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Abstract

Modeling and analysis of a specific class of Discrete

Event Systems lead to introduce an exotic algebra

of formal series (dioid algebra). In particular, the

behavior of these systems is characterized by com-

puting transfer matrices. In this paper, we study

the algebraic problems which arise when consider-

ing rational computations in this particular dioid.

The main theorem states that rational elements are

periodic, in the sense they represent the eventual

periodic behavior of Timed Event Graphs. Then

the algebra of periodicities is investigated. Some

formulae and algorithms are presented. In particu-

lar, we show how the computation of the periodic

behavior is related to the Frobenius problem for lin-

ear diophantine equations. These algorithms have

been implemented in MAPLE. An application to a

simple flowshop is presented.

Introduction

Our approach follows the Linear System The-
ory for Discrete Event Systems developed by
Cohen, Dubois, Moller, Quadrat, Viot (see
[2, 3]). This theory extends to a restricted class
of Discrete Event Systems the main concepts of
Control Theory such as transfer function and
state-space representation. The first part of
the paper reviews the algebraic tools needed to
deal with Timed Event Graphs, summarizing
the presentation given in [3]. We first explain

∗Domaine de Voluceau, 78153 Le Chesnay Cedex

France, e-mail gaubert@seti.inria.fr
†Domaine de Voluceau, 78153 Le Chesnay Cedex

France, e-mail klimann@seti.inria.fr

how Timed Event Graphs can be modeled us-
ing dater functions, shift operators in dating
and shift operators in counting. Then we fo-
cus on the algebraic properties of shifts. This
leads to the introduction of a specific algebra
of formal series called MinMax〈〈γ,δ〉〉. Solving
the state equation for Timed Event Graphs re-
sults in making rational computations in this
algebra, that is computing the transfer ma-
trix of the system, H = CA∗B (A∗ plays a
role analogous to (sI − A)−1 in classical the-
ory). We study the properties of rationals.
The important theorem 4.11 characterizes ra-
tional series as periodic series, i.e. series corre-
sponding to a periodic behavior of the system.
Then we investigate the algebra of periodici-
ties, i.e. the way periodicities are transformed
when systems are put in parallel (proposition
5.3), in cascade (proposition 5.5) and in feed-
back. The results can be summarized by saying
that the slowest periodicity is absorbing, which
is very natural when dealing with Timed Event
Graphs. This is the simple case. When the sys-
tems which are put in cascade have the same
periodic slope (the same periodic throughput),
some more complex “arithmetical” features ap-
pear. This corresponds to the case when the
critical subgraph of the Timed Event Graphs is
not reduced to a single circuit. In this case,
the computation of the transient behavior is
closely related with the “Frobenius problem”
for Linear Diophantine equations. We conclude
by shortly presenting an application to a sim-
ple manufacturing system (flowshop), obtained
with our current implementation in MAPLE.

1 Modeling Timed Event Graphs

1.1 Dater equations

We refer the reader to [3] where it is explained
in detail how Timed Event Graphs can be mod-
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eled from the dioid point of view. We just
recall here the few basic facts needed for our
purpose. Whith each transition i of an event
graph, we associate a dater function, which is
a map Z → Z ∪ {±∞}, n 7→ xi(n), defined by:

xi(n) = t ⇔ “the firing numbered n of the
transition i occurs at date t”

Dater functions are increasing. The restriction
n ∈ Z is related to the discrete nature of the
events, and we assume that the time only takes
integer or infinite values (xi(n) ∈ Z ∪ {±∞}).
This means there is a clock giving absolute
times, and all the firings occur only at these
times. Allowing xi(n) = −∞ or xi(n) = +∞
allows modeling situations when all the firings
up to n have already occurred before we con-
sider the system (xi(n) = −∞), or the firing
numbered n never occurs (xi(n) = +∞). For

=
initial marking of

the place =
holding time of

tokens in the place

u y
x1 x2

Figure 1: A simple Timed Event Graph

instance, for the event graph of Figure 1, it is
immediate to obtain the following inequalities:

x1(n) ≥ max[5+x1(n−1), 3+x2(n−3), u(n)]
x2(n) ≥ max[1+x1(n−2), 2+x2(n−2), 1+x2(n−1)]
y(n) ≥ x2(n)

(1)

Of course, the solution of (1) is not unique.
We have to make the additional assumption
that the transitions are fired as soon as pos-
sible (earliest behavior), which is equivalent to
selecting the least solution of (1).

1.2 Operator representation

Let us denote by T the set of dater functions
(“signals”). The elementary shift in dating

δ : T → T and the elementary shift in counting
γ : T → T are defined by γx(n) = x(n−1) and
δx(n) = x(n) + 1. The set of operators T T is
naturally endowed with two laws: -the addition
(denoted by ⊕) corresponding to the max of
signals, -the composition product, denoted as
usual by . or concatenation. With these nota-
tions, we write for instance x2(n−2) = γ2x2(n)
and max[2+x2(n−2), 1+x2(n−1)] = (γ2δ2⊕
γδ)x2(n). Thus, (1) rewrites as follows:











x1 ≥ γδ5x1 ⊕ γ3δ3x2 ⊕ u
x2 ≥ γ2δx1 ⊕ (γ2δ2 ⊕ γδ)x2
y ≥ x2

(2)

This system can be written in a standard state-
space form:

x ≥ Ax⊕Bu, y ≥ Cx (3)

where A,B,C are matrices the entries of which
are sum of shift operators. The main concern
of this paper is to find the minimal solution of
(3) in the general case by means of effective al-
gorithms. The solution (x, y) (i.e. all the dater
functions associated with transitions and out-
puts) will provide a complete knowledge of the
earliest behavior of the Timed Event Graph.

Two examples of this approach, applied to this
simple Timed Event Graph and to a more com-
plex one corresponding to a flexible workshop
can be found in Section 7.

2 Algebraic model

2.1 Absorption properties of shift oper-
ators

Since γ and δ commute, it should be clear that
the only operators we need to model Timed
Event Graphs can be written as finite sums of
operators γnδt (with n, t ∈ N). Conversely,
given an operator L =

⊕p
i=1 γ

niδti , we may
ask whether such a decomposition with respect
to γ and δ is unique. This is not the case
because we have important absorption prop-
erties. First, if t ≥ t′, then (δt ⊕ δt

′
)x(k) =

max(t + x(k), t′ + x(k)) = max(t, t′) + x(k) =
t + x(k) = δtx(k). Similarly, let n ≥ n′. We
have: (γn ⊕ γn

′
)x(k) = max(x(k − n), x(k −
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n′)) = x(k − n′) = γn
′
x(k), for the dater func-

tion k 7→ x(k) is increasing and k−n ≤ k−n′.
This implies the following fundamental rules:

γn ⊕ γn
′

= γmin(n,n′) (4)

δt ⊕ δt
′

= δmax(t,t′) (5)

2.2 The MinMax〈〈γ,δ〉〉 algebra

We now describe the algebraic structure which
reflects the properties of shift operators. Let us
denote by B = {ε, e} the set of Booleans, with
addition ⊕ and product ⊗, ε as zero and e as
the unit. B〈〈γ,δ〉〉 denotes the set of formal series
with indeterminates γ, δ, boolean coefficients,
and exponents in Z, endowed with the usual
addition ⊕ and product ⊗. Indeed, a formal
series is a mapping Z

2 → B, (n, t) 7→ s(n, t). s
admits an unique expression

s =
⊕

n,t∈Z

s(n, t)⊗ γn ⊗ δt. (6)

Clearly, ⊕ is idempotent ((∀s) s ⊕ s = s). ⊕
and ⊗ both are commutative monoid laws over
B〈〈γ,δ〉〉, ⊗ is distributive with respect to ⊕ (i.e.
(s⊕ s′)⊗ r = s⊗ r⊕ s′⊗ r) and ε is absorbing.
Such a structure is known as a commutative-
idempotent-semiring with absorbing zero, or
simply as a commutative dioid (see [3]). As
usual, we will omit the ⊗ sign and simply write
s(n, t)γnδt instead of s(n, t)⊗ γn⊗ δt. It is im-
portant to notice that there is a natural order
associated with⊕ and which is compatible with
the product, namely

s ≤ r ⇐⇒ s⊕ r = r.

The ordered set (B〈〈γ,δ〉〉,≤) is complete (i.e.
every subset X admits a least upper bound,
naturally denoted by

⊕

x∈X x). Moreover, the
infinite distributivity law holds:

(
⊕

x∈X
x)y = (

⊕

x∈X
xy). (7)

Thus, ((B〈〈γ,δ〉〉,⊕,⊗) is a complete dioid [3].

The support of a series s is defined by
Supp(s) = {(n, t) ∈ Z

2; s(n, t) 6= ε}. Since
s can be written as s =

⊕

(n,t)∈Supp(s) γ
nδt, it

is clear Boolean formal series are characterized

by their support. When Supp(s) is finite, s is
defined to be a polynomial. The subdioid of
polynomials will be denoted by B〈γ,δ〉.

We define the (total) degree of a series s
as the upper bound of Supp(s) : deg(s) =
(degγ(s), degδ(s)) = sup Supp(s). The val-
uation is defined dually.

Examples 2.1 ε ⊕ γnδt = γnδt, (e ⊕
γ3δ2)(δ−4 ⊕ γ5δ−4) = δ−4 ⊕ γ5δ−4 ⊕ γ3δ−2 ⊕
γ8δ−2. Because negative exponents are al-
lowed, γ−1 is a polynomial. deg(γ ⊕ δ2) =
sup[(1, 0), (0, 2)] = (1, 2).

Proposition 2.2 The only invertible elements
in B〈〈γ,δ〉〉 are monomials.

Proof γ−nδ−t is the inverse of γnδt. Con-
versely, noticing that deg(ss′) = deg(s) +
deg(s′), val (ss′) = val (s) + val (s′) and
deg(s) ≥ val (s), ss′ = e implies 0 = deg(e) −
val (e) = (deg(s)−val (s))+(deg(s′)−val (s′)),
which is possible only if deg(s) − val (s) = 0
and deg(s′) − val (s′) = 0. This implies s is a
monomial. �

Before carrying on the study of formal series,
we have to introduce a new operation: the star.
Roughly speaking, the star plays a role analo-
gous to the inverse in classical algebra. This is
why the star is called a rational operation.

Definition 2.3 (Star operation) a∗ = e ⊕
a⊕ a2 ⊕ a3 ⊕ . . .

Since B〈〈γ,δ〉〉 is a complete dioid, this infinite
sum is well defined. The following properties
are straightforward:

(i) (a∗)∗ = a∗

(ii) (a⊕ b)∗ = a∗b∗

(iii) a∗ = a∗a∗
(8)

In the B〈〈γ,δ〉〉 algebra, we have not yet trans-
lated the absorption rules (4),(5). This can be
done by taking the quotient of B〈〈γ,δ〉〉 by an
appropriate congruence. Indeed, the first ab-
sorption rule implies e⊕ γ = e (this is the case
n′ = 0 and n = 1). Writing e ⊕ γ = e ⊕ eγ =
e⊕ (e⊕ γ)γ, we obtain after an immediate in-
duction that:

e = e⊕ γ ⊕ γ2 ⊕ γ3 ⊕ . . . = γ∗ (as operators)
(9)
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This suggests that e and γ∗ should be identi-
fied. For the same reason, the second absorp-
tion rule requires e be identified with (δ−1).
This identification is done by introducing the
following quotient:

Definition 2.4 (MinMax〈〈γ,δ〉〉 algebra)
The map ϕ : B〈〈γ,δ〉〉 → B〈〈γ,δ〉〉, s 7→
sγ∗(δ−1)∗ is a congruence. The quotient dioid
B〈〈γ,δ〉〉/ϕ is called the MinMax〈〈γ,δ〉〉 dioid.

Since γ∗γ∗ = γ∗, we have ϕ(e) = γ∗δ∗ =
γ∗(γ∗δ∗) = ϕ(γ∗). This shows that e and
γ∗ belong to the same equivalence class. Of
course the same property holds for (δ−1)∗,
which shows that ϕ realizes the desired identifi-
cation: rules (4),(5) are valid in MinMax〈〈γ,δ〉〉.
In the following, we will deal with objects
in MinMax〈〈γ,δ〉〉 without precising they are
equivalence classes modulo ϕ. The equivalence
classes of polynomials will be again called poly-
nomials, and the subdioid of polynomials will
be denoted by MinMax〈γ,δ〉. MinMax〈〈γ,δ〉〉 is
complete, and the lower bound will be denoted
by ∧.

We now present a very useful graphic repre-
sentation of elements of MinMax〈〈γ,δ〉〉, which
makes it obvious how the simplification rules
work.

γ3δ3

γ2δ2

γ2e

t (time)

n(number

of tokens)

Figure 2: Graphic representation of p = e ⊕
γ2δ2 ⊕ γ2 ⊕ γ3δ3

Graphic representation It is immediate to
check that given s ∈ B〈〈γ,δ〉〉, there is a maxi-
mal representative of the equivalence class of s
modulo ϕ, namely ϕ(s) = sγ∗(δ−1)∗. Then, a

monomial γνδτ ∈ B〈〈γ,δ〉〉 can be represented by
a point of the Z

2-plane with coordinates (ν, τ),
and the class of s by the collection of points
corresponding to ϕ(s), i.e. Suppϕ(s). For in-
stance, to the equivalence class of γ2δ2 corre-
sponds the “south-east” cone of the Z

2-plane
{(2 + n′, 2 − t′); (n′, t′) ∈ N

2}. More gener-
aly, an arbitrary element of MinMax〈〈γ,δ〉〉 is
simply represented by an union of south-east
elementary cones of Z2. Addition corresponds
to union and product to the usual addition of
subsets. For instance, Figure 2 represents the
polynomial p = e ⊕ γ2 ⊕ γ2δ2 ⊕ γ3δ3. The
monomial γ2 can be droped since it lies in the
“shadow” of γ2δ2.

2.3 Canonical form of polynomials

In the case of polynomials, there exists a canon-
ical form which is simpler than the maximal
representative already mentioned.

Proposition 2.5 Let S ∈ MinMax〈γ,δ〉.
There exists a unique minimal s ∈ B〈γ,δ〉
among the representatives of S.

Proof (i) existence: let s ∈ B〈γ,δ〉 be a rep-
resentative of S. We write s as a sum of n
monomials: s =

⊕n
i=1 ai. We say the mono-

mial ai is redundant if ϕ(
⊕

j 6=i ai) = ϕ(s). If s
is not minimal, we can eliminate a redundant
monomial, and so on. Hence we obviously get
a minimal representative.

(ii) uniqueness: let us now assume that p =
⊕

i∈I ai and q =
⊕

j∈J bj both are minimal
representatives (ai, bj being monomials). Let
c = γ∗(δ−1)∗. ϕ(p) = ϕ(q) is equivalent
to (

⊕

i∈I ai)c = (
⊕

j∈J bj)c, i.e.
⊕

i∈I aic =
⊕

j∈J bjc Since e ≤ c, we have ai ≤ aic ≤
⊕

j∈J bjc, and there exists j ∈ J such that
ai ≤ bjc. Thus aic ≤ bjc

2 = bjc. For the
same reason, bjc ≤ akc for some k. Indeed,
we must have k = i (otherwise, ai should be
redundant), hence ϕ(ai) = aic = bjc = ϕ(bj).
This implies ai = bj since the restriction of ϕ
to the set of monomials is clearly injective (cf.
the graphic interpretation of ϕ). This shows
that p = q and ends the proof. �

The geometric meaning of the minimal rep-
resentative is obvious. In Figure 2, the mini-
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mal representative of p corresponds to the set
of “north-west” corners of its maximal repre-
sentative, namely p′ = e ⊕ γ2δ2 ⊕ γ3δ3 (cor-
responding to the black points). The minimal
representative has been obtained by eliminat-
ing the redundant monomial γ2 (black square).

Proposition 2.5 allows extending the defi-
nition of support, degree and valuation to
MinMax〈γ,δ〉. These concepts are now defined
in terms of canonical representatives. The
number of monomials of the canonical repre-
sentative of p is called the complexity of p (de-
noted by compl(p)).

Remark 2.6 In MinMax〈〈γ,δ〉〉, there is in gen-
eral no canonical representative. Consider δ∗ =
e⊕δ⊕δ2⊕. . .. We also have δ∗ = δk⊕δk+1⊕. . .
for all k. This suggests that the minimal rep-
resentative of δ∗ should be something like δ+∞

which does not exist in MinMax〈〈γ,δ〉〉.

3 System Theory

We have now provided enough material to solve
at least “formally” our main problem (3). The
star notation which has been defined for scalars
of B〈〈γ,δ〉〉 (and hence of MinMax〈〈γ,δ〉〉) obvi-
ously extends to Mn,n(MinMax〈〈γ,δ〉〉), the al-
gebra of n × n square matrices with entries in
MinMax〈〈γ,δ〉〉. The star is related to solving
equations by the following well known result
[3]:

Proposition 3.1
Let A ∈ Mn,n(MinMax〈〈γ,δ〉〉) and b ∈
(MinMax〈〈γ,δ〉〉)n. The least solution of

x ≥ Ax⊕ b (10)

is given by A∗b.

Thus, the least solution of (3) is given by x =
A∗Bu, y = CA∗Bu. H = CA∗B is called the
transfer matrix of the system.

Usually, the transfer function is characterized
as the “impulse response” of the system. This
still holds in the MinMax〈〈γ,δ〉〉 algebra, and
has important consequencies. First, we as-
sociate a formal series with a dater function
n 7→ x(n) in a natural way:

Sx =
⊕

n∈Z

γnδx(n) (11)

with the convention δ−∞ = ε and δ+∞ = δ∗.
Conversely, given a series s, the only dater
function Ds such that s = Sx is given by:

Ds = sup{t, γnδt ≤ sx} (12)

This correspondence allows identifying signals
and formal series. All the notions already de-
fined for series (support,valuation,. . . ) are ob-
viously extended to signals.
Let us now consider a system u 7→ y with

transfer series: H =
⊕

p∈Z
γpδDH(p). Apply-

ing the definition of shift operators, we have
Hu(n) = maxp∈Z[DH(p) + u(n − p)]. Then,
the input output-relation for dater function
is given by the following max-convolution of
daters:

y(n)
def
= (DH ⋆ u)(n) = max

p∈Z

[DH(p) + u(n− p)]

(13)
The translation of (13) using formal series is
simply a product:

Sy =
⊕

n∈Z

γnδy(n) =

= (
⊕

n∈Z

γnδDH(n))(
⊕

n∈Z

γnδu(n)) = HSu

Because e =
⊕

n≥0 γ
nδ0, the dater function as-

sociated with e is given by De(n) = −∞ if
n < 0 and De(n) = 0 if n ≥ 0. This means that
the events numbered 0, 1, 2, . . . occur at date 0.
For this reason, e is called the impulse, it mod-
els the case when an infinite “quantity” of in-
puts is available at date 0. Since Sy = He = H,
the dater function associated with H deter-
mines the output y corresponding to an im-
pulse (impulse response).

4 Rationality and periodicity

The rational closure of a subset E of a dioid
is by definition the smallest subdioid F such
that E ⊂ F and F is rationally stable (i.e. sta-
ble for the operations ⊕,⊗,and ∗). The no-
tation E∗ for F is standard. When modeling
systems, only causal polynomials occur, that
is polynomials whith nonnegative exponents in
γ in δ. Let us denote by MinMax+〈γ,δ〉 the
subdioid of causal polynomials. Then, trans-
fer matrices are objects of the form CA∗B
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with A∗ ∈ [Mn,n(MinMax+〈γ,δ〉)]∗, C ∈
Mp,n(MinMax+〈γ,δ〉) and
B ∈ Mn,q(MinMax+〈γ,δ〉). Since

[Mn,n(MinMax+〈γ,δ〉)]∗=Mn,n[(MinMax+〈γ,δ〉)∗]

(this is simply a part of the Kleene-
Schützenberger Theorem, see [3] for a proof
specific to this context), we are reduced to com-
puting the stars of scalars. Indeed, the com-
putation of A∗ provided the stars of scalars
are known is no more than the Gauss elimi-
nation algorithm applied to the matrix equa-
tion X = AX ⊕ Id. The simplest algorithm
is perhaps the Jacobi-like variant developed in
[6, 5]. There is no difficulty here and we shall
only consider the scalar case.

Definition 4.1 (Rational series)
We call rational series, or simply rationals the
series belonging to the rational closure R of the
subdioid of causal polynomials.

Definition 4.2 (Periodicity) Let (ν, τ) ∈
(N \ {0}×N \ {0})∪ {(1, 0), (0,+∞)}. A dater
function n 7→ d(n) is (ν, τ)-periodic if there ex-
ists N ∈ N such that:

(∀n ≥ N) d(n+ ν) = d(n) + τ (14)

Periodicity has a straightforward interpreta-
tion for Timed Event Graphs. (14) means that
after a transient behavior of length N , every
τ units of time, ν firings occur. The periodic
throughput or the periodic slope of d is the ratio

λ(d)
def
= τ

ν
. The minimal value ofN is called the

length of the transient, and the minimal value
of (ν, τ) is called the periodicity of d. The de-
generate cases (ν, τ) = (1, 0) and (0,+∞) rep-
resent respectively the situation when an infi-
nite number of event occur in a finite time and
when no events occur after the N − 1 th.

Remark 4.3 Indeed, definition 4.2 is not the
usual one for periodic functions. Since dater
functions are increasing, they cannot be peri-
odic in the classical sense and this is not confus-
ing. An equivalent formulation is to introduce
d̃(n) = d(n + 1) − d(n) and to observe that
(14) implies (∀n ≥ N) d̃(n+ ν) = d̃(n) which
means that the increases of d are eventually
periodic in the usual sense.

Definition 4.4 (Periodic series) A series
s ∈ MinMax〈〈γ,δ〉〉 is (ν, τ)-periodic if the dater
function Ds associated with s is (ν, τ)-periodic.

The following provides an algebraic character-
ization of periodic series:

Proposition 4.5 s is (ν, τ)-periodic iff there
exists two polynomials p, q such that

s = p⊕ q(γνδτ )∗ (15)

This is called a periodic representation of s,
with periodicity γνδτ .

Proof The degenerate cases being straight-
forward, we assume τ 6= 0 and τ 6= +∞.
Let s =

⊕

n∈N
γnδDs(n) be (ν, τ)-periodic with

transient of lenght N . We have:

⊕

n≥N

γnδDs(n) = (
n=N+ν−1

⊕

n=N

γnδDs(n))⊗

⊗(e⊕ γνδτ ⊕ γ2νδ2τ ⊕ . . .) =

= (
n=N+ν−1

⊕

n=N

γnδDs(n))(γνδτ )∗

Taking

p =
N−1
⊕

n=0

γnδDs(n) and q =
n=N+ν−1

⊕

n=N

γnδDs(n)

We obviously get a representation like (15).
Conversely, assume we have Ds =

max(Dp,Dq(γnδt)∗) and Dq(γnδt)∗ = Dq ⋆
D(γnδt)∗ . The conclusion results from observing
that:

Lemma 4.6
-(i) The max of two (ν, τ)-periodic functions is
(ν, τ)-periodic.
-(ii) If d has finite support and d’ is (ν, τ)-
periodic, then the max-convolution d ⋆ d′ is
(ν, τ)-periodic.

Proof of the Lemma: (i) is obvious. Since

d ⋆ d′(n) = max
u∈Supp(d)

[d(u) + d′(n− u)] (16)

and d has finite support, (16) expresses d ⋆ d′

as the max of a finite number of functions n 7→
d(u) + d′(n − u) which have periodicity (ν, τ).
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By applying several times the point (i) of the
Lemma, we get that d ⋆ d′ is (ν, τ)-periodic.
This concludes the proof of lemma 4.6 and of
proposition 4.5. �

Considering (γδ)∗ = (e⊕ γδ)(γ2δ2)∗, we see
that periodic representations are not unique.
However, (γδ)∗ obviously seems to be simpler
than (e ⊕ γδ)(γ2δ2)∗. We explain now which
minimality is involved here, in order to obtain
a canonical form of periodic series.

Definition 4.7 (Proper representations)
s = p⊕ q(γνδτ )∗ is proper if: (i) deg p < val q
and (ii) deg q − val q < (n, t).

The meaning of these two conditions is clear:
(i) guarantees there is no overlapping between
the monomials of p and q, similarly, (ii) guaran-
tees the monomials of q,qγνδτ ,qγ2νδ2τ , . . . are
all different. In the case of proper representa-
tions, p can be interpreted as a transient, and
q as a pattern which is moved by the successive
translations: e, γνδτ , γ2νδ2τ ,etc.

Definition 4.8 (Reduced representation)
Given two proper periodic representations P :
s = p⊕ q(γνδτ )∗ and P′ : s = p′ ⊕ q′(γν

′
δτ

′
)∗

of series s, we say that P is simpler than P′

(denoted by P � P′) if (ν, τ) ≤ (ν ′, τ ′) and
deg(p) ≤ deg(p′).

The � relation is obviously reflexive and tran-
sitive. It is also antisymmetric, for if deg p and
(ν, τ) are known, p and q are necessarily equal
to:

p =

degγ(p)
⊕

k=0

γkδDs(k) q :=

degγ(p)+ν
⊕

k=degγ(p)+1

γkδDs(k)

Indeed, a proper representation is well deter-
mined by (N, ν, τ) with N = degγ(p) and we
shall write

P = (N, ν, τ) (17)

Theorem 4.9 A periodic series s admits a
simplest (i.e. �-minimal) periodic proper rep-
resentation, called the canonical form of s.

Sketch of proof If s = p ⊕ q(γνδτ )∗ and s =
p′⊕q′(γν

′
δτ

′
)∗ are two periodic representations,

we have to show that there exists a proper rep-
resentation s = (p′∧p)⊕q′′(γgcd(ν,ν

′)δgcd(τ,τ
′))∗,

i.e. that greatest lower bounds exist for the �
relation. This can be easily seen by reason-
ing in terms of dater functions, and proves the
uniqueness. Since the set of periodicities, to-
gether with � is artinian (by (17), we can iden-
tify it to a sub-ordered set of ((N∪{+∞})3,≤),
there exists a simplest proper representation.�

Remark 4.10 The Theorem 4.9 admits an al-
gorithmic translation, which is a bit involved
but presents no conceptual difficulties.

Theorem 4.11 (Main Theorem) The
rational series are precisely the periodic series.

Proof of theorem 4.11: In proposition 4.5, we
have shown that polynomials are periodic , i.e.:

MinMax+〈γ,δ〉 ⊂ P (18)

Since R is the smallest rationally closed sub-
dioid satisfying (18), we only have two check
that P is rationally closed to get R ⊂ P. As
the other inclusion is obvious, this will con-
clude the proof.
The next section is devoted to showing that

the set of the periodic series P is stable for
⊕, ⊗, and ∗, by means of formulae and algo-
rithms. This is the material needed for the
proof of theorem 4.11, and it is fundamental in
order to make effective rational computations
in MinMax〈〈γ,δ〉〉.

5 Rational properties of periodic
series

5.1 Sum of periodic series

Let us introduce a new operation over the set
of periodicities. The ⊔ of periodicities if the
commutative operation defined by

γνδτ ⊔ γν
′
δτ

′
= γνδτ if τ ′

ν′
< τ

ν

γνδτ ⊔ γν
′
δτ

′
= γlcm(ν,ν′)δlcm(τ,τ ′) if τ

ν
= τ ′

ν′

γνδτ ⊔ δ+∞ = δ+∞

γνδτ ⊔ γ = γνδτ

⊔ is clearly associative and idempotent.

We first consider the sum of two simple peri-
odic series:
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Proposition 5.1 Let s = γnδt(γνδτ )∗ and
s′ = γn

′
δt

′
(γν

′
δτ

′
)∗, then s⊕s′ is γνδτ ⊔γν

′
δτ

′
-

periodic. Moreover, if τ
ν

6= τ ′

ν′
, then γνδτ ⊔

γν
′
δτ

′
is the minimal periodicity.

Proof -If τ
ν
= τ ′

ν′
: we write lcm(ν, ν ′) = kν =

k′ν ′, and develop:

(γνδτ )∗ =

(e⊕ γνδτ ⊕ . . .⊕ γ(k−1)νδ(k−1)τ )(γkνδkτ )∗.(19)

Because kτ = λ(s)kν = λ(s)k′ν ′ = k′τ ′ and
gcd(k, k′) = 1, we get kτ = lcm(τ, τ ′). Thus
(19) is a γlcm(ν,ν′)δlcm(τ,τ ′)-periodic representa-
tion of s. Since a similar representation also
holds for s′, we obviously obtain the required
form for s⊕ s′.

-case τ
ν
> τ ′

ν′
. First, we need a technical result:

Lemma 5.2 Assume τ
ν

> τ ′

ν′
, and n, n′, t, t′

are arbitrary integers. Then there exists K ≥ 0
such that

γn
′

δt
′

γKν′δKτ ′(γν
′

δτ
′

)∗ ≤ γnδt(γνδτ )∗ (20)

Applying the Lemma to s ⊕ s′, we obtain the
formula:

γnδt(γνδτ )∗ ⊕ γn
′

δt
′

(γν
′

δτ
′

)∗ =

γnδt(γνδτ )∗ ⊕

⊕γn
′

δt
′

⊕ . . . γn
′+(K−1)ν′δt

′+(K−1)τ ′

which shows that s⊕ s′ has periodicity γνδτ .

Sketch of proof of Lemma 5.2. The
simplest proof consists in observing that
limn→+∞Ds(n) − Ds′(n) = +∞ (for the slope
of Ds is greater than the one of Ds′). Let p0
such that for all n ≥ p0, Ds′(n) ≤ Ds(n): it
should be clear that the monomials of s′ of val-
uation in γ greater than p0 are dominated by
s, which yields (20). �

Proposition 5.3 The sum of a two periodic
series s = p⊕q̟∗ and s′ = p′⊕q′̟′∗ is periodic
with periodicity ̟ ⊔̟′.

Proof We show that s⊕ s′ has a periodic rep-
resentation of the form:

p′′ ⊕ q′′(̟ ⊔̟′)∗ (21)

Proposition 5.1 gives the result when q and q′

are monomials. Applying again 5.1 and us-
ing the associativity and idempotence of ⊔,
it should be clear that if we add terms like
γniδti̟∗ or γnjδtj (̟′)∗ to (21), we still obtain
an expression of the same form. �

5.2 Product of periodic series

We now introduce another law which will play
for product the role ⊔ plays for sum. The ⊓
of periodicities is the commutative operation
defined by:

γνδτ ⊓ γν
′
δτ

′
= γνδτ if τ ′

ν′
< τ

ν

γνδτ ⊓ γν
′
δτ

′
= γgcd(ν,ν

′)δgcd(τ,τ
′) if τ

ν
= τ ′

ν′

γνδτ ⊓ δ+∞ = δ+∞

γνδτ ⊓ γ = γνδτ

The ⊓ is also associative and idempotent. The
set of periodicities equipped with ⊔ and ⊓ is
not a lattice, because the absorption property
̟⊔ (̟⊓̟′) = ̟ does not hold (consider ̟ =
γδ and ̟′ = γδ2). However, we do have a
weaker property which will be sufficient for our
purpose:

(̟ ⊔̟′) ⊔ (̟ ⊓̟′) = (̟ ⊔̟′) (22)

Proposition 5.4 Let s = (γνδτ )∗ and s′ =
(γν

′
δτ

′
)∗. Then ss′ is γνδτ ⊓ γν

′
δτ

′
-periodic,

and γνδτ ⊓ γν
′
δτ

′
is the minimal periodicity.

Proof
(i) Case τ

ν
= τ ′

ν′
. We have

(γνδτ )∗(γν
′

δτ
′

)∗ =
⊕

i,j≥0

γiν+jν′δiτ+jτ ′ (23)

obviously, the only possible values for iν + jν ′

are multiples of gcd(ν, ν ′). A well known result
of the theory of Linear Diophantine equations
states there exists a least n = k gcd(ν, ν ′) such
that all the multiples of gcd(ν, ν ′) greater or
equal to n can be expressed as iν+jν ′ for some
i, j ≥ 0 (this is explained with more details in
the next section). This n is called the conduc-
tor of (ν, ν ′), denoted by cond(ν, ν ′). Let us
show that:










i0ν + j0ν
′ = cond(ν, ν ′)

i1ν + j1ν
′ = cond(ν, ν ′) + gcd(ν, ν ′)

i2ν + j2ν
′ = cond(ν, ν ′) + 2 gcd(ν, ν ′) . . .

(24)
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implies










i0τ + j0τ
′ = cond(τ, τ ′)

i1τ + j1τ
′ = cond(τ, τ ′) + gcd(τ, τ ′)

i2τ + j2τ
′ = cond(τ, τ ′) + 2 gcd(τ, τ ′) . . .

(25)
In fact, multiplying (24) by λ = τ

ν
, we

have i0τ + j0τ
′ = λcond(ν, ν ′), i1τ + j1τ

′ =
λcond(ν, ν ′) + λ gcd(ν, ν ′) = λcond(ν, ν ′) +
gcd(τ, τ ′), and so on. This proves that
cond(τ, τ ′) ≤ λcond(ν, ν ′). Applying this re-
sult to ν = λ−1(λν), ν ′ = λ−1(λν ′), we
obtain the second inequality: cond(ν, ν ′) ≤
λ−1cond(λν, λν ′). This proves λcond(ν, ν ′) =
cond(τ, τ ′) and shows that (24) implies (25).
Then (23) obvioulsy rewrites:

ss′ = (
⊕

iν+jν′≤cond(ν,ν′)−1

γiν+jν′δiτ+jτ ′)⊕

⊕γcond(ν,ν
′)δcond(τ,τ

′)(γgcd(ν,ν
′)δgcd(τ,τ

′))∗

which yields a γνδτ ⊓ γν
′
δτ

′
-periodic represen-

tation of ss′ an concludes Case (i).

(ii) Case τ
ν
> τ ′

ν′
. We use again the technical

lemma 5.2: there exists k ≥ 0 such that

γkν
′

δkτ
′

(γν
′

δτ
′

)∗ ≤ γnδt(γνδτ )∗. (26)

and multiplying this identity by
(γνδτ )∗, we obtain γkν

′
δkτ

′
(γν

′
δτ

′
)∗(γνδτ )∗ ≤

(γνδτ )∗(γνδτ )∗ = (γνδτ )∗. Then the identity

(γνδτ )∗(γν
′

δτ
′

)∗ =

= (γνδτ )∗[e⊕ γν
′

δτ
′

⊕ γ2ν
′

δ2τ
′

⊕ . . .

⊕γ(k−1)ν′δ(k−1)τ ′ ⊕ γkν
′

δkτ
′

(γν
′

δτ
′

)∗.] (27)

rewrites

ss′ = (γνδτ )∗[e⊕ γν
′

δτ
′

⊕ γ2ν
′

δ2τ
′

⊕ . . .

⊕γ(k−1)ν′δ(k−1)τ ′ ] (28)

This concludes the proof of the proposition. �

Proposition 5.5 The product of two periodic
series s = p⊕q̟∗ and s′ = p′⊕q′̟′∗ is periodic
with periodicity ̟ ⊔̟′.

Proof ss′ = pp′ ⊕ pq′̟′∗ ⊕ p′q̟∗ ⊕
qq′̟∗̟′∗. Applying proposition 5.4, we ob-
tain qq′̟∗̟′∗ = p′′ ⊕ q′′(̟ ⊓ ̟′)∗. Then the
proposition 5.3 shows that ss′ has periodicity
(̟⊔̟′)⊔(̟⊓̟′) = (̟⊔̟′). This concludes
the proof. �

5.3 Star of periodic series

Let s = p⊕q̟∗. The following formula reduces
computing the star of s to computing the star
of polynomials:

(p⊕ q̟∗)∗ = p∗(e⊕ q(q ⊕̟)∗) (29)

We obtain the star of a polynomial p of
complexity n (p is the sum of n monomials
⊕n

i=1mi) by a recursive application of the rule

p∗ = m∗
n(

n−1
⊕

i=1

mi)
∗ (30)

which reduces the problem to a polynomial of
complexity n−1. This provides periodic forms
for p∗ and s∗, and shows that P is stable for
the ∗ operation. This concludes the proof of
the main Theorem 4.11. �

Remark 5.6 If the time takes non integer val-
ues, the relation between rationality and pe-
riodicity vanishes (consider the sum (γδ)∗ ⊕

(γ
√
2δ

√
2)∗). This difficulty is far from being

an artificial problem. In fact, it is the limit
of some pathology which already occurs with
integer time. When the slopes of series are
very close, the size of the transient becomes
too important and the periodic representation
is practically impossible to use. In these cases,
a truncation has to be made. It should also be
possible to use more conventional representa-
tions of rationals, like s =

⊕

i aib
∗
i , where the

ai, bi are monomials. The following example
illustrates these difficulties:

Example 5.7 (γ20δ)∗⊕ δ(γ21δ)∗ = δ⊕γ21δ2⊕
γ42δ3⊕γ63δ4⊕γ84δ5⊕γ105δ6⊕γ126δ7⊕γ147δ8⊕
γ168δ9⊕γ189δ10⊕γ210δ11⊕γ231δ12⊕γ252δ13⊕
γ273δ14⊕γ294δ15⊕γ315δ16⊕γ336δ17⊕γ357δ18⊕
γ378δ19 ⊕ γ399δ20 ⊕ γ420δ21(γ20δ)∗.

6 Star operation and diophantine
linear equations

We have already seen that the product of pe-
riodic series reduces to computing the conduc-
tor of a simple Diophantine Linear equation.
We now consider the problem of computing the
star of a polynomial a, when all the monomials
have the same slope. This is a generalization of
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Proposition 5.4, which corresponds to a poly-
nomial with complexity 2: a = γνδτ⊕γν

′
δτ

′
. In

a similar way, we shall show that the distribu-
tion of the monomials of a∗ is related with the
distribution of solutions of a more general lin-
ear diophantine equation, the theory of which
affords a more efficient algorithm than the one
given in Section5.3.

Let

a = γν1δτ1 ⊕ γν2δτ2 ⊕ · · · ⊕ γνlδτl

with λ = τ1
ν1

= . . . = τl
νl
. For all i > 0, each

term in ai is of the form

γν1x1+ν2x2+···+νlxl δτ1x1+τ2x2+···+τlxl

with
∑

k xk = i. This leads us to consider the
following problem:

find (x1, . . . , xl) ∈ N
l such that

ν1x1 + ν2x2 + · · ·+ νlxl = c (31)

It can be shown [1] that if gcd(ν1, ν2, . . . , νl) =
1, there exists K ∈ N such that for all c ≥ K,
(31) has a solution. The minimal value co of
K is called the conductor of (ν1, . . . , νl). The
question of the determination of co is not solved
in the general case. It is known as the “Frobe-
nius problem” for linear diophantine equations.
In the case l = 2, the conductor for the equa-

tion ν1x1 + ν2x2 = c is exactly known

cond(ν1, ν2) = (ν1 − 1)(ν2 − 1) (32)

We now assume that l > 2 and ν1 < ν2 < · · · <
νl. A simple upper bound is given by

s = (ν1 − 1)(νl − 1) (33)

A better bound is furnished by

t = ν2
d1
d2

+ · · ·+ νl
dl−1

dl
−

∑

i

νi (34)

where di denotes the gcd of ν1, . . . , νi.
The existence of these bounds leads to a sim-

ple method for computing a∗, which consists in
generating all the terms of a∗ up to the bound.
Then, since the periodicity of a∗ is obvioulsy
equal to γν1δτ1 ⊓γν2δτ2 ⊓ . . .⊓γνlδτl , we obtain

a periodic proper representation of a∗, which
can be reduced to minimal form.

Example 6.1 Let us take a = γ6δ6 ⊕ γ10δ10 ⊕
γ15δ15. Since 6,10,15 are coprime the period-
icity of a∗ must be (1, 1). Indeed, we have:
a∗ = e ⊕ γ6δ6 ⊕ γ10δ10 ⊕ γ12δ12 ⊕ γ16δ16 ⊕
γ18δ18 ⊕ γ20δ20 ⊕ γ22δ22 ⊕ γ24δ24 ⊕ γ26δ26 ⊕
γ28δ28 ⊕ γ30δ30(γδ)∗.

Remark 6.2 The formal series point of view
should be compared with that presented in [2].
Instead of using formal series, one can intro-
duce the matrix equation in the (max,+) al-
gebra xn = Axn−1 ⊕ Bun, where A and B are
matrices whith entries in R ∪ {−∞}. Then,
the study of the periodic behaviour of the au-
tonomous system xn = Axn−1 leads to con-
sider the sequence {An}n. The approach de-
veloped in [2] extends some of the Frobenius’
results on the cyclicity of nonnegative matri-
ces to the (max,+) algebra. Indeed, to the
authors’ knowledge, the “Frobenius problem”
for Linear Diophantine Equations comes from
this context, and it is not surprising that this
problem still plays a central role in the study
of formal series.

7 Illustrating examples

A preliminary implementation has been real-
ized as a set of MAPLE macros. In a fur-
ther stage, it is intended to support symbolic
computation in dioids, which can be used to
evaluate and optimize the periodic slope (this
is the resource optimization problem, see [4]).
Another version devoted to the non symbolic
problem is being developed in FORTRAN. The
following examples have been dealt with using
the MAPLE implementation.

A simple application Let us consider again
the Timed Event Graph of Figure 1. It is mod-
eled by the following system:

x =

[

γδ5 γ3δ3

γ2δ γδ ⊕ γ2δ2

]

x⊕

[

e
ε

]

u =

= Ax⊕Bu,

y =
[

ε e
]

x = Cx
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We obtain the transfer matrix:

H = CA∗B = γ2δ(γδ5)∗

which indeed is very simple! We can interpret
H in terms of impulse response: if an infinite
quantity of tokens becomes available at date 0,
then the output is simply the dater function
associated with H, i.e. two tokens exit at date
1, then, the periodic behavior is reached, and 1
token exits every 5 unit of times. In particular,
from the input-output point of view, the Timed
Event Graph of Figure 1 is equivalent to the
Timed Event Graph of Figure 3.

u y

Figure 3: Reduced Timed Event Graph

Interpretation in terms of Timed Event
Graphs We classicaly define the weight of a
path as the product of the operators associated
with the elementary arcs. Then a well known
result states that the entry (i, j) of A∗ repre-
sents the sum of the weights of all paths j 7→ i
(see [5]). From the absorption properties of
slopes, it should be clear that the periodicity
(νi, τi) of (A∗)i,i has maximal ratio νi

τi
among

all the weights of circuits i 7→ i. When the
event graph is strongly connected, the maxi-
mal ratio νi

τi
is the same for all the transitions.

In this case, the set of the arcs of circuits which
realize this maximal ratio (critical circuits) is
called the critical subgraph, and the periodic
throughput associated with any transition i is
simply characterized as the slope of the critical
circuits, while the gcd and lcm which appear in
the computations are related to the structure
of the critical subgraph.

Example 7.1 In the case of the event graph
of Figure 1, the critical subgraph is reduced to
the arc with weigth with γδ5. We have:

A∗ =

[

(γδ5)∗ γ3δ3(γδ5)∗

γ2δ(γδ5)∗ %

]

with % = e⊕γδ⊕γ2δ2⊕γ3δ3⊕γ4δ4⊕γ5δ5⊕
γ6δ9(γδ5)∗. Since the graph is strongly con-
nected, all the entries have the same periodic
slope.

Application to a flowshop We consider
the simple flowshop with 3 parts P1, P2, P3 and
3 machines M1, M2, M3, shown in Figure 4.
We neglect the transportation times between
machines. The schedule is the same for all
parts : M1 → M2 → M3 → M1. The pro-
cessing times are given by the following table:

P1 P2 P3

M1 9 2 1

M2 2 7 2

M3 1 10 1

This means part P1 must be processed at
least 9 units of time on machine M1, etc. Then
part P1 becomes instantaneously available for
the next machine M2, and machine M1 is also
available for the next job. This leads to draw
the Timed Event Graph of Figure 4. The ver-
tical circuits correspond to the circulations of
parts, and the the horizontal circuits corre-
spond to machines. The position of tokens in
the places is related to a specific initial state of
the system. A more detailed account of model-
ing flowshop and jobshops using dioids can be
found in [2].

We have introduced 3 inputs (u1 in x1, u2 in x2,
u3 in x3). The output transitions are x7, x8, x9.
Then, the following matrix representation can
be writen:

A =





























ε ε γδ ε ε ε γδ ε ε
δ9 ε ε ε ε ε ε γδ10 ε
ε δ2 ε ε ε ε ε ε γ
δ9 ε ε ε ε γδ2 ε ε ε
ε δ2 ε δ2 ε ε ε ε ε
ε ε δ ε δ7 ε ε ε ε
ε ε ε δ2 ε ε ε ε γδ
ε ε ε ε δ7 ε δ ε ε
ε ε ε ε ε δ2 ε δ10 ε




























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B =





























e ε ε
ε e ε
ε ε e
ε ε ε
ε ε ε
ε ε ε
ε ε ε
ε ε ε
ε ε ε





























C =





ε ε ε ε ε ε δ ε ε
ε ε ε ε ε ε ε δ10 ε
ε ε ε ε ε ε ε ε δ





We obtain the transfer matrix:

H =

[

δ12 ⊕ γδ30(γδ19)∗ γδ21(γδ19)∗ γδ13 ⊕ γ2δ31(γδ19)∗

δ28(γδ19)∗ δ19(γδ19)∗ γδ29(γδ19)∗

δ29(γδ19)∗ δ20(γδ19)∗ δ4 ⊕ γδ30(γδ19)∗

]

Because the event graph is strongly con-
nected, the periodic slope is the same for all the
entries of the transfer matrix. This periodicity
corresponds to the weigth γδ19 of the unique
critical circuit (the vertical circuit of part P2).

x9x8x7

x6x5x4

x3x2x1

10 11

9

1

1

M1

M2

M3

P3P2P1

9 2

12

2 7 2

272

1 10

u1 u2 u3

y1 y2 y3

Figure 4: 3-machines,3-parts flowshop
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