A< C)X & (b& d) V e. Conversely,
assuming that X isapositivesolutionof AX @bV CX @d, withAX pbandC X &d €

S, using the reduction of balances we obtainthat X issolutionof AX @b = CX @ d.

Theorem 8 (Cramer’srule). Let A € S?*™, b € S™, | A| the determinant of the matrix
A (defined by replacing + by &, — by © and x by ® inthe conventional definition) and
A; the matrix obtained from A by replacing thei-th column by b, then if | A| € S}, and
|A4;] € SY, Vi = 1,---,n, then there exists a unique solution of AX V b , belonging
to (SY)™, which satisfies

Xi = |Ail/14] .

2 Min-PlusLinear System Theory

System theory is concerned with the input (u)-output (y) relation of a dynamical sys-
tem (S) denoted y = S(u) and by theimprovement of thisinput-output relation (based
on some engineering criterion) by altering the system through a feedback control law
u = F(y,v). Then the new input (v)-output (y) relation is defined implicitely by y =
S(F(y,v)). Not surprisingly, system theory iswell developed in the particular case of
linear shift-invariant systems. Analogously, a min-plus version of this theory can aso
be developed. The typical application is the performance evauation of systems which
can be described in terms of event graphs.

2.1 Inf-convolution and Shift-Invariant Max-PlusLinear Systems

Definition9. 1. A signal wisamappingfromR intoR ,;,. The signalsset, denoted ),
is endowed with two operations, namely the pointwise minimum of signals denoted
@, and the addition of a constant to asignal denoted @ which playsthe role of the
externa product of asigna by ascaar.

2. A systemisan operator S : Y — Y, u — y. Wecal u (respectively y) theinput
(respectively output) of the system. We say that the system ismin-pluslinear when
the corresponding operator is linear.

3. Theset of linear systems is endowed with two internal and one external operations,
namely
i) paralld composition S = S; @ S2 defined by pointwise minimum of output
signal s corresponding to the same input;

i) series composition S = S; ® S, or more briefly, S; .S, defined by the compo-
sition of operators,
i17) amplification 7' = a ® S, ¢ € Ry defined by T'(k) = a ® S(k).



4. The improved input (v)-output (y) relation of asystem S by alinear feedback v =
F(y) & G(v) isobtained by solving theequation y = S(F(y)) & S(G(v)) iny.
5. A linear system is called shift-invariant when it commutes with the shift operators
onsignas (u(.) — u(. + k)).
Theorem 10. 1. For a shift-invariant continuous® min-plus linear system S it exists
h: R — R, called impul se response such that

y:h@ud:efhuu.

2. Theset of impul seresponses endowed with the poi ntwi semi nimumand theinf-convol ution
isthedioid Suin -

3. If f [resp. g] denotestheimpul seresponse of thesystem S F' [resp. SGT, theimpulse
response i of asystem S altered by thelinear feedback v = F(y) & G/(v) issolution

of
h=fohdyg.

2.2 Fenchd Transform

The Fourier and Laplace transforms are important tools in automatic control and sig-
nal processing because theexponentia sdiagonalizeall the convol utionoperatorssimul -
taneously and consequently the convolutions are converted into multiplications by the
Fourier transform. Ana ogoustools exist in the framework of the min-plus algebra.

Definition 11. Let ¢ € Cx, itsFenchel transformisthefunctionin Cx defined by ¢(6) =
[F())(0) = sup, [0z — c(a)].
For example setting [, (z) = ax we have [F(14)](8) = x.(6) with

wo={ ot
Theorem 12. For f, g € Cxwehavei) F(f) € Cx, ii) Fisaninvolutionthatis F (F(f)) =
[t F(fag)=F(f) +Flg), ) F(f+9) = F(f) o Fg).
Theorem 13. The response to a conventional affine input (min-plus exponential) is a
conventional affine output with the same dope. If y = h o w and u = [, we have

y =la/[F(W)](a).
Unfortunately, the class of min-pluslinear combinations of affine functionsis only the

set of concave functions which is not sufficient to describe al the interesting inputs of
min-pluslinear systems.

2.3 Rational Systems

A genera impulse responde is too complicated to be used in practise since it involves
an infinite number of operationsto be defined.

Definition 14. 1. Animpulseresponseh € Z¢.. isrational if it can be computed with
afinitenumber of @, © and +* operations, from thefunctionsa © e (¢ € Ro,;,) and

? Linear also for infinite linear combinations.
4 For an impulse response k we definethe operator * by h* £ e & h @ h? - --



Y1 ® e where
def [ e fort <0,
e(t) = {e fort > 0.

2. Itiscdled realizableif thereexists (F, G, H) such that h™ = FG™H. Then there
exists X such that

X"l FeX"eGeU™, YP"=HaoX™.

The vector X iscalled the state of the realization.
3. Thesystemiscalled ultimatly periodicif A ¢ = ¢ x A+ h™, for m large enough.
4. The number X is called the ultimate slope of .

Theorem 15. For 9SS0 systems having an impulseresponseinZ¢.  thethree notionsof

min

rationality, ultimate periodicity and realizability are equivalent.

Thistheorem isamin-plusversion of the Kleene Schutzenberger theorem. Therediza-
tion of an impulse response with avectoria state X of minimal dimension is an open
problem in the discrete time case.

2.4 Feedback Stabilization

Feedback can be used to stabilize a system without slowing down its throughput (the
ultimate slope of itsimpul se response).

Definition16. 1. A redizationof arational systemisinternally stableif all theultimate
dlopes of theimpul se responses from any input to any state are the same.
2. Aredlizationisstructurally controllableif every state can bereached by apath from
at least oneinput.
3. Aredlization is structurally observable if from every state there exists a path to at
least one output.

Theorem 17. Any structurally controllable and observabl e realization can be madein-

ternally stable by a dynamic output feedback without changing the ultimate slope of the
impul se response of the system.

3 Bellman Processes

Thefunctionsstable by inf-convolutionare known. They are the dynamic programming
counterpart of the stable distributionsof the probability cal culus. They are thefollowing
functions

/\/l’,’mg(x) = %(Vf— m|/o)?, With/\/lfmo(x) =xm(z), p>1lmeRoe Rt

Weha\/e./\/lg%gl]./\/lfﬂ&:/\/lp 1/ W|th1/p—|—1/p/:1

) m4m,[op +57']



3.1 Cramer Transform

The Cramer transform (C ®ro log oL, where £ denotes the Laplace transform) maps
probability measuresto convex functionsand transform convol utionsinto i nf-convolutions:

C(f*g)=C(f)nCl(g).

Therefore it converts the problem of adding independent random variables into a dy-
namic programming problem with independent costs. In Table 1 we give some proper-
ties of the Cramer transform. For a systematic study of the Cramer transform see Azen-
cott [4].

Table 1. Properties of the Cramer transform.

I M log(L(M)) = F(C(M))] c(M) |
o é(8) = log feemdu(x) c(x) = supy(8z — E(8))
u>0 ¢ convexl.s.c. ¢ convexl.s.c.
mo o fdu =1 é(0) = infy e(x) =0
mo=1 m « fxdu &0)=m c(m)=0
mo =1, ma2 o fx2du &) = Py mo — m? '(m) = 1/0?
mo =1 P 0h) =re)e” | Pt =)/
2 =|o6]” /v’ +o(|8]")
— 12Tre_%(m_m)2/°2 mé + %(09)2 M?n,o’
stable distrib. mf + L|o6]” ME,
Feller [9] withp > 1, 1/p+1/p' =1

3.2 Decision Space, Decision Variables

These remarks suggest the existence of a formalism anologous to probability calculus
adapted to optimization. We start by defining cost measures which can be viewed asthe
normalized idempotent measures of Maslov [12].

Definition18. 1. Wecall decision spacethetriplet (U7, ¢/, K) where U isatopol ogica
space, U isthe set of the open subsets of 7 and K amap from into"® such that
i) K(U) = 0,ii) K(®) = +oo, i) K(, An) = inf, K(A,) forany A, € U.
2. Themap K iscalled a cost measure.
3. Amapc:uc U — c(u) € BT suchthat K(A) = infuca c(u), YA € U iscalled
acost density of the cost measure K.

SEYERY U {400}



4. The conditional cost excess to take the best decision in A knowing that it must be
teakenin B is
K(A|B) € K(A N B) —K(B) .

Theorem 19. Given al.s.c. positivereal valued function ¢ such that inf,, ¢(«) = 0, the
expression K(A) = infy, e ¢(u) for all A € ¢/ defines a cost measure. Conversely any
cost measure defined on the open subsets of a Polish space admits a unique minimal
extension K, to P(U) (the set of the parts of U/) having a density ¢® whichisal.s.c.
functionon U satisfying inf,, ¢(u) = 0.

Thispreciseresultis proved in Akian [1].
By analogy with random variables we define decision variables and rel ated notions.

Definition20. 1. A decision variable X on (U, 4, K) isamapping from U into E a
topological space. It induces Kx a cost measure on (E, 5) (3 denotes the set of
open sets of E) defined by Kx (4) = K. (X~ (A4)), YA € B. The cost measure
Kx hasal.s.c. density denoted cx .

2. When I/ = R [resp. R™?, resp. R ,;,] with the topology induced by the absolute
vaue[resp. theeuclidian distance, resp. d(x,y) = |e " — e~ Y| ] then X iscaled a
real [resp. vectorial, resp. cost] decision variable.

3. Two decision variables X and Y are said independent when

exy(®,y) = ex(z) + ey (y).

4. The optimum of areal decision variable is defined by O(X) « arg min, cx ()
when the minimum exists. When adecision variable X satisfiesO(X) = 0, wesay
that it is centered.

5. When the optimum of areal decision variable X isunique and when near the opti-
mum, we have

+o(lz = OX) ),

we define the sensitivity of order p of K by o? (X)) ® . When adecision variable

satisfies o7 (X) = 1, we say that it isof order p and normalized.
6. The numbers

def . 1 p def
[X]p = inf Qo [ex(@) 2 Zl(z = O(X) /ol and [[X]l, = 1.X], +[O(X)]

define respectively a seminorm and a norm on the set of decision variables having
aunique optimum such that || X ||, isfinite. The corresponding set of decision vari-
ablesis calledDP . The space ¥ is a conventional vector space and O isalinear
operator onD? .

7. The characteristic function of areal decisionvariableisF(X) « Flex) (Clearly F
characterizes only decision variables with cost in Cx).

5 We extend the previous definition to a general subset of U.



The role of the Laplace or Fourier transform in probability calculus is played by the
Fenchel transformin decision calculus.

Theorem 21. If the cost density of a decision variable is convex, admitsa unique mini-
mum and is of order p, we have”:

F(X)'(0) = O(X), [F(X =0(x)]*)(0) = I(p)[e" (X)), with 1/p+1/p = 1.

Theorem 22. For two independent decision variables X and Y of order p and k € R
we have

x4y = ex oey, F(X +Y)=F(X) +F(Y), [F(kX)](0) = [F(X)](k0)
O(X 4+7) =0(X)+0(Y), OkX) =kO(X), o (kX) = |k|o"(X),
[P (X + V) =[P (OF + " NF, (X + Y)Y < (XL +(Y]) .

3.3 Limit Theoremsfor Decision Variables

We now study the behavior of normalized sums of real decision variables. They corre-
spond to asymptotic theorems (when the number of steps goesto infinity) for dynamic
programming. We have first to define convergence of sequences of decision variables.
We have defined counterparts of each of the four classical kinds of convergence used
in probability in previous papers (see [3]). Let us recall the definition of the two most
important ones.

Definition 23. For the decision variable sequence { X™, m € N} we say that

1. X™weakly converges towards X, denoted X % X, if foral £ in C,(E) (where
Cy(E) denotesthe set of uniformly continuous and lower bounded functionson E
INtOR i), limy, M f(X™)] = M[f(X)] , withM(f(X)) o inf, (f(z)+ecx (2)).

2. X™ ¢ IDP converges in p-sengitivity towards X € IDP, denoted X™ o X, if
lim,, | X™ - X||, =0.

Theorem 24. Convergence in sensitivity implies convergence and the converse is false.

The proof isgivenin Akian [2].
We have the analogue of the law of large numbers and the centra limit theorem.

Theorem 25 (large numbers and central limit). Given a sequence {X™, m € N} of
independent identically costed (i.i.c.) real decision variables belongingtolD? ;| p > 1,
we have

1N—l
: il mo_ 0
w7 2 X7 =00,

where thelimit is taken in the sense of p-sensitivity convergence.

7 I" denotesthe classical Gamma function.



where X isa decision variable with cost equal to M?

Moreover if {X™ m € I} iscentered and of order p we have

N-1

1 .
Y X" =X withl/p+1/p =1,
m=0

Sweak™* lim ———
N N1/

0,0P(X0)"

The ana ogues of Markov chains, continuoustime Markov processes, Brownian and

diffusion processes have also been givenin[3].
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