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Abstract. Exotic semirings such as the (ifax,+) semiring”
(R U {—o0}, max,+), or the “tropical semiring”(N U {+oc}, min, +),
have been invented and reinvented many times since the fiéés,fin relation
with various fields: performance evaluation of manufacmrisystems and
discrete event system theory; graph theory (path algelm)\arkov decision
processes, Hamilton-Jacobi theory; asymptotic analy&isv (temperature
asymptotics in statistical physics, large deviations, WKRthod); language
theory (automata with multiplicities).

Despite this apparent profusion, there is a small set of common-naive, ba-
sic results and problems, in general not known outsidérivex, +) community,
which seem to be useful in most applications. The aim of thistssurvey paper
is to present what we believe to be the minimal cordmabx, +) results, and
to illustrate these results by typical applications, atftatier of language the-
ory, control, and operations research (performance etiatuaf discrete event
systems, analysis of Markov decision processes with aeerast).

Basic techniques include: solving all kinds of systems akdir equations,
sometimes with exotic symmetrization and determinant rteegles; using the
(max, +) Perron-Frobenius theory to study the dynamics(mfx, +) linear
maps. We point out some open problems and current develdpmen

1 Introduction: the (max, +) and tropical semirings

The “max-algebra” or (max, +) semiring”"Rp,ax , is the seRU {—oc}, equipped with
max as addition, and+ as multiplication. It is traditional to use the notatienfor
max (2 @ 3 = 3), and® for + (1 ® 1 = 2). We denoté by 0 the zeroelement for

@ (such thatd & a = a, here0 = —o0) and by1 the unit element forg (such that
1®a=a®1l=a,herel =0). This structure satisfies all the semiring axioms,&e.
is associative, commutative, with zero elemenis associative, has a unit, distributes
overd, and zero is absorbing (all the ring axioms are satisfiecegxtbatd need not be

* Max Plus is a collective name for a working group @QA-) algebra, at INRIA Rocquencourt,
comprising currently: Marianne Akian, Guy Cohen, S.G.,nJB&rre Quadrat and Michel
Viot.

! The notation for the zero and unit is one of the disputed iprstof the community. The
symbolsz for zero, ance for the unit, often used in the literature, are very distiretind well
suited to handwritten computations. But it is difficult tooeince to the traditional use ef
in Analysis. The notatio®, 1 used by the Idempotent Analysis school has the advantage of
making formulae closer to their usual analogues.



a group law). This semiring isommutativéa®b = b®a), idempotenfa®a = a), and
non zero elements have an inverse fofwe call semifieldghe semirings that satisfy
this property). The terrdioid is sometimes used for adempotensemiring.

Using the new symbols and® instead of the familiamax and+ notation is the
price to pay to easily handle all the familiar algebraic ¢ordions. For instance, we
will write, in the (max, +) semiring:

ab=a®b, a"=a® --®a (ntimey, 22 =6, V3=15,
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Ber)’=0Bcr)30r)=623z22° =602 (=max(6,2 x 1)) .

We will systematically use the standard algebraic notiomat(ices, vectors, linear
operators, semimodules — i.e. modules over a semiring—mdbpolynomials and
polynomial functions, formal series) in the context of theax, +) semiring, often
without explicit mention. Essentially all the standardions of algebra have obvious
semiring analogues, provided they do not appeal to thetibvidy of addition.

There are several useful variants of theax, +) semiring, displayed in Table 1.
In the sequel, we will have to consider various semirings, will universally use the

Rimax (RU{—oc}, max, +) (max, +) semiring idempotent semifield
max algebra
Ruax (RU {£oc}, max, +) completed —00 + (+00) = —o0,
(max, +) semiring for0®a=0
Romax, x (R, max, x) (max, x ) semiring|lisomorphic toRmax (z — log x)
Rumin (RU {+0c}, min, +) (min, 4+) semiring| isomorphic toRmax (z — —x)
Nmin (NU {+oc}, min, +) tropical semiring | (famous in Language Theory)
Rmax,min| (RU {%oc}, max, min) | bottleneck algebra not dealt with here
B ({false true}, or, and Boolean semiring| isomorphic to({0, 1}, ®, ®),
for any of the above semirings
Ry, (RU{—oc}, ®n,+) Maslov semirings|  isomorphic to(R*, +, x)
a®n b= hlog(e®" + eb/M) lim;,_, o+ Ry = Ry = Rmax

Table 1. The family of (max, +) and tropical semirings. .

notation®, @, 0,1 with a context dependent meaning (edg.= max in Ryax but
@ =min in Ryj,, 0 = —o00 in Ryax bUtd = 400 in Ryip ).

The fact thatd is idempotent instead of being invertibl&,( is an exception, for
h # 0), is the main original feature of these “exotic” algebrabjein makes them so
different from the more familiar ring and field structures.fact the idempotence and
cancellativity axioms are exclusive: if for all b,¢c, (a ®b = a® ¢ = b = ¢) and
a®a=a,wegeta =0, foralla(simplifya®a=ad¢0).

This paper is not a survey in the usual sense. There existade@mprehensive
books and excellent survey articles on the subject, eacthawvieg its own bias and



motivations. Applications ofmax, +) algebras are too vast (they range from asymp-
totic methods to decidability problems), techniques acevi@rious (from graph theory
to measure theory and large deviations) to be surveyed iperpH this format. But
there is a small common set of useful basic results, apitaind problems, that we
try to spotlight here. We aim neither at completeness, noriginality. But we wish to
give an honest idea of the services that one should expeut(fimx, +) techniques.
The interested reader is referred to the books [15,44 31,20 the survey papers listed
in the bibliography, and to the recent collection of arsd24] for an up-to-date account
of the maxplusian results and motivations. Bibliographéeal historical comments are
at the end of the paper.

2 Seven good reasons to use tl{enax, +) semiring

2.1 An Algebra for Optimal Control

A standard problem of calculus of variations, which app@aigechanics (least action
principle) and Optimal Control, is the following. Given adrangianL and suitable
boundary conditions (e.g(0), ¢(T") fixed), compute

T
inf/ L(q,¢)dt . Q)
a(-) Jo

This problem is intrinsicallfmin, +) linear. To see this, consider the (slightly more
general) discrete variant, wittup rather tharinf,

{n) =z, {(k) = f(E(k —1),u(k)), k=n+1,...,N, (2a)
N
TN ()= Y e(é(k—1),u(k) + BEN)) , (2b)
k=n+1
VN (z) = sup JN (2,u) , (2c)
where thesup is taken over all sequencesadntrolsu(k),k =n+1,--- , N, selected
in afiniteset of controld/, ¢(k), fork = n,... , N, belongsto afinite seY of statesz

is a distinguishethitial state, f : X xU — X isthedynamicsc : X xU — RU{—oc}
is theinstantaneous rewarénd® : X — RU{—oo} is thefinal reward(the —oo value
can be used to code forbidden final states or transitiongsd tata form a deterministic
Markov Decision ProcesgvIDP) with additive reward.

The functionV, N (-), which represents the optimal reward from timéo time N,
as a function of the starting point, is called treduefunction. It satisfies the backward
dynamic programming equation

VI(IV = 457 VkN(‘r) = rq?ea[}( {c(m,u) + Vklil (f(iL‘, u))} ' (3)

Introducing thetransition matrixA € (Rpax )X * ¥,

Az,y = sup c(x, U), (4)
wel, f(z,u)=y

(the supremum over an empty setisc), we obtain:



FACT 1 (DETERMINISTICMDP = (max, +)-LINEAR DYNAMICS). The value function
VN of a finite deterministic Markov decision process with aidditeward is given by
the (max, +) linear dynamics:

V]\]IV =9, VkN = AVkJil' (5)

The interpretation in terms of paths is elementary. If we heusl at nodej, we take
¢ = 1, (the vector with all entried except thg-th equal tat), Then, the value function
VN (i) = (AN);; is the maximal (additive) weight of a path of length fromii to j,
in the graph canonically associatesiith A.

Example 1 (Taxicab)Consider a taxicab which operates between 3 cities and one ai
port, as shown in Fig. 1. At each state, the taxi driver hafitmse his next destination,
with deterministic fares shown on the graph (for simplicite assume that the demand
is deterministic, and that the driver can choose the degiima The taxi driver consid-
ers maximizing his reward ovéY journeys. Thgmax, +) matrix associated with this
MDP is displayed in Fig. 1.

4%
5% ci a C C3
C1 5 4 0 7
4 0 6 3
7$ \ = ¢
e 6% A=0lo 141 0
Z$C 4 \ 3 . s \0 0 0 2
&
s
Fig. 1. Taxicab Deterministic MDP and its matrix
Let us consider the optimization of the average reward:
. 1~
x(x) =suplimsup —J5" (z,u) . (6)
u  N—oo N

Here, thesup is taken over infinite sequences of contra(d), u(2), ... and the trajec-
tory (2a) is defined fok = 0,1,.... We expect/}¥ to grow (or to decrease) linearly,

as a function of the horizo¥V. Thus,x(x) represents the optimal average reward (per
time unit), starting fronx. Assuming that theup andlim sup commute in (6), we get:

Xx(z) = limsup % x (AN®), (7)

N—oo

(this is an hybrid formulad™ @ is in the(max, +) semiring ,1/N x (-) is in the conven-
tional algebra). To evaluate (7), let us assume that theixnatadmits areigenvectow

2With aX x X matrix A we associate the weighted (directed) graph, with set of sddeand
an arc(z, y) with weight A, , whenever4, , # 0.



in the (max, +) semiring:

Av =, i.e. max{A;; +v;} =X +v; (8)
i

(the eigenvector must be nonidenticall§, A € Ryax is the eigenvalue). Let us assume
thatv and® have only finite entries. Then, there exist two finite constany such that
v4+v <& < p+o.In(max,+) notationyv < & < pw. ThenvANv = vANy <
AN® < n ANy = pANv, or with the conventional notation:

v+ NA+v<AVN® < i+ NX +o. (9)
We easily deduce from (9) the following.

FACT 2 (“EIGENELEMENTS= OPTIMAL REWARD AND PoLicy”). If the final reward
& is finite, and if A has a finite eigenvector with eigenvaldethe optimal average
reward x(z) is a constant (independent of the starting paijitequal to the eigenvalue
A. An optimal control is obtained by playing in stat@nyu such thate(i, u) = A;;
and f(i,u) = j, wherej is in thearg maxof (8) at state.

The existence of a finite eigenvector is characterized irofdmas 11 and 15 below.

We will not discuss here the extension of these results tantfidte dimensional
case (e.g. (1)), which is one of the major themes of Idempdtealysis [31]. Let us just
mention that all the results presented here admit or shairfdtanfinite dimensional
generalizations, presumably up to important technicéicdifies.

There is another much simpler extension, to the (discreta)-81arkov case, which
is worth being mentioned. Let us equip the above MDP with atitechal mapr :
X x U — R" \ {0}; 7(x(k — 1),u(k)) represents the physical time elapsed between
decisionk and decisiork + 1, when controk:(k) is chosen. This is very natural in
most applications (for the taxicab example, the times offifferent possible journeys
in general differ). The optimal average reward per time now writes:

: Spe c(z(k — 1), u(k)) + B(z(N))
) = sup lim su .
x() = sl s = N e 1), uh)

(10)

Of course, the specializatian= 1 gives the original problem (6). Let us defiffg =
{r(i,w) | f(i,u) = j}, and fort € T;;,

At7isj = Sup C(iﬁu) * (11)
wel, f(i,u)=4,7(i,u)=t

Arguing as in the Markov case, it is not too difficult to showe flollowing.

FACT 3 (GENERALIZED SPECTRAL PROBLEM FOR SEMI-MARKOV PROCESSES. If
the generalized spectral problem

max max{Ay;; - M+ v} =v; (12
has a finite solution, and if & is finite, then the optimal average rewardyi$x) = A,

for all . An optimal control is obtained by playing amyin the arg maxof (11), with
Jj, t in thearg maxof (12), when in staté



Algebraically, (12) is nothing but a generalized spectrabtem. Indeed, with an obvi-
ous definition of the matriced;, we can write:

Prtdw=0, whereT = | J7;; . (13)

teT i,j

2.2 An Algebra for Asymptotics

In Statistical Physics, one looks at the asymptotics whememperaturé tends to zero
of the spectrum ofransfer matriceswhich have the form

Ap = (exp(h™" 445))1<ij<n -

The real parametets;; represent potential terms plus interaction energy ternhew
two adjacent sites are in stateand j, respectively). The Perron eigenvalyg Ay, )
determines the free energy per siig = hlog p(Ay). Clearly,\;, is an eigenvalue of
A in the semiringR;,, defined in Table 1. Leb,ax(A) denote the maximdlmax, +)
eigenvalue ofd. Sincelim;,_,5+ R, = Ry = Rpyax, the following result is natural.

FACT 4 (PERRONFROBENIUSASYMPTOTICY). The asymptotic growth rate of the Per-
ron eigenvalue ofd;, is equal to the maximdimax, +) eigenvalue of the matrid:

Jim hlog p(An) = pmax(4) - (14)

This follows easily from th€max, +) spectral inequalities (24),(25) below. The nor-
malized Perron eigenvectoy, of 4, also satisfies

hlir(r)lJr hlog(vp)i = u;

whereu is a specialmax, +) eigenvector ofA which has been characterized recently
by Akian, Bapat, and Gaubert [1]. Precise asymptotic exipasfp(.A,) as sum of
exponentials have been given, some of the terms having catubial interpretations.

More generally(max, +) algebra arises almost everywhere in asymptotic phenom-
ena. Often, thdmax, +) algebra is involved in an elementary way (e.g. when com-
puting exponents of Puiseux expansions using the NewtoygBn). Less elementary
applications are WKB type asymptotics (see [31]), whichratated to Large Devia-
tions (see e.g. [17]).

2.3 An Algebra for Discrete Event Systems

The (max, +) algebra is popular in the Discrete Event Systems commusiitge
(max, +) linear dynamics correspond to a well identified subclassisti@te Event
Systems, with only synchronization phenomena, called @ifeent Graphs. Indeed,
consider a system with repetitive tasks. We assume that #h execution of task
(firing of transition:) has to waitr;; time units for the(k — v;;)-th execution of task
Jj. E.g. tasks represent the processing of parts in a manufaggystemy;; represents
an initially available stock, and; represents a production or transportation time.

% The Perron eigenvalyg( B) of a matrix B with nonnegative entries is the maximal eigenvalue
associated with a nonnegative eigenvector, which is egualkt spectral radius ds.



FACT 5 (TIMED EVENT GRAPHS ARE (max,+) LINEAR SYSTEMS). The earliest
date of occurrence of an evenin a Timed Event Graph; (k), satisfies

xi(k) = m]ax [1ij + z;(k —vij)] . (15)

Eqn 15 coincides with the value iteration of the determinisemi-Markov Decision
Process ir§ 2.1, that we only wrote in the Markov version (3). Therefdhe asymp-
totic behavior of (15) can be dealt with as§r2.1, using(max, +) spectral theory. In
particular, if the generalized spectral problem= max;[r;; — Av;; + v;] has a finite
solution(\, v), then\ = limy_, o k=1 x z;(k), for all i (X is thecycle time or inverse

of theasymptotic throughpltThe study of the dynamics (15), and of its stochastic [2],
and non-linear extensions [11,23] (fluid Petri Nets, minrfaxctions), is the major
theme of(max, +) discrete event systems theory.

Another linear model is that dfeaps of pieced.et R denote a set gbositionsor
resourcegsayR = {1,...,n}). A piece(ortask a is arigid (possibly non connected)
block, represented geometrically by a set of occupied jposi{or requested resources)
R(a) C R, alower contour (starting timé)a) : R(a) — R, an upper contour (release
time) h(a) : R(a) — R, such thatva € R(a), h(a) > ¢(a). The piece corresponds
to the region of théR x R plane:P, = {(r,y) € R(a) x R | {(a), <y < h(a),},
which means that taskrequires the set of resources (machines, processorstomra
R(a), and that resource € R(a) is used from timé(a), to time h(a),. A pieceP,
can be translated vertically of any which gives the new region defined by{a) =
A+ £(a), h'(a) = X + h(a). We can execute a task earlier or later, but we cannot
change the differences(a), — £(a), which are invariants of the task. groundor
initial condition is a row vectory € (Ruax ). Resource becomes initially available
attimeg,. If we dropk piecesu; . .. ay, in this order, on the groung(letting the pieces
fall down according to the gravity, forbidding horizontedmslations, and rotations, as
in the famous Tetris game, see Fig 2), we obtain what we ch#ap of piecesThe
upper contour:(w) of the heapy = a; .. . ay, is the row vector inRpyax ), whoser-
th component is equal to the position of the top of the high&ste occupying resource
r. The heightof the heap is by definitiop(w) = max,cr z(w),. Physically,y(w)
gives themakespar{= completion time) of the sequence of tasksandz(w), is the
release time of resouree

With each piecer within a set of pieces, we associate the matrix/ (a) €
(Rmax )**%, M (a)s = h(a)s — £(a), if r,s € R(a), andM (a),, = 1 for diagonal
entries not ink(a) (other entries ar®). The following result was found independently
by Gaubert and Mairesse (in [24]), and Brilman and Vinceht [6

FACT 6 (TETRIS GAME IS (max, +) LINEAR). The upper contout(w) and the height
y(w) of the heap of pieces = a; ... ax, piled up on the ground, are given by the
(max, +) products:

z(w) = gM(a1)... M(ar),  y(w)=z(w)lg,
(1x denotes the column vector indexedbyith entriest).
In algebraic terms, the height generating se@s .. y(w)w is rational over the

(max,+) semiring T* is the free monoid off’, basic properties of rational series can
be found e.g. in [38]).



R(C) = {2,4},5(0) = ['707 ':O]! h(c) = ['727 ':2]

(o]

R(b) = {1,2}, £(b) = [0,0,, 1, h(8) = [2,2,, ]

Y

E R(a) = {1,2,3},4(a) =10,0,0,], h(a) =[1,1,3,"]

L. 0= L.

Fig. 2. Heap of Pieces

Let us mention an open problem. If an infinite sequence ofgsiecas ... ay . . .
is taken at random, say in an independent identically disteid way with the uniform
distribution orT", it is known [14,2] that there exists an asymptotic growte pac R :

A= lim ly(al ...ap) as. (16)
k—oo k

The effective computation of the constan{Lyapunov exponent) is one of the main
open problems in (max,+) algebra. The Lyapunov exponerilenois interesting for
general random matrices (not only for special matricesaata with pieces), but the
heap case (even with unit height,a) = 1 + £(a)) is typical and difficult enough to
begin with. Existing results on Lyapunov exponents can bmdoin [2]. See also the
paper of Gaujal and Jean-Marie in [24], and [6].

2.4 An Algebra for Decision

The “tropical” semiringNy,;, = (NU{+00}, min, +), has been invented by Simon [39]
to solve the following classical problem posed by Brzozawiskit decidable whether
a rational languagel. has the Finite Power Property (FPP¥m € N, L* = L° U LU
-+-U L™, The problem was solved independently by Simon and Hashiguc

FACT 7 (SMON). The FPP problem for rational languages reduces to the fimigsn
problem for finitely generated semigroups of matrices wittries in Ny,i, , which is
decidable.

Other (more difficult) decidable properties (with applioas to the polynomial closure
and star height problems) are tfigite sectionproblem, which asks, given a finitely
generated semigroup of matric€®ver the tropical semiring, whether the set of entries
in positioni, j, {s;; | s € S} is finite; and the more genetrahitation problem, which
asks whether the set of coefficients of a rational seri®§.if , with noncommuting in-
determinates, is finite. These decidability results duegstiuchi [25], Leung [29] and
Simon [40] use structural properties of long optimal wond$V,;, -automata (involv-
ing multiplicative rational expressions), and combingoarguments. By comparison
with basic Discrete Event System and Markov Decision apfitios, which essentially
involve semigroups with a single generatsr£ {A* | k > 1}), these typically non-
commutative problems represent a major jump in difficultg kfer the reader to the



survey of Pin in [24], to [40,25,29], and to the references¢in. However, essential in
the understanding of the noncommutative case is the oneajenease, covered by the
(max, +) Perron-Frobenius theory detailed below.

Let us point out an open problem. The semigrouprefar projective map®Z;.% "
is the quotient of the semigroup of matricg8x;’ by the proportionality relationd ~
B & 3\ € Z, A = AB (i.e. A;; = X+ By;). We ask:can we decide whether
a finitely generated semigroup of linear projective mapsrigdi? The motivation is
the following. If the image of a finitely generated semigravigh generators\/ (a) €
Zpxer, a € X by the canonical morphis@; < — PZ <" is finite, then the Lyapunov
exponent = a.s. lim, o, k=1 x ||M(ay) ... M(ax)|| (same probabilistic assumptions
as for (16),]|A|| = sup,; Ai;, by definition) can be computed from a finite Markov
Chain on the associated projective linear semigroup [19,20

3 Solving Linear Equations in the (max, +) Semiring

3.1 A hopeless algebra?

The general system af (max, +)-linear equations witlp unknownses , . .. , z, writes:
Az db=Cz @ d, A, C € (Rpax)" P, b,d € (Rmax)" - a7

Unlike in conventional algebra, a square linear system={ p) is not generically
solvable (consideBx @ 2 = z @ 0, which has no solution, since for all € Rpy,ax,
max(3 + z,2) > max(z, 0)).

There are several ways to make this hard reality more bear@ple is to give gen-
eral structural results. Another is to deal with naturalcdagses of equations, whose
solutions can be obtained by efficient methods. Tverseproblem Az = b can be
dealt with usingesiduation ThespectralproblemAxz = Az () scalar) is solved using
the (max, +) analogue of Perron-Frobenius theory. Tilked poinfroblemz = Az ®b
can be solved via rational methods familiar in languagerhéatroducing the “star”
operationd* = A ¢ A A% ¢ - - ). Alast way, which has the seduction of forbidden
things, is to say: “certainly, the solution 8% ¢ 2 = 2 ¢ 0 isz = © — 1. For if this
equation has no ordinary solution, the symmetrized egudtibtained by putting each
occurrence of the unknown in the other side of the equality) 2 = 32’ & 0 has the
unique solutionr’ = —1. Thus,xz = & — 1 is the requested solution.” Whether or not
this argument is valid is the object sfmmetrizatiottheory.

All these approaches rely, in one way or another, orotider structure of idempo-
tent semirings that we next introduce.

3.2 Natural Order Structure of Idempotent Semirings
An idempotent semiring can be equipped with the followingatural order relation
a=3b < adb=hb. (18)

We will write @ < bwhena < b anda # b. The natural order endows with a sup-
semilattice structure, for which® b = a Vb = sup{a, b} (this is the least upper bound
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of the set{a,b}), and0 < a, Va,b € S (0 is thebottomelement). The semiring laws
preserve this order, i.&a,b,c € S, a < b = a®c X bd ¢, ac < be. For
the (max, +) semiringR,.x, the natural ordex coincides with the usual one. For the
(min, +) semiringRy,i, , the natural order is the opposite of the usual one.

Since addition coincides with the sup for the natural orttere is a simple way to
define infinite sums, in an idempotent semiring, setdPg. ; z; = sup{z; | i € I},
for any possibly infinite (even non denumerable) farfily} ; r of elements o, when
the sup exists. We say that the idempotent semifing completeif any family has
a supremum, and if the product distributes over infinite swkenS is complete,
(S, =) becomes automatically a complete lattice, the greatestribawund being equal
to A\,c;zi =supf{y € S| y < x;, Vi € I}. The (max, +) semiringRp,,, is not
complete (a complete idempotent semiring must have a méagieraent), but it can be
embedded in the complete semiriRg,..

3.3 SolvingAxz = b using Residuation

In general, Az = b has no solutiofy but Az < b always does (take = 0). Thus,

a natural way of attackinglz = b is to relax the equality and study the set of its
subsolutions. This can be formalized in termsresiduation[5], a notion borrowed
from ordered sets theory. We say that a monotone fnpm an ordered sel to an
ordered sef’ isresiduatedf forall y € F,thesef{z € E | f(z) < y} has amaximal
element, denoted?(y). The monotone may*, calledresidualor residuated mawf

f, is characterized alternatively o f* < Id, f o f > Id. An idempotent semiring
S is residuatedf the right and left multiplication mapa, : =z — az, p, : = — za,

S — §, are residuated, for all € S. A completadempotent semiring is automatically
residuated. We set

def

a\b de def 4

M(b) =max{z | axz <b} , b/a= p’(b) = max{z | za < b} .

In the completedmax, +) semiringR .y, a\b = b/a is equal toh — a whena # 0(=
—o0), and is equal te- o if a = 0. The residuated character is transfered from scalars
to matrices as follows.

Proposition 2 (Matrix residuation). Let S be a complete idempotent semiring. Let
A € 8P, The mapAs : =z — Az, SP — S", is residuated. For any € S",

def . .
A\y SN, (y) is given by(A\y); = Ay <, Aji\ys-
In the case oR ., this reads:

(A\y)i = 121],12”(—14]'1' +5) (19)

4 Itis an elementary exercise to check that the map Az, (Rmax)? = (Rmax)", iS surjective
(resp. injective) iff the matrixd contains a monomial submatrix of size(resp.p), a very
unlikely event — recall that a square matikis monomialif there is exactly one non zero
element in each row, and in each column, or (equivalentlit)i#f a product of a permutation
matrix and a diagonal matrix with non zero diagonal elemeFttss implies that a matrix has
a left or a right inverse iff it has a monomial submatrix of rimaal size, which is the analogue
of a well known result for nonnegative matrices [4, Lemmd.4.3
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with the convention dual to that ®max, (+00) + 2 = +o0, foranyz € R U {+o0}.
We recognize in (19) a matrix product in the semirRgin, = (R U {£oc}, min, +),
involving the transpose of the oppositef

Corollary 3 (Solving Az = y). LetS denote a complete idempotent semiring, and let
A e 8"*P y e §". The equatioMz = y has a solution iffA(A\y) = y.

Corollary 3 allows us to check the existence of a solutiasf Az = y in time O(np)
(scalar operations are counted for one time unit). In(thex, +) case, a refinement
(due to the total order) allows us to decide the existencesofation by inspection of
the minimizing sets in (19), see [15,44].

3.4 Basis Theorem for Finitely Generated Semimodules ovV&Ry,ax

A finitely generated semimodulé C (Rnax )™ is the set of linear combinations of a
finite family {u1, ... ,u,} of vectors of(Rpyax )™:

p
V:{®>‘i“i|>‘la"' :)‘Pe]Rmax} :
i=1

In matrix terms,) can be identified to theolumn spacer imageof then x p matrix
A=Tlur,...,up],V = ImA & {Az | z € (Rmax)?}. Therow spaceof A is the
column space ofi” (the transpose of). The family{u;} is aweak basi®f V if itis a
generating family, minimal for inclusion. The followingselt, due to Moller [33] and
Wagneur [42] (with variants) states that finitely generatglbisemimodules a5 )"
have (essentially) a unique weak basis.

Theorem 4 (Basis Theorem)A finitely generated semimodulé C (Ryax)" has a
weak basis. Any two weak bases have the same number of gesefatr any two
weak basegui,... ,up}, {v1,...,v,}, there exist invertible scalary;, ... ,\, and
a permutations of {1, ... ,p} such thatu; = \jv, ;).

The cardinality of a weak basis is called thveak rankof the semimodule, denoted
rk,, V. Theweak column rankresp. weak row rank) of the matrix is the weak rank
of its column (resp. row) space. Unlike in usual algebra,weak row rank in gen-
eral differs from the weak column rank (this is already theeckor Boolean matrices).
Theorem 4 holds more generally in any idempotent semi$isgtisfying the following
axioms:(a > aa anda #0) = 1> a,(a =aa®banda < 1) = a=0b.
The axioms needed to set up a general rank theory in idemg#erirings are not cur-
rently understood. Unlike in vector spaces, there existeipigenerated semimodules
V C (Rmax )™ of arbitrarily large weak rank, if the dimension of the amtitispacen

is at leas3; and not all subsemimodules @R, )" are finitely generated, even with
n=2.

Example 5 (Cuninghame-Green [15], Th. 16B)e weak column rank of théex (i +1)

matrix
o 7]

o]
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is equal tai + 1 for all i € N. This can be understood geometrically using a representa-
tion due to Mairesse. We visualize the set of vectors withdiantries of a semimodule
V C (Rmax)? by the subset oR?, obtained by projectiny orthogonally, on any plane
orthogonal to(1, 1, 1). SinceV is invariant by multiplication by any scala, i.e. by
the usual addition of the vectdA, A, \), the semimodulé’ is well determined by its
projection. We only loose the points withentries which are sent to some infinite end
of theR? plane. The semimodules Idy, Im A, Im A5 are shown on Fig 3. The gener-
ators are represented by bold points, and the semimodulgslyegions. The broken
line between any two generatousv represents Irfu, v]. This picture should make it
clear that a weak basis of a subsemimoduléRyf., )* may have as many generators
as a convex set &2 may have extremal points. The notion of weak rank is theesfor
very coarse one.

Im A, x Im As z

Fig. 3. An infinite ascending chain of semimodules(#,.x)* (see Ex. 5).

Let A € (Rmax)™*?. A weak basis of the semimodule lfhcan be computed by a
greedy algorithm. Let[i] denote the-th column of A, and letA(:) denote then x
(p — 1) matrix obtained by deleting columnWe say that columnof A is redundant
if A[i] € Im A(i), which can be checked by Corollary 3. Replacididy A(i) when
Ali] is redundant, we do not change the semimodulellr@ontinuing this process, we
terminate inO(np?) time with a weak basis.

Application 6 (Controllability) The fact that ascending chains of semimodules need not
stationnarize yields pathological features in terms oft@dnConsider the controlled
dynamical system:

z(0) =0, z(k)=Axz(k —1)® Bu(k), k=1,2,... (20)

whereA € (Rpax)™™"™, B € (Rnax)™*?, andu(k) € (Rnax)?,k = 1,2,... Isa
sequence of control vectors. Given a state (Ry,.x)", theaccessibilityproblem (in
time N) asks whether there is a control sequencguch that:(N) = &. Clearly, ¢
is accessible in timéV iff it belongs to the image of theontrollability matrix Cx =
[B,AB,...,AN=1B]. Corollary 3 allows us to decide the accessibilitcoHowever,
unlike in conventional algebra (in which &y = ImC,, for any N > n, thanks
to Cayley-Hamilton theorem), the semimodule of accessdées InCy may grow
indefinitely asV — oo.
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3.5 SolvingAx = Bz by Elimination

The following theorem is due to Butkovi¢ and Hegediis [Bjvas rediscovered in [18,
Chap. 111].

Theorem 7 (Finiteness Theorem)Let A, B € (Ryax)"*P. The setV of solutions of
the homogeneous systetw = Bz is a finitely generated semimodule.

This is a consequence of the following universal eliminatiesult.

Theorem 8 (Elimination of Equalities in Semirings). Let S denote an arbitrary
semiring. LetA,B € S™*P. If for any ¢ > 1 and any row vectors,b € SY,
the hyperplane{z € S? | az = bz} is a finitely generated semimodule, then
V ={x € S? | Az = Bz} is afinitely generated semimodule.

The fact that hyperplanes ¢R,,.x)? are finitely generated can be checked by ele-
mentary means (but the number of generators can be of gfjlefheorem 8 can be
easily proved by induction on the number of equations (s¢8]R In theR,,.« case,
the resulting naive algorithm has a doubly exponential derify. But it is possible
to incorporate the construction of weak bases in the algoritwhich much reduces
the execution time. The making (and complexity analysisgfitient algorithms for
Ax = Bz is a major open problem. When only a single solution is negtiedalgo-
rithm of Walkup and Borriello (in [24]) seems faster, in ptige.

There is a more geometrical way to understand the finiteressreém. Consider
the following correspondence between semimodulg$Rif,.. )' *™)? (couples of row
vectors) andRy,ax )™ <! (column vectors), respectively:

W C ((Rmax)1><n)2 — WT = {:B c (]Rmax)nxl | ar = b, V(a,b) c W} ’
VE={(@,D) € (Ruas) *™)? | az = br, Yo €V} = VC (Rma)™" .
(21)

Theorem 7 states that)i is a finitely generated semimodule (i.e. if all the row vestor
[a, b] belong to the row space of a matiiX, B]) then, its orthogonalV' " is finitely
generated. Conversely)ifis finitely generated, so do&s- (since the elements, b) of
V1 are the solutions of a finite system of linear equations).drtteogonal semimodule
V1 is exactly the set ofinear equationga, b) : axz = bz satisfied by all the: € V.

Is a finitely generated subsemimodiec (Ry,.x)"*! defined by its equations ? The
answer is positive [18, Chap. 1V,1.2.2]:

Theorem 9 (Duality Theorem). For all finitely generated semimodule8 C
(Rmax)nX1- (VJ_)T — V

In general(WT)+ 2 W. The duality theorem is based on the following analogue of
the Hahn-Banach theorem, stated in [18]Y C (Rnax)™*! is a finitely generated
semimodule, ang ¢ V, there exist(a,b) € ((Rmax)'*™)? such thatay # by and
axr = bx, Vr € V.

Thekernelof a linear operato€ should be defined deer C = {(z,y) | Cz =
Cy}. When is the projector on the image of a linear operd&omparallel toker C,
defined? The answer is given in [12].
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3.6 Solvingx = Ax & b using Rational Calculus

Let S denote a complete idempotent semiring, anddet S™*",b € S™. The least
solution ofz = Az ¢ bis A*b, where the star operation is given by:

AE@an (22)

neN

Moreover,z = A*b satisfies the equation= Ax & b. All this is most well known (see
e.g. [38]), and we will only insist on the features speciahte(max, +) case. We can
interpretA}; as themaximal weighof a path fromi to j of any length, in the graph
associated wittd. We next characterize the convergenceddfin (Ryax )™ *" (A* is

a priori defined i Rpax )" *™, but the+oo value which breaks the semifield character
of Ryax iS undesired in most applications). The following fact snstard (see e.g. [2,
Theorem 3.20]).

Proposition 10. Let A € (Rnax)™™™. The entries ofA* belong toR.,. iff there are
no circuits with positive weight in the grapbf A. ThenA* = A A @ - @ AL

The matrixA* can be computed in timé&(n?) using classical universal Gauss algo-
rithms (see e.g. [21]). Special algorithms exist for thenx, +) semiring. For instance,
the sequence(k) = Az(k — 1) @ b, (0) = O stationarizes before step (with
xz(n) = xz(n + 1) = A*b) iff A*bis finite. This allows us to computé*b very simply.

A complete account of existing algorithms can be found ir].[21

3.7 The(max, +) Perron-Frobenius Theory

The most ancient, most typical, and probably most udefialk, +) results are relative
to the spectral problemz = Az. One might argue that 90% of current applications of
(max, +) algebra are based on a complete understanding of the dgmcioéem. The
theory is extremely similar to the well known Perron-Froioertheory (see e.g. [4]).
The (max, +) case turns out to be very appealing, and slightly more coxithln the
conventional one (which is not surprising, since fheax, +) spectral problem is a
somehow degenerate limit of the conventional one §2e2). The main discrepancy is
the existence of two graphs which rule the spectral elenwntls the weighted graph
canonically associated with a matrix, and one of its subgraphs, callegtical graph.

First, let us import the notion ofrreducibility from the conventional Perron-
Frobenius theory. We say thathas acces$o j if there is a path from to j in the
graph ofA4, and we writei = j. Theclassef A are the equivalence classes for the
relationiRj < (i = j andj = i). A matrix with a single class isreducible. A class
C is upstreant’ (equivalentlyC’ is downstreant) if a node ofC has access to a node of
C'. Classes with no other downstream classedinat classes with no other upstream
classes armitial .

The following famougmax, +) result has been proved again and again, with vari-
ous degrees of generality and precision, see [37,41, 22 31].



15

Theorem 11 (“(max, +) Perron-Frobenius Theorem”). An irreducible matrixA €
(Rmax )™*"™ has a unique eigenvalue, equal to the maximal circuit meat of

n . Ao 4o+ A
_ kN _ 1112 i1
pmax(A) = LG_?U(A JE = max max - (23)
We have the following refinements in terms of inequalitie®, [@hap V], [3].
Lemma 12 (“Collatz-Wielandt Properties”). Forany A € (Rpax)™*",
Pmax(A) = max{\ € Ryax | Ju € (Rmax)™ \ {0}, Au = Iu} . (24)

Moreover, ifA is irreducible,
Pmax(A) = min{\ € Ryax | Ju € (Rmax)™ \ {0}, Au < Au} . (25)

The characterization (25) implies in particular that, for mreducible matrix 4,
pmax (A) is the optimal value of the linear program

min A S.t. Vi, j Ay +uj <ui+ X

This was already noticed by Cuninghame-Green [15]. Thedstahway to compute
the maximal circuit meapma.x(A4) is to use Karp algorithm [27], which runs in time
O(n?). The specialization of Howard algorithm (see e.g. [35])étedministic Markov
Decision Processes with average reward, yields an algosthose average execution
time is in practice far below that of Karp algorithm, but ndypmwmial bound is known
for the execution time of Howard algorithm. Howard algomitiis also well adapted to
the semi-Markov variants (12).

Unlike in conventional Perron-Frobenius theory, an ir@die matrix may have
several (non proportional) eigenvectors. The charaetoiz of the eigenspace uses the
notion of critical graph. An arc (i, j) is critical if it belongs to a circuit(iy, ... ,ix)
whose mean weight attains theax in (23). Then, the nodes j arecritical. Critical
nodes and arcs form thogitical graph. A critical classis a strongly connected compo-

nent of the critical graph. Let;, ... , C¢ denote the critical classes. Lét= p,,l (A)A

(i.e. A;; = —pmax(4) + Aj;). Using Proposition 10, the existence &f (X' (4)*) is

guaranteed. If is in a critical class, we call the columdy ; of A* critical. The follow-
ing result can be found e.g. in [2,16].

Theorem 13 (Eigenspacel.etA € (Ry,ax)"*" denote an irreducible matrix. The crit-
ical columns ofd* span the eigenspace df If we select only one column, arbitrarily,
per critical class, we obtain a weak basis of the eigenspace.

Thus, the cardinality of a weak basis is equal to the numberit€al classes. For any
two i, j within the same critical class, the critical colum&g andfl,jj are proportional.
We next show how the eigenvalyg,..(4) and the eigenvectors determine the

asymptotic behavior afi* ask — co. Thecyclicity of a critical clas€’¢ is by definition
thegcd of the lengths of its circuits. Theyclicity ¢ of A is the lcm of the cyclicities of
its critical classes. Let us pick arbitrarily an indixwithin each critical clasg’;, for

s =1,...,r,and letvs, ws denote the column and row of indéx of A (vs,ws are
right and left eigenvectors of, respectively). The following result follows from [2].
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Theorem 14 (Cyclicity). Let A € (Rmax )™ be an irreducible matrix. There is an
integer K, such that

E> Ky = AMe = pa(A)ear | (26)

wherec is the cyclicity ofd. Moreover, ifc = 1,

k> Ko = A% = prax(A)* P, where P = v.w, . (27)

s=1

The matrix P which satisfiesP? = P, AP = PA = pmax(A)P is called thespec-
tral projector of A. The cyclicity theorem, which writesf]*c = Pmax(A4) X ¢+ Afj
in conventional algebra, implies that*2 grows ask x pmax(4), independently of
z € (Rmax )™, and that a periodic regime is attained in finite time. Thetllmehavior is
known a priori. Ultimately, the sequenpg,., (A4)~* A* visits periodicallyc accumu-
lation points, which are), AQ, ... , A°~'Q, where( is the spectral projector of°.
The length of the transient behaviéf, can be arbitrarily large. In terms of Markov
Decision, Theorem 14 says that optimal long trajectoriag aimost all the time on the
critical graph (Turnpike theorem). Theorem 14 is illusédhin Fig. 4, which shows the
images of a cat (a region of ti®¢ plane) by the iterates of (4, A2, A®, etc.),B and
C, where

R e B

We havep,ax(A) = 2. SinceA has a unique critical circuit, the spectral projecior
is rank one (its column and row spaces are lines). We find4Rat P: every point of
the plane is sent in at most two steps to the eigenjire 2 ® x = 2 + z, then it is
translated by2, 2) at each step. Similar interpretations exist ®andC.

Im A

Fig.4.A catin a(max, +) dynamics (see (28))

Let us now consider a reducible matrix Given a clasg, we denote by m,.x(C)
the (max, +) eigenvalue of the restriction of the matrixto C. Thesupportof a vector
u is the set supp = {i | u; # 0}. A set of nodesS is closedif j € S,i = j implies
i € S.We say thata clags C Sisfinalin S if there is no other downstream classdn
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Theorem 15 (Spectrum of reducible matrices)A matrix A € (Rmax)”*™ has an
eigenvector with suppoff C {1,...,n} and eigenvalue iff S is closed\ is equal to
pmax (C) for any clas<C that is final inS, and\ > pmax(C') for any other clasg’ in
S.

The proof can be found in [43,18]. See also [3]. In particuagenvalues of initial
classes are automatically eigenvaluesiofThe maximal circuit meap,,.x(A) (given

by (23)) is also automatically an eigenvalueA{but the associated eigenvector need
not be finite). A weak basis of the eigenspace is given in [1&pC1V,1.3.4].

Example 16 (Taxicab eigenproblerithe matrix of the taxicab MDP, shown in Fig 1,
has2 classes, namelyy = {c1,a,c2},Ca = {c3}. SiNCEIMax(Ca) = 2 < pmax(C1) =

5, there are no finite eigenvectors (which have supfo#t C; U C). The only other
closed set isS = Cy, which is initial. Thuspmax(4) = pmax(C1) = 5 is the only
eigenvalue ofd. Let A’ denote the restriction of to C;. There are two critical circuits
(¢1) and(a, c2), and thus two critical class€§ = {c; }, C5 = {a, c2}. A weak basis of
the eigenspace of’ is given by the columne; and (e.g.) of

C1 a Co

ca {0 -1 0

Ay =a -1 0 1
Co -2 -1 0

Completing these two columns byban row 4, we obtain a basis of the eigenspace of
A. The non existence of a finite eigenvector is obvious in tesfrontrol. If such an
eigenvector existed, by Fact 2, the optimal reward of theetdxwould be independent
of the starting point. But, if the taxi driver starts from &, he remains blocked there
with an income o $ per journey, whereas if he starts from any other node, heldho
clearly either run indefinitely in City 1, either shuttle fnathe airport to City 2, with

an average income 6f$ per journey (these two policies can be obtained by applying
Fact 2 to the MDP restricted t& , taking the two above eigenvectors).

The following extension to the reducible case of the cyslitheorem is worth being
mentioned.

Theorem 17 (Cyclicity, reducible case)Let A € (Rmax )" ™. There exist two integers
Ky andc > 1, and a family of scalars;j; € Rmax, 1 <i4,j <n,0<1<c¢—1,such
that

k>Ky, k=1 modec = A=A} ,

(29)

Characterizations exist ferand);;;. The scalars\;;; are taken from the set of eigen-
values of the classes of. If i, j belong to the same clags \;j; = pmax(C) for all [.
If 4,7 do not belong to the same class, the theorem implies thaeﬂ{weﬂc% X Afj
may have distinct accumulation points, according to thegyooence ok moduloc (see
[18, Chap. VI,1.1.10]).

The cyclicity theorems for matrices are essentially edaivito the characterization
of rational series in one indeterminate with coefficieriRjf, , as a merge of ultimately
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geometric series, see the paper of Gaubert in [13] and [28hsfer series and rational
algebra techniques are particularly powerful for Discietent Systems. Timed Event
Graphs can be represented by a remarkable (quotient) sgmifiseries with Boolean
coefficients, in two commuting variables, calldd2x[[v, §]] (see [2, Chap. 5]). The
indeterminates andd have natural interpretations sisiftsin dating and counting. The
complete behavior of the system can be represented by simpfeen small— com-
mutative rational expressions [2],[18, Chap. VII-IX] (s&eo [28] in a more general
context).

3.8 Symmetrization of the(max, +) Semiring

Let us try to imitate the familiar construction @f from N, for an arbitrary semiring
S. We build the set of coupleS?, equipped with (componentwise) sum’, z"') &
(v'.y") = (@ @ y',a" ©y"), and producta’, 2") & (y/,y") = (a'y’ @ 2"y", 2'y" ©
z'"y"). We introduce théalancerelation

(xl’xll)v(yl’yll) :L,I @ yll — .’L'” EBy, .

We haveZ = N?/V, but for an idempotent semiring, the procedure stops, since
V is not transitive (e.g(1,0)V(1,1)V(0,1), but (1,0) A7(0,1)). If we renounce
to quotientS?, we may still manipulate couples, with the operationc(z’,z"") =
(2", z"). Indeed, since> satisfies the signrulesc z = z, O(z ©y) = (Sx)  (Oy),
O(zy) = (8x)y = z(Sy), and sinceVy < z0yV0 (wesetzSy g (ey)),

it is not difficult to see thaall the familiar identities valid in rings admit analogues i
&2, replacing equalities by balancgSor instance, ifS is commutative, we have for all
matrices (of compatible size) with entriesSA (determinants are defined as usual, with
© instead of-):

det(AB) V det A det B, (30)
Ps(A) VO whereP4(\) = det(4 & Ald) (Cayley Hamilton).  (31)

Eqgn 30 can be written directly iy, introducing the positive and negative determi-
nants detd = @, e,en®1<icn Aio(i), dtA = @B, 040®1<icp Aio(i) (the sums
are taken over even and odd permutationg bf... ,n}, respectively). The balance
(30) is equivalent to the ordinary equality detB ¢ det"A det B ¢ det"A dettB =
det AB @ dettA det'B @ det"A det B, but (30) is certainly more adapted to com-
putations. Such identities can be proved combinatorialyying a bijection between
terms on both sides), or derived automatically from theigranalogues using a sim-
ple argument due to Reutenauer and Straubing [36, Proof minia 2] (see also the
transfer principlein [18, Ch. 1]).

But in theR,,x case, one can do much better. Consider the following agjuita
of the Cayley-Hamilton theorem:

A= [}1 ﬂ L A2otr(A)A @ det AVO, e A2@2d= 14 7id .
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Obviously, we may eliminate th2ld term which will never saturate the identity (since
2 < 7), and obtaind? = 14 @ 71d. Thus, to some extet< 2 = 7. This can be
formalized by introducing the congruence of semiring:

@R (9" & (@ Aoy £y ands! @y =" o y) o (¢ a") = (4",

The operationst, &, ® and the relationV are defined canonically on the quotient
Semirng,Smax = R2,. /=, which is called thesymmetrized semiringf Ry, . This
symmetrization was invented independently by G. HegeB6kdnd M. Plus [34].

In S 1ax, there are three kinds of equivalence classes; classeswi#lement of the
form (a, 0), identified toa € Rmax, and calledyositive classes with an element of the
form (0, a) denotedSa, callednegative classes with a single elemefat, a), denoted
a® and callecbalanced sincea®* VO (for a = 0, the three above classes coincide, we
will consider0 as both a positive, negative, and balanced element).

We have the decomposition 8f,.x in sets of positive, negative, and balanced ele-
ments, respectively

Smax = S&, USS, US?

max max max °

This should be compared with= Z*UZ~U{0}. Forinstance3s2 = 3,263 = 53,
but3 © 3 = 3°. We say that an elementsggnedif it is positive or negative.

Obviously, if a systemdz = b has a solution, the balanckr Vb has a solution.
Conversely ifAzVb has a positive solutiom, and if A, b are positive, it is not difficult
to see thatdz = b. It remains to solve systems of linear balances. The mafitulify
is that the balance relation is not transitive. As a restNtg andczVb do not imply
caVb. However, wherx is signed, the implication is true. This allows us to solve&r
systems of balances by elimination, when the unknowns gredi

Theorem 18 (Cramer Formulee).Let A € (Smax)™*", andb € (Smax)". Every signed
solution ofAz Vb satisfies the Cramer conditiabz; V. D;, whereD is the determinant
of A and D; is thei-th Cramer determinant Conversely, ifD; is signed for alli, and
if D is signed and nonzero, then= (D*lDi)lgign is the unique signed solution.

The proof can be found in [34,2]. For the homogeneous sysfemlinear equations
with n unknowns,AzV0 has a signed non zero solution &t AVO (see [34,18]),
which extends a result of Gondran and Minoux (see [22]).

Example 19.Let us solve the taxicab eigenprobletn = 5z by elimination inS,ax
(A is the matrix shown in Fig 1). We have

51 @428 724 VO (32a)

41 © 519 623 P34 VO (32b)
49 © 523 V 0 (32¢)

6524 VO . (32d)

The only signed solution of (32d) ies = 0. By homogeneity, let us look for the
solutions such that; = 0. Then, using (32c), we gdt:; V523 = 5. Since we search

5 Obtained by replacing thieth column ofA by b.
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a positivers, the balance can be replaced by an equality. Tdyus= 1. It remains to
rewrite (32a),(32b)5°xz1V © 5, 42, V6°®, which is true forz; positive iff0 < z; < 2.
The two extremal values give (up to a proportionality fartive basis eigenvectors
already computed in Ex. 19.

Determinants are not so easy to comput8,in,.. Butkovi¢ [8] showed that the com-
putation of the determinant of a matrix with positive ergrig polynomially equivalent
(we have to solve an assignment problem) to the research e¥emcycle in a (di-
rected) graph, a problem which is not known to be polynonii&d.do not know a non
naive algorithm to compute the minor rank (=size of a maxisudmatrix with unbal-
anced determinant) of a matrix (R )" *?. The situation is extremely strange: we
have excellent polynomial iterative algorithms [34,18Fited a signed solution of the
square systemlzVb whendet A # 0, but we do not have polynomial algorithms to
decide whetherdzV0 has a signed non zero solution (such algorithms would allow
us to computelet A in polynomial time). Moreover, the theory partly collapsesne
considers rectangular systems instead of square onesomt#ions of compatibility of
AxV0 when A is rectangular cannot be expressed in terms of determifE8it€hap.
1, 4.2.6].

Historical and Bibliographical Notes

The(max, +) algebra is not classical yet, but many researchers haveagak it (we
counted at least 80), and it is difficult to make a short histeithout forgetting im-
portant references. We will just mention here main sour¢@sspiration. The first use
of the (max, +) semiring can be traced back at least to the late fifties, aadhe-
ory grew in the sixties, with works of Cuninghame-Green,dlprev, RomanovskiT,
and more generally of the Operations Research communitpdtmalgebra). The first
enterprise of systematic study of this algebra seems to doedgminal “Minimax al-
gebra” of Cuninghame-Green [15]. A chapter on dioids candumd in Gondran et
Minoux [21]. The theory of linear independence using bideiaants, which is the
ancester of symmetrization, was initiated by Gondran andoMk (following Kuntz-
mann). See [22]. The last chapter of “Operatorial Method$/1aslov [32] inaugurated
the (max, +) operator and measure theory (motivated by semiclassigat@stics).
There is an “extremal algebra” tradition, mostly in Eastdpe, oriented towards algo-
rithms and computational complexity. Results in this $igin be found in the book of
U. Zimmermann [44]. This tradition has been pursued, e.@utikovic [7]. Theincline
algebrasintroduced by Cao, Kim and Roush [10] are idempotent segsrin which

a & ab = a. The tropical semiring was invented by Simon [39]. A numbdaoguage
and semigroup oriented contributions are due to the trépateol (Simon, Hashiguchi,
Mascle, Leung, Pin, Krob, Weber,. ). See the survey of Pin in [24], [40,25,29,28],
and the references therein. Since the beginning of theiefgliscrete Event Systems,
which were previously considered by distinct communitegssuing networks, schedul-
ing, ... ), have been gathered into a common algebraic frame. “Sgniation and
Linearity” by Baccelli, Cohen, Olsder, Quadrat [2] gives@nprehensive account of
deterministic and stochastic (max,+) linear discrete esgstems, together with recent
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algebraic results (such as symmetrization). Another et is the collection of ar-
ticles edited by Maslov and Samborskit [31] which is onlg thost visible part of the
(considerable) work of the Idempotent Analysis school. Adty of probabilities in
(max, +) algebra motivated by dynamic programming and large denatihas been
developed by Akian, Quadrat and Viot; and by Del Moral andi§@kee [24]). Recently,
the (max, +) semiring has attracted attention from the linear algebraroanity (Ba-
pat, Stanford, van den Driessche [3]). A survey with a vempplete bibliography is
the article of Maslov and Litvinov in [24]. Let us also mentithe forthcoming book
of Kolokoltsov and Maslov (an earlier version is in Russi&0]). The collection of
articles edited by Gunawardena [24] will probably give thstfiairly global overview
of the different traditions on the subject.
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