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Abstract: More than sixteen years after the beginning of a linear theory for certain discrete event systems in which
max-plus algebra and similar algebraic tools play a central role, this paper attempts to summarize some of the main
achievements in an informal style based on examples. By comparison with classical linear system theory, there are
areas which are practically untouched, mostly because the corresponding mathematical tools are yet to be fabricated.
This is the case of the geometric approach of systems which is known, in the classical theory, to provide another
important insight to system-theoretic and control-synthesis problems, beside the algebraic machinery. A preliminary
discussion of geometric aspects in the max-plus algebra and their use for system theory is proposed in the last part
of the paper.

Résuḿe: Plus de seize ans après le d́ebut d’une th́eorie lińeaire de certains systèmesà événements discrets dans
laquelle l’alg̀ebre max-plus et autres outils algébriques assimilés jouent un r̂ole central, ce papier chercheà d́ecrire
quelques uns des principaux résultats obtenus de façon informelle, en s’appuyant sur des exemples. Par comparaison
avec la th́eorie classique des systèmes lińeaires, il existe des domaines pratiquement vierges, surtout en raison du fait
que les outils math́ematiques correspondants restentà forger. C’est en particulier le cas de l’approche géoḿetrique
des syst̀emes qui, dans la théorie classique, est connue pour apporter un autre regard important sur les questions
de th́eorie des systèmes et de synthèse de lois de commandesà ĉoté de la machinerie purement algébrique. Une
discussion pŕeliminaire sur les aspects géoḿetriques de l’alg̀ebre max-plus et leur utilité pour la th́eorie des systèmes
est propośee dans la dernière partie du papier.
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1. INTRODUCTION

For what later became the Max-Plus working group at
INRIA, the story about discrete event systems (DES)
and max-plus algebra began in August 1981, that is
more than sixteen and a half years ago, at the time
this paper is written. Actually, speaking of ‘discrete
event systems’ is somewhat anachronistic for that time
when this terminology was not even in use. Sixteen
years is not a short period of time compared with that
it took for classical linear system theory to emerge as
a solid piece of science. On the one hand, those who
have been working in the field of max-plus linear sys-
tems have benefitted from the guidelines and concepts
provided by that classical theory. On the other hand,
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the number of researchers involved in this new area
of system theory for DES has remained rather small
when compared with the hundreds of their colleagues
who contributed to the classical theory. In addition,
while this classical theory was based on relatively
well established mathematical tools, and in particular
linear algebra and vector spaces, the situation is quite
different with max-plus algebra: this algebra, and sim-
ilar other algebraic structures sometimes referred to as
‘semirings’ or ‘dioids’, were already studied by sev-
eral researchers when we started to base our system-
theoretic work upon such tools; yet, today, a very
basic understanding of some fundamental mathemati-
cal issues in this area is still lacking, which certainly
contribute to slow down the progress in system theory
itself. This is why an account of the present situation
in the field can hardly separate the system-theoretic
issues from the purely mathematical questions.
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Indeed, the models and equations involved are not
restricted to DES: connections with other fields (opti-
mization and optimal decision processes, asymptotics
in probability theory, to quote but a few) have been
established since then, and this has contributed to
create a fruitful synergy in this area of mathematics.
Yet, this paper will concentrate on DES applications.
To be more specific, while classical system theory
deals with systems which evolve in time according to
various physical, chemical, biological. . . phenomena
which are described by ordinary or partial differential
equations (or their discrete-time counterparts), DES
refer to ‘man-made’ systems, the importance of which
has been constantly increasing with the emergence
of new technologies. Computers, computer networks,
telecommunication networks, modern manufacturing
systems and transportation systems are typical exam-
ples. Among the basic phenomena that characterize
their dynamics, one may quotesynchronizationand
competitionin the use of common resources. Com-
petition basically calls fordecisionsin order to solve
the conflicts (whether at the design stage or on line,
through priority and scheduling policies). Through
‘classical’ glasses, synchronization looks like a very
nonlinear and nonsmooth phenomenon. This is prob-
ably why DES have been, for a long time, left apart
by classical system and control theory; they were con-
sidered rather in the realm of operations research or
computer science, although they are truly dynamical
systems.

Linear models are the simplest abstraction (or ideal
model) upon which a large part of classical system and
control theory have been based until the late sixties.
To handle more complex models, say, with smooth
nonlinearities, it was necessary to adapt the mathe-
matical tools while keeping most of the concepts pro-
vided by earlier developments: differential geometry,
power series in noncommutative variables, differen-
tial algebra have been used to develop such models
for which essential questions such as controllability
and observability, stabilization and feedback synthe-
sis, etc., have been revisited. Max-plus, min-plus and
other idempotent semiring structures turn out to be the
right mathematical tools to bring back linearity, in the
best case, or at least a certain suitability with the nature
of phenomena to be described, in this field of DES.

The purpose of this paper is twofold. On the one
hand, it tries to summarize some of the most basic
achievements in the last sixteen years in this new area
of system theory turned towards DES performance re-
lated issues (as opposed to logical aspects considered
in the theory of Ramadge and Wonham (1989)). Be-
cause of the space limitation, we will mostly proceed
by way of examples and the treatment will be neces-
sarily sketchy. We will rely upon several surveys al-
ready devoted to the subject (Cohenet al., 1989a; Co-
hen, 1994; Quadrat and Max Plus, 1995; Gaubert and
Max Plus, 1997) in addition to the book (Baccelliet
al., 1992b). On the other hand, the paper tries to sug-

gest new directions of developments. This essentially
concerns the understanding ofgeometricaspects of
system theory in the max-plus algebra. Investigations
are currently undertaken in this area, so we will just
sketch the kind of questions we try to address by
discussing examples.

2. LINEAR EQUATIONS OF TEG

2.1 State space equations

A common tool to describe discrete event systems is
the Petri net formalism of which a basic knowledge
is expected from the reader (see e.g. (Murata, 1989)).
Since we are interested in performance related is-
sues, we considertimed Petri nets. The subclass of
timed event graphs(TEG) is the class in which all
places have a single transition upstream and a single
one downstream2 . A single downstream transition for
each place practically means that all potential conflicts
in using tokens in places have been already arbitrated
by some predefined policy. A single upstream tran-
sition means that there is a single source of token
supply for each place (hence there is no competition
in either consumption or supply of tokens in TEG).
These limitations are certainly restrictive for most
applications, and they can generally be satisfied by
making some design and scheduling decisions at an
upper hierarchical level (the purpose may then be to
evaluate these decisions and to try to improve them).
But this is the price to pay for dealing withlinear
systems. Attempts to deal with more general Petri nets
can be found e.g. in (Baccelliet al., 1992a; Gaubert
and Mairesse, 1997; Cohenet al., 1998). Yet, there
are many interesting real systems which can be fairly
well described by TEG.

TEG correspond exactly to the class of timed Petri nets
which are described by max-plus or min-plus linear
equations. Consider for example the TEG depicted
in Fig. 1. While dots represent tokens as usual, bars
represent the holding times of places measured in a
common time unit, that is, the minimum time a token
must stay in a place before it can be used to fire
the downstream transition (with no loss of generality,
holding times can be put in places only, the firing of
transitions being instantaneous).

The convention is that transitions have names (indi-
cated in the figure) which are also the names of vari-
ables attached to them. The first variables considered
are daters: xi (k) denotes the earliest time at which
transitionxi can fire for the(k + 1)-st time (because
the first event is numbered 0 for some tricky reason).
The following recursive equations can be established
(Cohenet al., 1985; Cohenet al., 1989a; Baccelli et
al., 1992b):

2 Hence, in event graphs, places can be considered as ‘arcs’ and
transitons as ‘nodes’.



x1(k) = x3(k − 2) ⊕ u(k) , (1a)

x2(k) =
(

1 ⊗ x1(k)
)

⊕
(

1 ⊗ x3(k − 2)
)

, (1b)

x3(k) =
(

3 ⊗ x1(k − 1)
)

⊕
(

1 ⊗ x2(k)
)

, (1c)

y(k) = x3(k) , (1d)

where⊕ stands for max and⊕ for +. The occurrence
of max is a direct consequence of synchronization:
one must wait for the presence of at least one token
in all upstream places of any transition, hence, for the
last such condition to be satisfied before the transition
firing can occur.
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Fig. 1. A TEG
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Fig. 2. Its reduced form

2.2 Idempotent semirings (‘dioids’): a few line digest

The max-plus semiringis the setR of real numbers
(plus −∞), endowed with max as ‘addition’ and+
as ‘multiplication’. It is anidempotent semiring, also
calleddioid, i.e. a set equipped with a commutative,
associative and idempotent sum (a ⊕ a = a), a ‘zero’
denotedε and equal to−∞, an associative product, a
‘unit’ element denotedeand equal to 0, in which prod-
uct distributes over sum (guess what would happen if
we interchange the roles of max and+). Of course,
the product is also commutative, but this is a feature
which will be lost, for example, when considering
square matrices instead of scalars, with the natural
matrix addition and multiplication derived from scalar
operations. An elementx 6= ε of the max-plus dioid
has an inverse for⊗, namely−x, but the existence of
a multiplicative inverse is not part of the minimal set
of axioms used to define ‘dioids’ in general, although
it provides useful additional properties when it holds
true.

Remark 1.By the loose expression ‘max-plus alge-
bra’, we generally mean the max-plus dioid as defined
above, or the similar structure withZ instead ofR. In
the max-plus algebra, the ‘unit’ elemente (equal to 0)
should not be confused with 1; 1⊗ a is not equal toa
and 1⊗ 1 = 2). As usual, the multiplication sign⊗ is
often omitted and⊗ has priority over⊕.

Due to the idempotent character of addition, a dioid
cannot be embedded in a ring. But thanks to idempo-
tency, it can be equipped with the natural order rela-
tion a º b iff a = a⊕b. Then,a⊕b coincides with the
least upper bound of{a, b}, which is usually denoted

a ∨ b. Hence, a dioid is in particular a sup-semilattice
(this is sometimes the most important structure to con-
sider, which is obviously extended to ‘vectors’). If, in
addition, the sup-semilattice iscomplete(i.e. infinite
sets have a least upper bound for the natural order,
and multiplication is left and right distributive with
respect to least upper bounds — this is the case in
particular for the max-plus semiring, completed with
+∞), then the greatest lower bound of two elements
(denoteda ∧ b) automatically exists.

2.3 Canonical equations

Equations (1) can be written inmatrix form (‘missing’
entries are set toε = −∞). Generally speaking, for
any timed event graph, one obtains the following kind
of equations:

x(k) =

M
⊕

i =0

(

Ai x(k − i ) ⊕ Bi u(k − i )
)

, (2a)

y(k) =

M
⊕

i =0

Ci x(k − i ) , (2b)

wherex, u, y are vectors of dimensions equal to the
numbers of internal, input and output transitions3 ,
resp.,Ai , Bi , Ci are matrices of appropriate dimen-
sions with entries in the max-plus algebra, andM is
the maximal number of tokens in the initial marking.

In transforming these equations towards a canonical
form, the first stage aims at removing the implicit
part A0x(k) in (2a), if any. The nonzero entries ofA0
correspond to holding times of places with no tokens
in the initial marking. In principle, in the correspond-
ing subgraph, there should be no circuits; otherwise,
all transitions in those circuits are frozen for ever since
the numbers of tokens in circuits are preserved during
the event graph evolution. Consequently, there is a
numbering of internal transitions such thatA0 can be
written in strictly lower triangular form; hence,An

0
becomes zero for a sufficient largen (not greater than
the matrix dimension) and the so-called ‘Kleene star’,
that is, the infinite sum

A∗
0 =

⊕

n∈N

An
0 (3)

is well defined. Generally speaking, in the max-plus
algebra (and in a more general framework indeed)a∗b
is theleastsolution of the implicit equationx = ax⊕b
whenevera∗ can be given a meaning.

These considerations help removing the implicit part
of (2a) considered fromk = 0 to +∞ as an implicit
equation in the state trajectoryx(·). Picking the least

3 Internal transitions are those having both upstream and down-
stream transitions, input transitions have only downstream transi-
tions, and output transitions have only upstream transitions. If there
are arcs directly connecting input to output transitions (through
places of course), then there are additional terms of the form
Di u(k − i ) in (2b), which does not fundamentally change the rest
of manipulations to come.



solution in this implicit equation subsumes that transi-
tion firings occur as soon as they become possible, but
also that the ‘initial conditions’{x(k)}k<0 are the least
ones, that is,ε. This amounts to assuming that tokens
of the initial marking are immediately available at the
beginning of the game. Other nonzero initial condi-
tions can be enforced at the price of controlling the
arrival of tokens of the initial marking by additional
auxiliary input transitions (see (Baccelliet al., 1992b,
§5.4.4.2)).

The next stage in equation manipulation aims at ob-
taining a unit delay in the first term of the right-
hand side of (2a) and a zero delay in the second
term therein, together with a zero delay in the right-
hand side of (2b). This is obtained by increasing the
‘state vector’ dimension which must incorporate de-
layed versions of thexi andui variables. This stage is
classical in system theory and need not be described
in details here.

Finally, the canonical form of (2) is (without introduc-
ing a new notation for the possibly augmented state
vector)

x(k) = Ax(k − 1) ⊕ Bu(k) ; y(k) = Cx(k) . (4)

The implicit part can be eliminated by successive sub-
stitutions of scalar variable, rather than by a naive ma-
trix star computation (there should be an appropriate
order for these substitutions for the same reason why
A0 can be written in a strictly lower triangular form).
For example, considering (1) again, one would first
substitute the right-hand side of (1a) forx1(k) in the
right-hand side of (1b), then use this new equation to
eliminatex2(k) in the right-hand side of (1c). After
the implicit part has been so eliminated, it is realized
that x2 no longer appears at the right-hand side of
the dynamics (including the observation (1d)). Con-
sequently,x2 is not part of the state vector. On the
other hand, a new state variable must be introduced
to account for the second-order delay inx3: let us set
x4(k) = x3(k − 1) (the reader may imagine the cor-
responding manipulation in the event graph). Finally,
from (1), one derives the canonical form (4) with the
following state vector and matrices:

x =





x1
x3
x4



 ; A =





ε ε e
3 ε 2
ε e ε



 ; B =





e
2
ε



 ;

C =
(

ε e ε
)

. (5)

Remark 2.There is another representation of TEG
in terms of ‘counters’ instead of daters: letx♭

i (t)
denotes the number of the first firing to occur at
transition xi at or after timet (we assume time is
discrete to preserve the symmetry to be explained
later on between daters and counters). In mathematical
terms,x♭

i (t) = infxi (k)≥t k. Using either the definition
directly or the theory of residuation (note thatt 7→

x♭
i (t) is a possible definition for the inverse ofk 7→

xi (k)), one can show that counters obey min-plus

linear equations. There is an alternative definition
of counters asx♯

i (t) = supxi (k)≤t k and one can

prove thatx♭
i (t) = x♯

i (t − 1) + 1. Indeed, these two
definitions pertain to the notions ofdual residuation
and of residuationof the dater function, resp. (see
§4.2). For some tricky reason, the former definition
is preferable to the latter.

2.4 Transfer functions

In classical system theory, thez-transform allows one
to represent discrete-time trajectories by formal power
series with positive and negative powers of the formal
variablez. For dater trajectories{x(k)}, we introduce
the γ -transformX(γ ) =

⊕

k∈Z
x(k)γ k, whereγ is

an indeterminate which may also be considered as the
backward shift operator (formally,γ x(k) = x(k −

1)). Starting either from the rough form (1) or from
the canonical form (4) and applying theγ -transform
yields implicit equations inXi (γ ) (plus an equation
for Y(γ )) which can be solved again by appealing to
the Kleene star (now, of polynomials inγ with max-
plus coefficients). With our example of Fig. 1, it is
easy to eliminate allXi (γ ) but X3(γ ), which is also
Y(γ ), and to obtain

Y(γ ) = 2(2γ 2 ⊕ 3γ 3)∗(e⊕ 1γ )U (γ ) .

The next stage is to realize that(2γ 2 ⊕ 3γ 3)∗(e ⊕

1γ ) coincides with(1γ )∗ (simply by expanding both
expressions). Hence, we finally obtain

Y(γ ) = 2(1γ )∗U (γ ) . (6)

This expression allows the calculation of the output
trajectory corresponding to any input history; hence, it
completely summarizes the input-output relationship.
Generally speaking, from the canonical form (4), it
follows that

Y(γ ) = C(γ A)∗BU(γ ) . (7)

The expressionH(γ ) = C(γ A)∗B is called the
transfer matrix(or functionin the single-input-single-
output case).

The right-hand side of (7) is the product of two formal
power series, namelyH(γ ) and U (γ ). Back in the
event domain (that of indexk), y(·) is a ‘convolu-
tion’ of the sequencesh(·) andu(·), of which H(γ )

andU (γ ) are theγ -transforms: indeed, ‘convolution’
means ‘sup-convolution’ in the max-plus algebra. As
Laplace transform converts convolutions into products
in classical system theory,γ -transform converts sup-
convolutions into products here. When we restrict in-
puts u j (·) to be nondecreasing control histories, we
can also limit ourselves to consider nondecreasing
functions hi j (·). Such a trajectoryhi j (·) is the im-
pulse responseof system (4) when looking at outputi
and input j ; more precisely, it is the trajectoryyi (·)

caused by an infinity of tokens placed at transitionu j

at time 0, whereas at all other input transitions, it is
assumed that unlimited numbers of tokens are avail-
able since−∞; the reader may check that in terms of



γ -transforms this indeed corresponds toU j (γ ) = γ ∗

andUl (γ ) = ε for l 6= j . In fact, for γ -transforms
of nondecreasingdater trajectories,γ ∗ behaves as the
unit elemente. The story about nondecreasing se-
quences is longer than what we can tell here and is
at the heart of the two-dimensional representation and
theM

ax
in[[γ, δ]] algebra alluded to at Rem. 3 hereafter.

Back to our example, it should not be difficult to
check that (6) is also the transfer function of the TEG
represented in Fig. 2 which is described by the one-
state variable system

y(k) = 1y(k − 1) ⊕ 2u(k) . (8)

By comparing Fig. 2 with Fig. 1, or (1)–(5) with
(8), the reader should convince himself that relatively
simple algebraic calculations bring simplifications of
a given (and already relatively simple) system which
can hardly be obtained by other means. These simpli-
fications would be more spectacular if we had started
from a more complex system. Of course, then, the
help of some software (e.g., that of S. Gaubert named
‘MAX’ and based on Maple) would be desirable to
achieve the calculations. To convince the reader of the
interest of transfer function calculation, we invite him
to reconsider the slight variation of Fig. 1 in which
the arc from transitionu goes to transitionx2 instead
of x1. The corresponding system admits

H(γ ) = 1 ⊕ 3γ 2(1γ )∗ (9)

as its transfer function which cannot be realized with
less than 2 state variables (this is, by the way, a
good exercise to try out!). These changes seem rather
unpredictable without appealing to algebra.

Remark 3.Since a representation with counters can
also be used (see Rem. 2), there is an associated
transfer function using theδ-transform, whereδ is the
backward shift operator in the time domain rather than
in the event domain asγ (formally, δx(t) = x(t − 1)).
Instead of (6), we would getY(δ) = δ2(1δ)∗U (δ).
Note that, because of the double delay represented
by the factorδ2, 3 state variables are now necessary
to realize this transfer function in the canonical form
with counters, whereas only 1 was required with daters
for the same system. This is not surprising since
delays are related to the initial marking in the dater
representation, whereas they are related to holding
times in the dater representation. This remark shows
however that the notion ofminimal realizationneeds
some careful elaboration.

In (Baccelliet al., 1992b, Chap. 5), a two-dimensional
representation of input-output maps withγ andδ as
commutative formal variables of power series with
boolean coefficients is explained, and its advantages
over the one-dimensional representations inγ (with
coefficients in max-plus) or inδ (with coefficients in
min-plus) are enumerated. There is no room to de-
velop the corresponding theory and to introduce the
so-calledM

ax
in[[γ, δ]] algebra here. In this new repre-

sentation, the transfer function of our example reads
H(γ, δ) = δ2(γ δ)∗.

3. A QUICK REVIEW OF SYSTEM-THEORETIC
RESULTS FOR TEG

3.1 Asymptotic behavior and eigenvalues

Conventional linear systems have ‘modes’ which are
reached asymptotically when systems are stable; these
modes are related to their eigenstructures. Similar no-
tions exist forautonomousTEG obeying equations of
the formx(k) = Ax(k − 1). As usual, an eigenvalue
is a (rational) numberλ (possibly equal toε) such
that there exists a nontrivial eigenvectorx (that is,
x 6= ε) satisfying Ax = λx. In the max-plus alge-
bra, λx means that the same scalar valueλ is added
to all coordinates ofx. Hence, if x(0) is equal to
such an eigenvector, at every stage (that is, every time
the event counterk is incremented by 1), the same
time amountλ elapses at all transitions. Algebraically,
x(k) = λkx(0). Essential questions are whether such
an eigenpair exists in general, and whether all initial
conditions are eventually absorbed in a similar ‘peri-
odic’ regime.

When A is irreducible (that is, the corresponding
TEG is strongly connected, or otherwise stated, all
transition firings are dependent on each other in the
long term), the answer is relatively easy: there exists
a unique eigenvalue but possibly several eigenvectors.
The eigenvalue is given by the formula

λ =

n
⊕

j =1

(

trace(A j )
)1/j

, (10)

wheren is the dimension of the square matrixA and
all operations are in the max-plus algebra. In a less
cryptic way,λ is thelargest average circuit weightof
the directed graph canonically associated withA, or,
equivalently, the largest average weight of a directed
circuit in the original TEG. When there is exactly
one token in each internal place, the average weight
of such a circuit is defined as the number of bars
divided by the number of arcs or places along the
circuit. More generally, when the TEG is not in the
‘canonical’ form in which a place (an arc) between
internal nodes (transitions) corresponds exactly to one
token of the initial marking, the average weight is the
ratio of the number of bars by the number of tokens
along the circuit. For the TEG of Fig. 1, this ratio is
equal to 1 for all circuits, and this is also the case for
that of Fig. 2.

The structure of the ‘eigenspace’ is related to the
structure of thecritical graph, which is the subgraph
such that all nodes and arcs belong to at least a crit-
ical circuit (that is, a circuit for which the extremal
average weightλ is reached). More precisely, letxi

be a transition belonging to a critical circuit and con-
sider the ‘normalized’ matrixAλ = λ−1A (which
means subtractingλ, assumed finite here, from ev-



ery entry of A). An eigenvector is obtained as the
i -th column of (Aλ)

+ = Aλ(Aλ)
∗. All columns of

this matrix corresponding to transitions in the same
strongly connected component of the critical graph
provide proportional eigenvectors. In particular, if the
critical graph is strongly connected (which is the case
with the TEG in Fig. 1), there is auniqueeigenvector
(up to a multiplicative constant). We refer the reader to
(Baccelliet al., 1992b; Gaubert and Max Plus, 1997)
and references therein for a complete treatment of
these questions even in the case whenA is not irre-
ducible.

The critical graph also plays a role when considering
the asymptotic behavior of the iteratesAkx(0) of the
autonomous system from any initial conditionx(0).
Again, in the simplest case of irreducible matrices, it
can be proved that

∃c ≥ 1, K ∈ N : ∀k > K , Ak+c = λcAk . (11)

That is to say,K is the duration of a transient part
beyond which, ifc = 1, any initial condition has been
absorbed in an eigenvector. Ifc > 1, the behavior is
‘periodic’ overc steps, with the same average timeλ

between two successive firings at all transitions. This
c is called thecyclicity and an exact formula for it
is: thelcm over all strongly connected components
of the critical graph of thegcd of the ‘lengths’ (that
is, token numbers) of all circuits in each strongly
connected component of that graph. With the TEG of
Fig. 1, all internal arcs and transitions belong to the
critical graph which is strongly connected. The are two
elementary circuits with 2 tokens and one with 3: the
gcd of 2 and 3 isc = 1. By computing the successive
powers ofA in (5), it is discovered thatK = 5, c = 1
and λ = 1. The length of the transient cannot be
bounded after the dimension ofA. An effective bound,
which involves the numerical values of the entries of
A, and in particular the average weight of the ‘second
critical circuit’ of A, is implicit in the proof of (11).

3.2 Stabilization, feedback synthesis and resource
optimization

A completely observable and controllable (conven-
tional) linear system can be stabilized by dynamic
output feedback. With TEG, all trajectories are non-
decreasing, and stability must be given an adequate
meaning: by ‘stability’, we essentially mean that to-
kens do not accumulate indefinitely inside the graph.
A sufficient condition is that the whole system is syn-
chronized, that is, it consists of a single strongly con-
nected component. A TEG isstructurally controllable
(resp.observable) if every internal transition can be
reached by a directed path from at least one input tran-
sition (resp. is the origin of at least one directed path to
some output transition). Structurally controllable and
observable TEG can be stabilized by output feedback
in that the graph can be made strongly connected by
adding appropriate arcs from output to input transi-
tions.

However, since new circuits are created by closing
the feedback loops, there is a risk that the eigenvalue
of the closed-loop system gets larger than that of the
open-loop system, which means a deterioration in per-
formance (that is, of the throughput 1/λ, with a clas-
sical interpretation of the inverse here). Therefore, an
interesting question is how to enforce stability while
preserving performance, or at least not lowering it
too much (of course, the system cannot be speeded
up by adding new circuits, hence new synchroniza-
tion constraints). This problem can be viewed as the
equivalent notion ofpole placementor loop shapingin
classical system theory. For TEG, this means that the
new circuits created by feedback must have an average
weight which remains below a given threshold. Since
all such circuits traverse the feedback arcs, it suffices
to put enough tokens in the initial marking of these
arcs: this yields adynamicfeedback in thatu(k) is
made dependent of somey(k − m). Obviously, form
large enough, the ratio (nr. of bars/nr. of tokens) of
such circuits ceases to be critical.

Nevertheless, from the practical point of view, increas-
ing m means increasing the number of tokens per-
manently present in the system, and sometimes this
even requires additional physical resources (parking
or storage room, pallets to carry parts in a workshop,
etc.). Hence, the next problem is to ensure the de-
sired level of performance under ‘budget’ constraints.
We are here in the realm of resource optimization
(Gaubert, 1995), (Gaubert, 1992, Chap. 9). The prin-
ciple of ‘kanban’ systems is also very akin to the
previous considerations (Di Mascolo, 1990).

Recently, the problem of feedback synthesis have been
reconsidered by Cottenceauet al. (1998) in the fol-
lowing form. Consider a systemY = HU (say,
here, Y,U, H ∈ M

ax
in[[γ, δ]]) and the feedback law

U = FY ⊕ V , which yields the closed-loop system
Y = (H F)∗HV . Instead of trying to preserve the
open-loop system eigenvalue only, the idea is to find
the greatest causalfeedback lawF which preserves
thewhole open-loop transfer function H. ‘Causal’ es-
sentially means thatF can be represented by a sum of
monomials in(γ, δ) with nonnegative exponents only
(this is a ‘quick and dirty’ definition). ‘Greatest feed-
back law’ means that inputs will be delayed as much
as possible, which intuitively aims at minimizing the
number of tokens present in the system. However,
the authors did not prove that their design enforces
stability (in the previous sense) for structurally con-
trollable and observable systems in general. But they
showed that their problem admits a simple analytic
solution based on residuation theory (see §4.2 here-
after), namelyF is the causal part (keep only mono-
mials with positive exponents) ofH ◦\H◦/H , where ◦\

and◦/ are the residuated operations of left, resp. right,
multiplication of power series. The reader may con-
sider the exercise of calculating thisF for system (8),
represented in Fig. 2, the transfer function of which
(in M

ax
in[[γ, δ]]) is, according to (6),H = δ2(γ δ)∗. The



answer isF = γ 2(γ δ)∗. An implementation of this
feedback is represented in Fig. 3.

u v

x y

Fig. 3. Feedback law (in the grey box) preserving
open-loop transfer

3.3 Realizability, rationality and periodicity

In conventional system theory, a necessary and suffi-
cient condition for a transfer function to admit a finite
dimensional time-invariant linear system realization
is that it isrational. For M

ax
in[[γ, δ]] transfer matrices,

an even stronger result holds true since the following
threeproperties are equivalent:

(1) the transfer matrix can be realized by a TEG with
constant (nonnegative) holding times;

(2) the transfer matrix is rational (and causal);
(3) the transfer matrix is periodic (and causal).

In Rem. 4 below, we discuss a more mathematical
statement of the first property above. The second prop-
erty means that each entry of the matrix belongs to
the closure of{ε, e, γ, δ} by finitely many⊕, ⊗ and∗

operations. The third property means that each entry
can be written as an expression of the formp ⊕ qr∗

in which p andq are polynomials in(γ, δ) which rep-
resent the transient behavior and the repeated pattern,
resp., whereasr is a monomialγ kδt which reproduces
the patternq along the ‘slope’t/k. For TEG with
strongly connected internal transitions, this slope is
nothing but the unique eigenvalue (in the dater rep-
resentation). Additional constraints can be put on the
relative degrees and valuations ofp, q andr . For ex-
ample, the transient partp need not extend beyond the
point where the periodic part starts, that is the degrees
of p in (γ, δ) can be strictly less than the valuations
of q.

For systems with very long transient parts (check for
exampleδ20(γ δ)∗ ⊕ (δ11γ 10)∗), this representation
may not be very clever. Consider now the transfer
function (9) again (which may be written asδ ⊕

γ 2δ3(γ δ)∗). Obviously, p = δ, q = γ 2δ3 and r =

γ δ. The left-hand side of Fig. 4 depicts the TEG
which is immediately suggested by this way of writing
the transfer function, and which corresponds to a 3-
dimensional state system in terms of daters. The right-
hand side of the same figure represents a TEG with
the same transfer function and which corresponds to a
2-dimensional state vector (as was announced earlier).
Indeed, the corresponding way of writing the transfer
function isδ

(

γ 2δ2(γ δ)∗
)∗, that is, with two levels of

stars. This example suggests that such a representation
may be more appropriate in some cases.

u

y

u

y

Fig. 4. Two TEG with the same transfer function (9)

This issue of ‘canonical’ representations of elements
in M

ax
in[[γ, δ]] in a way which allows one to easily

check the equality of two such elements in this algebra
and which is, at the same time, easy to recover (after
various manipulations), efficient in terms of storage,
of simulation, and of calculation is mostly an open
question; it is central for the design of algebraic com-
putational software tools inMax

in[[γ, δ]].

Remark 4.Instead of speaking of realization of trans-
fer matrices by TEG, one can state property (1) above
as the fact thatH(γ, δ) can be written asC(γ A1 ⊕

δA2)
∗B (compare with (7)) for someBooleanmatri-

cesC, A1, A2, B of appropriate dimensions (that is,
entries are solely equal toε or e). Such a definition
seems a good basis to tackle the problem ofminimal
realization which would be defined as the minimal
inner dimension in this expression (that ofA1 and
A2). This way, neither the dater nor the counter rep-
resentation is privileged and the amount of storage
subsumed by the state vector dimension refers now to
the storage of ‘bits’ of information (boolean values).
For the transfer function (6), a possible realization is

A1 =





ε ε ε

ε ε e
ε ε ε



 ; A2 =





ε ε ε

e ε ε

ε e ε



 ; B =





e
ε

ε



 ;

C =
(

ε ε e
)

.

At this moment, we have no non enumerative way to
claim that this is a minimal realization. This prob-
lem of minimal realization remains a very challeng-
ing issue in the field: it is solved only for special
subclasses of systems, generally in the framework of
dater representations (see e.g. (Gaubertet al., 1998)
and references therein).

3.4 Frequency responses

In conventional linear system theory, sine functions of
any frequency (and starting from time−∞) are eigen-
functions of transfer functionsH(s), that is, the output
is equal to the input up to amplification and phase
shift. The amplification gain and the phase shift at
the frequencyω are computed by replacing the formal
operators by the numerical valuej ω in the expression
of H(s). For TEG, the analogues of sine functions are
certain periodic inputs with any rational ‘slope’ in the



planeZ
2 where thex-axis is the event domain and

the y-axis is the time domain (these periodic inputs
are in fact the best approximations from below, on
the discreteZ

2-grid, of continuous linear functions
with corresponding slopes). The outputs caused by
such inputs (‘frequency responses’) are identical to
the inputs, up to the fact that they are shifted along
the two axes. Shifts can be evaluated using the slope
of the input as a numerical argument of the transfer
function, in some way (see (Baccelliet al., 1992b,
§5.8) or (Cohenet al., 1989b) for more detailed expla-
nations). These shifts become infinite when the slope
of the input gets strictly smaller than the asymptotic
slope of the impulse response: indeed,smaller slope
meansfasterinput rate than what the system is able to
process, and thus, tokens will accumulate indefinitely
inside the system. In this case, the intrinsic (maximal)
throughput of the system will show up instead at the
output: this is a kind of ‘low pass’ effect.

In the evaluation of the event and time domain shifts
at any frequency, it turns out that only the concave hull
of the impulse response is important. For example,
the transfer function in (9) has the same frequency re-
sponse as the transferδ(γ δ)∗ (when inputs are started
from −∞ in order to remove the transient part of the
response).

3.5 Costate equations and second-order theory

In conventional optimal control, Pontryagin’s mini-
mum principle introduces a backward equation for
a vectorξ called ‘co-state’ or ‘adjoint state’. In the
linear theory of TEG, a similar notion arises about the
following problem: given an output (dater) trajectory
{y(·)}, find thelatest (greatest)input trajectory{u(·)}

which yields an output trajectory less (earlier) than the
given one. This is again a typical problem in the theory
of residuation which is discussed at §4.2: indeed, if
H(γ ) is the transfer function, then the problem is to
find the greatestU (γ ) such thatH(γ )U (γ ) ¹ Y(γ ).
The solution of this problem isU (γ ) = H(γ ) ◦\Y(γ )

(recall that◦\ denotes the residuation of multiplication
to the left — call it ‘left division’). It can be proved
((Baccelliet al., 1992b, §5.6)) that, for the system (4),
the solution can be explicitly computed by the back-
ward recursive equations

ξ(k) =
(

A ◦\ξ(k + 1)
)

∧
(

C ◦\y(k)
)

, (12a)

u(k) = B ◦\ξ(k) , (12b)

in which, e.g.,

(A ◦\b)i = min
j

(b j − A j i ) (13)

(with a careful handling of infinite values, see (Baccelli
et al., 1992b, Example 4.65)). The ‘costate’ξ does
not follow the forward dynamics (4) because it corre-
sponds to transition firing dates ‘at the latest’, rather
than ‘at the earliest’ possible time, as it is the rule for
the forward dynamics.

Consider the following scenario: a control historyu(·)

is first used to produce an output trajectoryy(·);
this y(·) is then used in (12) to compute someξ(·)

and a new control inputu(·) which is of course greater
than, or equal tou(·); finally, this new u(·), when
used in (4), produces some newx(·), but thesame
output y(·) as u(·) does. We get the following kind
of state-costate equations:

x(k) = Ax(k − 1) ⊕ B
(

B ◦\ξ(k)
)

; (14a)

ξ(k) = A ◦\ξ(k − 1) ∧ C ◦\
(

Cx(k)
)

. (14b)

One can prove the intuitively appealing fact that
ξi (k) − xi (k) is nonnegative: this is interpreted as
the ‘spare time’ or the ‘margin’ which is available at
transition xi for the firing nr. k; in other words, an
exogenous event may delay this event by this spare
time without preventing the future deadlines to be met.
Differences such asξi (k) − xi (k) emerge as diagonal
elements of the matrixP(k) = ξ(k)◦/x(k). In conven-
tional system theory, for linear-quadratic problems,
the costate vectorξ is related to the state vectorx
by ξ = Px, where P is a matrix obeying a Riccati
equation. For the time being, no recursive equation has
been found for the ratioξ(k)◦/x(k). On this and similar
topics related to what we consider as the analogue of
a ‘second order theory’ (with ‘correlation matrices’
having to do with in-process stocks and times spent in
the system), one may refer to (Baccelliet al., 1992b,
§6.6), (Max Plus, 1991; Cohenet al., 1993).

4. TOWARDS GEOMETRIC SYSTEM THEORY

4.1 From algebra to geometry

Vectors and rectangular matrices have already showed
up in the previous developments. Whilesquarema-
trices can be given a dioid structure with twointer-
nal operations called ‘addition’ and ‘multiplication’,
vectors, for example, can be endowed with an internal
addition, but the multiplication of interest is generally
that of vectors by ‘scalars’ belonging to a dioid. are
sometimes referred to asmoduloidsor pseudomodules
orsemimodulesnowadays, and they have received (ad-
mittedly limited) attention. It is beyond the scope of
this paper to discuss even the basic (multiple) notions
of linear independencein such structures and the as-
sociated notions ofdimensions. A few authors have
initiated some work with the aim of understanding
the geometry of moduloids (Wagneur, 1991). Com-
pared with usual vector spaces, the situation is more
involved, in that two moduloids with minimal generat-
ing sets with the same cardinality need not be isomor-
phic (Wagneur, 1996). Indeed, elements of minimal
generating families play a role analogous to extremal
rays of usual polyhedral cones.

In linear systems theory, the interest of the geometric
point of view has been shown e.g. by Wonham (1979).
The basic notions of controllability and observability
(more general than those ofstructural controllabil-
ity and observability referred to at §3.2) amounts to



surjectivity, resp. injectivity, of certain linear opera-
tors. Hence images and kernels as geometric objects
(more than their representatives in terms of matrices)
are central. The notion of decomposition of a ‘space’
into a ‘direct sum of subspaces’ is also important.
An attempt to approach this problem in the context
of moduloids can be found in (Wagneur, 1994). An-
other point of view has been initiated in (Cohenet
al., 1996; Cohenet al., 1997). In this approach,residu-
ation theory plays a central role. Hence a brief account
of this theory is given in the next subsection.

4.2 Residuation theory in a few words

The main purpose of residuation theory is to provide
an answer to the problem of ‘solving’ equations in
x of the form f (x) = b, where f is an isotone
(i.e. order-preserving) mapping between two lattice-
ordered sets which arecomplete(i.e. infinite subsets
admit aleast upper bound—lub, denoted∨— and
a greater lower bound—glb, denoted∧— which of
course need not belong to the subset). The idea is to
weaken the notion of ‘solution’ to that of ‘subsolu-
tion’ satisfying f (x) ¹ b or to that of supersolution
satisfying f (x) º b and to select thelub of these
subsolutions, resp. theglb of these supersolutions.
Which approach is adopted depends upon a ‘continu-
ity’ property of f : the former approach is appropri-
ate when f is lower-semicontinuous (l.s.c.), that is,
f
(
⊕

x∈X x
)

=
⊕

x∈X f (x), for any subsetX, which
implies that thelub of subsolutions is itself a subso-
lution; dually, the latter approach is appropriate iff is
upper-semicontinuous (usc — guess the definition!).

Remark 5.It should be kept in mind that if there exists
a ‘true’ solution to the problem withequality(possibly
nonunique), then either approach will also provide a
true solution (if of course the corresponding continuity
assumption is satisfied byf ).

The following theorem summarizes an essential part
of the story of residuation.

Theorem 6.Let f be an isotone mapping between
two complete latticesX and Y. The following three
statements are equivalent: (1) For everyb, there exists
a greatest subsolution off (x) = b; (2) The mapping
f is lsc and f (ε) = ε (whereε denotes the bottom
element in any complete lattice); (3) There exists an
isotone mappingf ♯ from Y to X such that

f ∘ f ♯ ¹ I (identity inX), (15a)

f ♯ ∘ f º I (identity inY). (15b)

Then f is saidresiduatedand f ♯, which is uniquely
defined by (15), and which isusc, is called itsresid-
ual. In addition,

f ∘ f ♯ ∘ f = f ; f ♯ ∘ f ∘ f ♯ = f ♯ . (16)

Of course, an analogous theorem about dually residu-
ated (usc) mappings and least supersolutions can also
be stated: the dual residual is denotedf ♭ and( f ♯)♭ =

f (when f is residuated). So far, we have considered
the residuals of the mappingsx 7→ a⊗x andx 7→ x⊗

a, denotedy 7→ a ◦\y and y 7→ y◦/a, resp., including
the case whena is a matrix (see (13)). Indeed, there
is already a rich calculus associated with residuation
(see (Baccelliet al., 1992b, §4.4)) but much remains
probably to be done in this matter, including software.

As a specialization of Rem. 5 to the case whenf
is a (m × n)-dimensional matrixA, Ax = b has a
solution iff A(A ◦\b) = b. In particular, to build a
minimal generating set from a given finite generating
set ofm columns vectorsai of dimensionn, we have
to apply the previous test for eachi = 1, . . . , m, with
b = ai and A composed of the rest of vectors (those
different fromai and which have not yet been elim-
inated) and to eliminate thisai if the test is satisfied
(see e.g. (Gaubert and Max Plus, 1997) and references
therein on this topic of ‘weak bases’).

4.3 Projection on image parallel to kernel

With usual vector spacesU, X, Y, let B : U → X and
C : X → Y be two linear operators. The projector5C

B
onto imB parallel to kerC exists and is well defined
iff X is the direct sumof im B and kerC (that is,
X = im B+kerC and imB∩kerC = {0}); moreover,
if B is injective andC is surjective4 , then

5C
B = B(C B)−1C . (17)

With semimodules, keeping the definition kerC =

{x | C(x) = ε} does not seem to provide a very
interesting notion. This motivates the following set-
theoretic definition.

Definition 7.(Kernel). LetC : X → Y denote any
mapping between moduloids. We callkernelof C (de-
noted kerC), theequivalence relationoverX defined
as:

x
kerC
∼ x′ ⇔ C(x) = C(x′) ⇔ x ∈ C−1(C(x′)

)

.

(18)

Definition 8.(Projection). LetC : X → Y and B :
U → X denote any mappings between moduloids. For
anyx ∈ X, we callprojection of x ontoim B parallel

to kerC anyξ ∈ im B such thatξ
kerC
∼ x.

The questions of existence and uniqueness of the pro-
jection for given operatorsB and C is studied in
(Cohenet al., 1996) for residuated (or dually resid-
uated) operators and in (Cohenet al., 1997) for linear
operators, together with explicit expressions for the

4 The subspaces imB and kerC are important, not the operatorsB
andC for which a certain flexibility exists.



projection. A brief informal summary is given here-
after. Let first assume thatB andC are residuated and
introduce

5C
B = B ∘ (C ∘ B)♯ ∘ C (19)

(to be compared with (17)).

• Existenceof projections for allx is equivalent to
the conditionC = C∘5C

B (saying thatξ = 5C
B(x)

is in the same class asx mod kerC), and also to
the condition imC = im (C ∘ B).

• Uniquenessis equivalent to the conditionB =

5C
B ∘ B (saying that anyx ∈ im B remains in-

variant by5C
B), and also to the condition kerB =

ker(C ∘ B).

With matrices over, say, the max-plus algebra (they
are also residuated operators), when existence and
uniqueness are granted, the expression (19) of the
projector (which is easily proved to be linear in this
situation) becomes:

5C
B =

(

B◦/(C B)
)

C = B
(

(C B) ◦\C
)

. (20)

Note that e.g.B◦/(C B) is, by definition (residuation in
the matrix algebra), a matrix, and the above expression
is understood as a product of matrices (which them-
selves arise from residuation of multiplication in sets
of matrices).

Examples are easy to figure out in two-dimensional
max-plus semimodules but some more general phe-
nomena require at least dimension 3 to show up. In
making drawings for homogeneous residuated opera-
tors (in particular linear operators), one must keep in
mind a few facts.

• The image of an operatorB such thatB(αx) =

αB(x) for all vectorsx and scalarsα is invariant
by translation along the first diagonal, sinceαx
means adding (in the conventional sense) the same
constantα to all coordinates.

• Also, for C with the same property, ifx
kerC
∼ x′,

thenαx
kerC
∼ αx′, that is, equivalence classes can

be derived from each other by translations along
the first diagonal.

• Finally, C is injective over imC♯ (this is a con-
sequence of (15b)), that is, equivalence classes
intersect imC♯ at a single point.

Consider Fig. 5 in which three situations with(2×2)-
dimensional matrices are represented. The grey area

x z

a b c

Fig. 5. Existence and uniqueness of projection

is that of imB, the dotted area is that of the ‘interior’

of im C♯ in which equivalence classes of kerC are
singletons, and the horizontal and vertical half-lines
represent other equivalence classes in the rest of the
plane. Hence not all equivalence classes have the same
topology. Part a of the figure displays a case with
existence of projection but no uniqueness everywhere
(some classes crosses the grey area in more than one
point): part b represents the case with uniqueness
but no existence everywhere (some classes do not
reach the grey area); part c is the case with existence
and uniqueness everywhere5 . One may consider the
last situation as that of ‘direct sum of kerC and
im B’, but in an unusual sense (also different from
Wagneur’s (1994) meaning): in (Cohenet al., 1997),
the terminology ‘direct factors’ for imB and kerC is
used.

In the same paper, it is shown that the image or kernel
associated with a matrixB need not admit a direct
factor (unlike in classical linear vector spaces), and
that a necessary and sufficient condition for this to
hold true is thatB is regular, meaning that there exists
ag-inverse B† which satisfies, by definition,B B†B =

B. However, dimension 3 at least is required to show
nonregular matrices.

More generally, for residuated mappings, even out of
the case of existence and uniqueness,5C

B as given
by (19) has a precise meaning: when applied tox,
it provides the greatest elementξ in im B which is
‘subequivalent’ tox mod kerC, that is, such that
Cξ ¹ Cx. The projector5C

B can be decomposed in
two moves (see Fig. 5b) once written as

5C
B = B ∘ B♯ ∘ C♯ ∘ C . (21)

First, z = C♯ ∘ C(x) is the greatest element in the
equivalence class ofx mod kerC; then, ξ = B ∘

B♯(z) is the greatest element in imB which is less than
z. Notice that ifx is already in imB, thenξ is truly
equivalent tox mod kerC (for thosex, existence is
granted).

When B and C are matrices, it is an open problem
to give necessary and sufficient conditions for5C

B
to be linear: a priori, this operator involves a mix of
max, min and+ operations; the case when imB and
kerC are direct factors has already been identified as
a case when this projector is linear, but it is not the
only situation when linearity is preserved. Obviously,
this issue is important for system theory since the
notion of system aggregation and of reduced —not
to say, minimal— state space representation basically
involves such projectors: starting from a linear system,
it is desirable to get a reduced system which is still
linear in the same algebra.

5 One can even show a fourth situation when neither existence nor
uniqueness is ensured everywhere: this is the case when imB and
im C♯ are not included in each other.



4.4 Applications in system theory

We return to systems described by (4). The state
values which are reachable from the canonical initial
condition ε are of course those in the image of the
reachability(or controllability) matrix6 :

R =
(

B AB A2B . . .
)

. (22)

On the other hand, two state values which are equiv-
alent modulo kerO, whereO is theobservability ma-
trix

O =
(

C⊤ A⊤C⊤ (A⊤)2C⊤ . . .
)⊤

, (23)

(⊤ stands for transposition) can be merged from the
input-output point of view. According to (Eilenberg,
1974, Prop. 5.2 and Th. 5.6)7 , from the module (in
fact essentially set-theoretic) point of view, a minimal
state ‘space’ is

Ξ = imR/ kerO , (24)

that is, the quotient of imR (which is a semimodule)
by the compatible equivalence relation (or congru-
ence) kerO which preserves the semimodule struc-
ture. By comparison with realization theory over
fields, the difficulty is that the ‘minimal’ moduloid
4 = imR/ kerO, which is isomorphic to the image
of the Hankel matrix of the system (Fliess, 1975), is in
general not free. The following questions must then be
addressed regarding this abstract construction which,
by construction, retains a completely reachable and
observable state ‘space’.

• Can the abstract semimoduleΞ be given a more
concrete representation (or, otherwise stated, what
is the state vector corresponding to this minimal
‘set-theoretic’ representation)?

• When does minimality from the ‘set-theoretic’
point of view imply minimality from the com-
putational point of view (that is, for the number
of coordinates of some state vector which allows
one to write down an internal representation of the
form (4))?

• Is there a way to relate this minimal dimension-
ality with that suggested by the transfer function
computation (although this problem of minimal
realization of transfers is itself an open problem),
that is, to relate the geometric and the algebraic
points of view?

At this stage, there is, to the best of our knowledge,
no definite answers to those questions. Observations
made on examples suggest that the situation is not as
simple as in classical linear system theory, but perhaps
not so hopeless. We use the rest of available space
to give a few unpublished results (without proof) and
discuss some further examples.

6 Unlike in classical linear algebra, it may be necessary to keep all
powers ofA up to infinity to get the whole image of this matrix. The
same remark applies to the kernel ofO to come.
7 The treatment of (Eilenberg, 1974), which is in the case of rings
and modules, can be readily extended to semirings and semimod-
ules.

In order to find a concrete representation of elements
of Ξ , we consider the (canonical) greatest represen-
tative ξ in each equivalence class ofx (which we
suppose to be a reachable state, i.ex ∈ imR): it is
given byξ = 5O

R
(x).

Theorem 9.If the trajectoryx(·) follows the dynam-
ics (4) and is issued from the initial conditionε
(or from any reachable initial state), thenξ(k) =

5O

R

(

x(k)
)

follows the (a priori nonlinear) dynamics

ξ(k) = 5O

R

(

Aξ(k − 1) ⊕ Bu(k)
)

, (25a)

y(k) = Cξ(k) , (25b)

and it produces exactly the same output trajectoryy(·)

as x(·). Hence, it is another realization of the input-
output transfer matrix.

The proof of this theorem will appear in a forthcoming
paper. The advantage of this result is that the stateξ

lives in a minimal set in terms of set inclusion. Its
a priori drawback is that the dynamics is potentially
nonlinear (unless5O

R
is linear, at least over reach-

able states) and it is unclear that the dynamics can
be written in a smaller dimensional semimodule (for
the time being,ξ has the same dimension asx). Ex-
amples show that it may happen thatξ lives in a set
with many ‘extremal points’, which is no good sign
for minimizing the dimension of the representation.
Nevertheless, for all examples worked out, it seems
that this set intuitively provides an indication of the
minimal dimension needed to realize the transfer (in
that, a surface, even with many ridges and corners, is
a two-dimensional variety inR3, and a broken line is
a one-dimensional one).

Before showing examples, observe that, again,5O

R

can be viewed as the composition of5O = O♯ ∘ O

and5R = R ∘ R♯. These two projectors satisfy the
following (kind of Lyapunov) implicit equations:

5O = A♯ ∘ 5O ∘ A ∧ C♯ ∘ C , (26a)

5R = A ∘ 5R ∘ A♯ ⊕ B ∘ B♯ . (26b)

From these equations, an interpretation of the stateξ(k)

can be given: when applied tox(k), 5O first looks for
the greatest state value at stagek which would gen-
erates future outputs not exceeding those contributed
by x(k) (independently of the contribution of future
inputs which are yet unknown and whose effects will
be superimposed by linearity); then, since this greatest
compatible state value may not be a reachable state,
5R finds its best approximation from below which
is reachable. In light of this interpretation, we are not
far from the computation of (12)–(14), except that we
are here in a causal situation when future inputs are
unknown.

Again, an important issue is: when is5O

R
a linear

operator (with the consequence of the dynamics (25a)
being then also linear)? Although some sufficient con-



ditions are known, we leave this subject as an open
issue.

4.5 Working out an example

Consider the matricesA, B, C given in (5). It turns
out that the computation of (22) can be stopped at
the power 1 ofA (that is, the column rank ofR —
defined as the cardinality of a minimal generating set
of the column space ofR — is 2); the computation
of (23) can be stopped at the power 2 (the row rank
of O is 3). The calculations of5O, 5R, and finally
of 5O

R
= 5R ∘ 5O yield nonlinear expressions

(however, it turns out that5O

R
is max-plus linear when

restricted to imR). Explicitly,

5O

R





x1
x2
x3



 =
(

(2x1 ⊕ 1x3) ∧ x2
)





−2
e

−1



 ,

which reveals that im5O

R
is parametrized by a scalar!

In addition, this image is the eigenspace of matrixA
(but no general conclusion should be derived from this
last observation which is certainly due to the dimen-
sion 1 of the minimal realization). The remarkable
fact is that this geometrical dimension of im5O

R
is the

same as the order of the realization derived from the
transfer function calculation and shown at Fig. 2.

The same calculations can be conducted with the
variant of the TEG of Fig. 1 already used at §2.4,
which led to the transfer function shown in (9), and
to the two-dimensional realization shown at the right-
hand side of Fig. 4. This variant differs only by matrix
B which is equal to

(

ε 1 ε
)⊤. Hence, onlyR need

be calculated again. Now,R has a column rank equal
to 3, and5O

R
is nonlinear again (even on imR).

Explicitly,

5O

R





x1
x2
x3



 =





(−2)α

α

β





with α =
(

2x1 ⊕1x3
)

∧ x2, β =
(

1x1 ∧ (−1)x2
)

⊕ x3.
Therefore, there exists a two-dimensional nonlinear
parametrization of im5O

R
in accordance with the min-

imal order found for the transfer function realization.

5. CONCLUSION

In the few lines left, let us insist on applications
which did not receive enough attention in this paper
(because of the lack of space) and also in the lit-
erature in general (with of course a few exceptions,
see e.g. (Braker, 1993) in transportation or (Cohenet
al., 1985) in manufacturing), but which deserve more
interest for themselves, and also for their potential to
suggest new theoretical questions. On the theoretical
side, identification end adaptive control, as initiated
by Menguy (1997), are also promising directions of
investigation.
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