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Stéphane Gaubert and Max Plus?
INRIA, Domaine de Voluceau, BP105, 78153 Le Chesnay Cedex, France.

e-mail: Stephane.Gaubert@inria.fr

Abstract. Exotic semirings such as the “(max;+) semiring”(R [ f�1g;max;+), or the “tropical semiring” (N [ f+1g;min;+),
have been invented and reinvented many times since the late fifties, in relation
with various fields: performance evaluation of manufacturing systems and
discrete event system theory; graph theory (path algebra) and Markov decision
processes, Hamilton-Jacobi theory; asymptotic analysis (low temperature
asymptotics in statistical physics, large deviations, WKBmethod); language
theory (automata with multiplicities).
Despite this apparent profusion, there is a small set of common, non-naive, ba-
sic results and problems, in general not known outside the(max;+) community,
which seem to be useful in most applications. The aim of this short survey paper
is to present what we believe to be the minimal core of(max;+) results, and
to illustrate these results by typical applications, at thefrontier of language the-
ory, control, and operations research (performance evaluation of discrete event
systems, analysis of Markov decision processes with average cost).
Basic techniques include: solving all kinds of systems of linear equations,
sometimes with exotic symmetrization and determinant techniques; using the(max;+) Perron-Frobenius theory to study the dynamics of(max;+) linear
maps. We point out some open problems and current developments.

1 Introduction: the (max;+) and tropical semirings

The “max-algebra” or “(max;+) semiring”Rmax , is the setR[f�1g, equipped withmax as addition, and+ as multiplication. It is traditional to use the notation� formax (2 � 3 = 3), and
 for + (1 
 1 = 2). We denote1 by 0 the zeroelement for� (such that0 � a = a, here0 = �1) and by1 the unit element for
 (such that1
 a = a
 1 = a, here1 = 0). This structure satisfies all the semiring axioms, i.e.�
is associative, commutative, with zero element,
 is associative, has a unit, distributes
over�, and zero is absorbing (all the ring axioms are satisfied, except that� need not be? Max Plus is a collective name for a working group on(;+) algebra, at INRIA Rocquencourt,

comprising currently: Marianne Akian, Guy Cohen, S.G., Jean-Pierre Quadrat and Michel
Viot.

1 The notation for the zero and unit is one of the disputed questions of the community. The
symbols" for zero, ande for the unit, often used in the literature, are very distinctive and well
suited to handwritten computations. But it is difficult to renounce to the traditional use of"
in Analysis. The notation0;1 used by the Idempotent Analysis school has the advantage of
making formulæ closer to their usual analogues.
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a group law). This semiring iscommutative(a
b = b
a), idempotent(a�a = a), and
non zero elements have an inverse for
 (we callsemifieldsthe semirings that satisfy
this property). The termdioid is sometimes used for anidempotentsemiring.

Using the new symbols� and
 instead of the familiarmax and+ notation is the
price to pay to easily handle all the familiar algebraic constructions. For instance, we
will write, in the (max;+) semiring:ab = a
 b; an = a
 � � � 
 a (n times); 23 = 6 ; p3 = 1:5 ;�2 04 0� � 10103� = �2
 10� 0
 1034
 10� 0
 103� = �10314 � ;(3� x)2 = (3� x)(3� x) = 6� 3x� x2 = 6� x2 (= max(6; 2� x)) :

We will systematically use the standard algebraic notions (matrices, vectors, linear
operators, semimodules — i.e. modules over a semiring—, formal polynomials and
polynomial functions, formal series) in the context of the(max;+) semiring, often
without explicit mention. Essentially all the standard notions of algebra have obvious
semiring analogues, provided they do not appeal to the invertibility of addition.

There are several useful variants of the(max;+) semiring, displayed in Table 1.
In the sequel, we will have to consider various semirings, and will universally use theRmax (R [ f�1g;max;+) (max;+) semiring

max algebra

idempotent semifieldRmax (R [ f�1g;max;+) completed(max;+) semiring

�1+ (+1) = �1,

for 0
 a = 0Rmax;� (R+ ;max;�) (max;�) semiring isomorphic toRmax (x 7! log x)Rmin (R [ f+1g;min;+) (min;+) semiring isomorphic toRmax (x 7! �x)Nmin (N [ f+1g;min;+) tropical semiring (famous in Language Theory)Rmax;min (R [ f�1g;max;min) bottleneck algebra not dealt with hereB (ffalse; trueg; or; and) Boolean semiring isomorphic to(f0; 1g;�;
),
for any of the above semiringsRh (R [ f�1g;�h;+)a�h b = h log(ea=h + eb=h) Maslov semirings isomorphic to(R+;+;�)limh!0+ Rh = R0 = Rmax

Table 1.The family of(max;+) and tropical semirings: : :
notation�;
; 0; 1 with a context dependent meaning (e.g.� = max in Rmax but� = min in Rmin , 0 = �1 in Rmax but0 = +1 in Rmin ).

The fact that� is idempotent instead of being invertible (Rh is an exception, forh 6= 0), is the main original feature of these “exotic” algebras, which makes them so
different from the more familiar ring and field structures. In fact the idempotence and
cancellativity axioms are exclusive: if for alla; b; 
, (a � b = a � 
 ) b = 
) anda� a = a, we geta = 0, for all a (simplify a� a = a� 0).

This paper is not a survey in the usual sense. There exist several comprehensive
books and excellent survey articles on the subject, each onehaving its own bias and
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motivations. Applications of(max;+) algebras are too vast (they range from asymp-
totic methods to decidability problems), techniques are too various (from graph theory
to measure theory and large deviations) to be surveyed in a paper of this format. But
there is a small common set of useful basic results, applications and problems, that we
try to spotlight here. We aim neither at completeness, nor atoriginality. But we wish to
give an honest idea of the services that one should expect from (max;+) techniques.
The interested reader is referred to the books [15,44,10,2,31], to the survey papers listed
in the bibliography, and to the recent collection of articles [24] for an up-to-date account
of the maxplusian results and motivations. Bibliographical and historical comments are
at the end of the paper.

2 Seven good reasons to use the(max;+) semiring

2.1 An Algebra for Optimal Control

A standard problem of calculus of variations, which appearsin Mechanics (least action
principle) and Optimal Control, is the following. Given a LagrangianL and suitable
boundary conditions (e.g.q(0); q(T ) fixed), computeinfq(�)Z T0 L(q; _q)dt : (1)

This problem is intrinsically(min;+) linear. To see this, consider the (slightly more
general) discrete variant, withsup rather thaninf ,�(n) = x; �(k) = f(�(k � 1); u(k)); k = n+ 1; : : : ; N; (2a)JNn (x; u) = NXk=n+1 
(�(k � 1); u(k)) + �(�(N)) ; (2b)V Nn (x) = supu JNn (x; u) ; (2c)

where thesup is taken over all sequences ofcontrolsu(k); k = n+1; � � � ; N; selected
in a finiteset of controlsU , �(k), for k = n; : : : ; N , belongs to a finite setX of states,x
is a distinguishedinitial state, f : X�U ! X is thedynamics, 
 : X�U ! R[f�1g
is theinstantaneous reward, and� : X ! R[f�1g is thefinal reward(the�1 value
can be used to code forbidden final states or transitions). These data form a deterministic
Markov Decision Process(MDP) with additive reward.

The functionV Nn (�), which represents the optimal reward from timen to timeN ,
as a function of the starting point, is called thevaluefunction. It satisfies the backward
dynamic programming equationV NN = �; V Nk (x) = maxu2U �
(x; u) + V Nk+1(f(x; u))	 : (3)

Introducing thetransition matrixA 2 (Rmax )X�X ,Ax;y = supu2U; f(x;u)=y 
(x; u); (4)

(the supremum over an empty set is�1), we obtain:
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FACT 1 (DETERMINISTIC MDP= (max;+)-LINEAR DYNAMICS ). The value functionV Nk of a finite deterministic Markov decision process with additive reward is given by
the(max;+) linear dynamics:V NN = �; V Nk = AV Nk+1: (5)

The interpretation in terms of paths is elementary. If we must end at nodej, we take� = 1j (the vector with all entries0 except thej-th equal to1), Then, the value functionV N0 (i) = (AN )ij is the maximal (additive) weight of a path of lengthN , from i to j,
in the graph canonically associated2 with A.

Example 1 (Taxicab).Consider a taxicab which operates between 3 cities and one air-
port, as shown in Fig. 1. At each state, the taxi driver has to choose his next destination,
with deterministic fares shown on the graph (for simplicity, we assume that the demand
is deterministic, and that the driver can choose the destination). The taxi driver consid-
ers maximizing his reward overN journeys. The(max;+) matrix associated with this
MDP is displayed in Fig. 1.

5 $

city 1

4$

airport

4 $

6 $

4$

3 $

1 $

7$

3$
city 32$

A = 0BB� 
1 a 
2 
3
1 5 4 0 7a 4 0 6 3
2 0 4 1 0
3 0 0 0 2 1CCA
city 2

Fig. 1. Taxicab Deterministic MDP and its matrix

Let us consider the optimization of the average reward:�(x) = supu lim supN!1 1N JN0 (x; u) : (6)

Here, thesup is taken over infinite sequences of controlsu(1); u(2); : : : and the trajec-
tory (2a) is defined fork = 0; 1; : : : . We expectJN0 to grow (or to decrease) linearly,
as a function of the horizonN . Thus,�(x) represents the optimal average reward (per
time unit), starting fromx. Assuming that thesup andlim sup commute in (6), we get:�(x) = lim supN!1 1N � (AN�)x (7)

(this is an hybrid formula,AN� is in the(max;+) semiring ,1=N�(�) is in the conven-
tional algebra). To evaluate (7), let us assume that the matrix A admits aneigenvectorv
2 With aX �X matrixA we associate the weighted (directed) graph, with set of nodesX, and

an arc(x; y) with weightAx;y wheneverAx;y 6= 0.
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in the(max;+) semiring:Av = �v; i.e. maxj fAij + vjg = �i + vi (8)

(the eigenvectorv must be nonidentically0,� 2 Rmax is the eigenvalue). Let us assume
thatv and� have only finite entries. Then, there exist two finite constants�; � such that� + v � � � � + v. In (max;+) notation,�v � � � �v. Then��Nv = �ANv �AN� � �ANv = ��Nv; or with the conventional notation:� +N�+ v � AN� � �+N�+ v: (9)

We easily deduce from (9) the following.

FACT 2 (“EIGENELEMENTS= OPTIMAL REWARD AND POLICY”). If the final reward� is finite, and if A has a finite eigenvector with eigenvalue�, the optimal average
reward�(x) is a constant (independent of the starting pointx), equal to the eigenvalue�. An optimal control is obtained by playing in statei anyu such that
(i; u) = Aij
andf(i; u) = j, wherej is in thearg maxof (8) at statei.
The existence of a finite eigenvector is characterized in Theorems 11 and 15 below.

We will not discuss here the extension of these results to theinfinite dimensional
case (e.g. (1)), which is one of the major themes of Idempotent Analysis [31]. Let us just
mention that all the results presented here admit or should admit infinite dimensional
generalizations, presumably up to important technical difficulties.

There is another much simpler extension, to the (discrete) semi-Markov case, which
is worth being mentioned. Let us equip the above MDP with an additional map� :X � U ! R+ n f0g; �(x(k � 1); u(k)) represents the physical time elapsed between
decisionk and decisionk + 1, when controlu(k) is chosen. This is very natural in
most applications (for the taxicab example, the times of thedifferent possible journeys
in general differ). The optimal average reward per time unitnow writes:�(x) = supu lim supN!1 PNk=1 
(x(k � 1); u(k)) + �(x(N))PNk=1 �(x(k � 1); u(k)) : (10)

Of course, the specialization� � 1 gives the original problem (6). Let us defineTij =f�(i; u) j f(i; u) = jg, and fort 2 Tij ,At;i;j = supu2U;f(i;u)=j;�(i;u)=t 
(i; u) : (11)

Arguing as in the Markov case, it is not too difficult to show the following.

FACT 3 (GENERALIZED SPECTRAL PROBLEM FOR SEMI-MARKOV PROCESSES). If
the generalized spectral problemmaxj maxt2TijfAt;i;j � �t+ vjg = vi (12)

has a finite solutionv, and if� is finite, then the optimal average reward is�(x) = �,
for all x. An optimal control is obtained by playing anyu in thearg maxof (11), withj; t in thearg maxof (12), when in statei.
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Algebraically, (12) is nothing but a generalized spectral problem. Indeed, with an obvi-
ous definition of the matricesAt, we can write:Mt2T ��tAtv = v ; whereT =[i;j Tij : (13)

2.2 An Algebra for Asymptotics

In Statistical Physics, one looks at the asymptotics when the temperatureh tends to zero
of the spectrum oftransfer matrices, which have the formAh = (exp(h�1Aij))1�i;j�n :
The real parametersAij represent potential terms plus interaction energy terms (when
two adjacent sites are in statesi andj, respectively). The Perron eigenvalue3 �(Ah)
determines the free energy per site�h = h log �(Ah). Clearly,�h is an eigenvalue ofA in the semiringRh , defined in Table 1. Let�max(A) denote the maximal(max;+)
eigenvalue ofA. Sincelimh!0+ Rh = R0 = Rmax , the following result is natural.

FACT 4 (PERRONFROBENIUSASYMPTOTICS). The asymptotic growth rate of the Per-
ron eigenvalue ofAh is equal to the maximal(max;+) eigenvalue of the matrixA:limh!0+ h log �(Ah) = �max(A) : (14)

This follows easily from the(max;+) spectral inequalities (24),(25) below. The nor-
malized Perron eigenvectorvh of Ah also satisfieslimh!0+ h log(vh)i = ui ;
whereu is a special(max;+) eigenvector ofA which has been characterized recently
by Akian, Bapat, and Gaubert [1]. Precise asymptotic expansions of�(Ah) as sum of
exponentials have been given, some of the terms having combinatorial interpretations.

More generally,(max;+) algebra arises almost everywhere in asymptotic phenom-
ena. Often, the(max;+) algebra is involved in an elementary way (e.g. when com-
puting exponents of Puiseux expansions using the Newton Polygon). Less elementary
applications are WKB type asymptotics (see [31]), which arerelated to Large Devia-
tions (see e.g. [17]).

2.3 An Algebra for Discrete Event Systems

The (max;+) algebra is popular in the Discrete Event Systems community,since(max;+) linear dynamics correspond to a well identified subclass of Discrete Event
Systems, with only synchronization phenomena, called Timed Event Graphs. Indeed,
consider a system withn repetitive tasks. We assume that thek-th execution of taski
(firing of transitioni) has to wait�ij time units for the(k � �ij)-th execution of taskj. E.g. tasks represent the processing of parts in a manufacturing system,�ij represents
an initially available stock, and�ij represents a production or transportation time.

3 The Perron eigenvalue�(B) of a matrixB with nonnegative entries is the maximal eigenvalue
associated with a nonnegative eigenvector, which is equal to the spectral radius ofB.
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FACT 5 (TIMED EVENT GRAPHS ARE (max;+) L INEAR SYSTEMS). The earliest
date of occurrence of an eventi in a Timed Event Graph,xi(k), satisfiesxi(k) = maxj [�ij + xj(k � �ij)℄ : (15)

Eqn 15 coincides with the value iteration of the deterministic semi-Markov Decision
Process inx 2.1, that we only wrote in the Markov version (3). Therefore,the asymp-
totic behavior of (15) can be dealt with as inx 2.1, using(max;+) spectral theory. In
particular, if the generalized spectral problemvi = maxj [�ij � ��ij + vj ℄ has a finite
solution(�; v), then� = limk!1 k�1 � xi(k), for all i (� is thecycle time, or inverse
of theasymptotic throughput). The study of the dynamics (15), and of its stochastic [2],
and non-linear extensions [11,23] (fluid Petri Nets, minmaxfunctions), is the major
theme of(max;+) discrete event systems theory.

Another linear model is that ofheaps of pieces. LetR denote a set ofpositionsor
resources(sayR = f1; : : : ; ng). A piece(or task) a is a rigid (possibly non connected)
block, represented geometrically by a set of occupied positions (or requested resources)R(a) � R, a lower contour (starting time)̀(a) : R(a)! R, an upper contour (release
time) h(a) : R(a) ! R, such that8a 2 R(a), h(a) � `(a). The piece corresponds
to the region of theR � R plane:Pa = f(r; y) 2 R(a) � R j `(a)r � y � h(a)rg,
which means that taska requires the set of resources (machines, processors, operators)R(a), and that resourcer 2 R(a) is used from timè (a)r to timeh(a)r. A piecePa
can be translated vertically of any�, which gives the new region defined by`0(a) =� + `(a); h0(a) = � + h(a). We can execute a task earlier or later, but we cannot
change the differencesh(a)r � `(a)s which are invariants of the task. Agroundor
initial condition is a row vectorg 2 (Rmax )R. Resourcer becomes initially available
at timegr. If we dropk piecesa1 : : : ak, in this order, on the groundg (letting the pieces
fall down according to the gravity, forbidding horizontal translations, and rotations, as
in the famous Tetris game, see Fig 2), we obtain what we call aheap of pieces. The
upper contourx(w) of the heapw = a1 : : : ak is the row vector in(Rmax )R, whoser-
th component is equal to the position of the top of the highestpiece occupying resourcer. The heightof the heap is by definitiony(w) = maxr2R x(w)r . Physically,y(w)
gives themakespan(= completion time) of the sequence of tasksw, andx(w)r is the
release time of resourcer.

With each piecea within a set of piecesT , we associate the matrixM(a) 2(Rmax )R�R, M(a)r;s = h(a)s � `(a)r if r; s 2 R(a), andM(a)r;r = 1 for diagonal
entries not inR(a) (other entries are0). The following result was found independently
by Gaubert and Mairesse (in [24]), and Brilman and Vincent [6].

FACT 6 (TETRIS GAME IS(max;+) LINEAR). The upper contourx(w) and the heighty(w) of the heap of piecesw = a1 : : : ak, piled up on the groundg, are given by the(max;+) products:x(w) = gM(a1) : : :M(ak); y(w) = x(w)1R;
(1X denotes the column vector indexed byX with entries1).

In algebraic terms, the height generating series
Lw2T � y(w)w is rational over the

(max,+) semiring (T � is the free monoid onT , basic properties of rational series can
be found e.g. in [38]).



8

b

c

a

a

a

c

b

a

R(
) = f2; 4g, `(
) = [�; 0; �; 0℄, h(
) = [�; 2; �; 2℄R(b) = f1; 2g, `(b) = [0; 0; �; �℄, h(b) = [2; 2; �; �℄R(a) = f1; 2; 3g, `(a) = [0; 0; 0; �℄, h(a) = [1; 1; 3; �℄
Fig. 2. Heap of Pieces

Let us mention an open problem. If an infinite sequence of piecesa1a2 : : : ak : : :
is taken at random, say in an independent identically distributed way with the uniform
distribution onT , it is known [14,2] that there exists an asymptotic growth rate� 2 R+ :� = limk!1 1k y(a1 : : : ak) a.s. (16)

The effective computation of the constant� (Lyapunov exponent) is one of the main
open problems in (max,+) algebra. The Lyapunov exponent problem is interesting for
general random matrices (not only for special matrices associated with pieces), but the
heap case (even with unit height,h(a) = 1 + `(a)) is typical and difficult enough to
begin with. Existing results on Lyapunov exponents can be found in [2]. See also the
paper of Gaujal and Jean-Marie in [24], and [6].

2.4 An Algebra for Decision

The “tropical” semiringNmin = (N[f+1g;min;+), has been invented by Simon [39]
to solve the following classical problem posed by Brzozowski: is it decidable whether
a rational languageL has the Finite Power Property (FPP):9m 2 N, L� = L0 [ L [� � � [ Lm. The problem was solved independently by Simon and Hashiguchi.

FACT 7 (SIMON). The FPP problem for rational languages reduces to the finiteness
problem for finitely generated semigroups of matrices with entries inNmin , which is
decidable.

Other (more difficult) decidable properties (with applications to the polynomial closure
and star height problems) are thefinite sectionproblem, which asks, given a finitely
generated semigroup of matricesS over the tropical semiring, whether the set of entries
in positioni; j, fsij j s 2 Sg is finite; and the more generallimitation problem, which
asks whether the set of coefficients of a rational series inNmin , with noncommuting in-
determinates, is finite. These decidability results due to Hashiguchi [25], Leung [29] and
Simon [40] use structural properties of long optimal words in Nmin -automata (involv-
ing multiplicative rational expressions), and combinatorial arguments. By comparison
with basic Discrete Event System and Markov Decision applications, which essentially
involve semigroups with a single generator (S = fAk j k � 1g), these typically non-
commutative problems represent a major jump in difficulty. We refer the reader to the
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survey of Pin in [24], to [40,25,29], and to the references therein. However, essential in
the understanding of the noncommutative case is the one generator case, covered by the(max;+) Perron-Frobenius theory detailed below.

Let us point out an open problem. The semigroup oflinear projective mapsPZn�nmax
is the quotient of the semigroup of matricesZn�nmax by the proportionality relation:A �B , 9� 2 Z; A = �B (i.e. Aij = � + Bij). We ask:can we decide whether
a finitely generated semigroup of linear projective maps is finite ? The motivation is
the following. If the image of a finitely generated semigroupwith generatorsM(a) 2Zn�nmax ; a 2 � by the canonical morphismZn�nmax ! PZn�nmax is finite, then the Lyapunov
exponent� = a.s. limk!1 k�1�kM(a1) : : :M(ak)k (same probabilistic assumptions
as for (16),kAk = supij Aij , by definition) can be computed from a finite Markov
Chain on the associated projective linear semigroup [19,20].

3 Solving Linear Equations in the(max;+) Semiring

3.1 A hopeless algebra?

The general system ofn (max;+)-linear equations withp unknownsx1; : : : ; xp writes:Ax� b = Cx� d; A;C 2 (Rmax)n�p; b; d 2 (Rmax )n : (17)

Unlike in conventional algebra, a square linear system (n = p) is not generically
solvable (consider3x � 2 = x � 0, which has no solution, since for allx 2 Rmax ,max(3 + x; 2) > max(x; 0)).

There are several ways to make this hard reality more bearable. One is to give gen-
eral structural results. Another is to deal with natural subclasses of equations, whose
solutions can be obtained by efficient methods. TheinverseproblemAx = b can be
dealt with usingresiduation. ThespectralproblemAx = �x (� scalar) is solved using
the(max;+) analogue of Perron-Frobenius theory. Thefixed pointproblemx = Ax�b
can be solved via rational methods familiar in language theory (introducing the “star”
operationA� = A0�A�A2 � � � � ). A last way, which has the seduction of forbidden
things, is to say: “certainly, the solution of3x � 2 = x � 0 is x = 	 � 1. For if this
equation has no ordinary solution, the symmetrized equation (obtained by putting each
occurrence of the unknown in the other side of the equality)x0 � 2 = 3x0 � 0 has the
unique solutionx0 = �1. Thus,x = 	 � 1 is the requested solution.” Whether or not
this argument is valid is the object ofsymmetrizationtheory.

All these approaches rely, in one way or another, on theorder structure of idempo-
tent semirings that we next introduce.

3.2 Natural Order Structure of Idempotent Semirings

An idempotent semiringS can be equipped with the followingnaturalorder relationa � b () a� b = b: (18)

We will write a � b whena � b anda 6= b. The natural order endowsS with a sup-
semilattice structure, for whicha� b = a_ b = supfa; bg (this is the least upper bound
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of the setfa; bg), and0 � a, 8a; b 2 S (0 is thebottomelement). The semiring laws
preserve this order, i.e.8a; b; 
 2 S; a � b =) a � 
 � b � 
; a
 � b
. For
the(max;+) semiringRmax , the natural order� coincides with the usual one. For the(min;+) semiringRmin , the natural order is the opposite of the usual one.

Since addition coincides with the sup for the natural order,there is a simple way to
define infinite sums, in an idempotent semiring, setting

Li2I xi = supfxi j i 2 Ig,
for any possibly infinite (even non denumerable) familyfxigi2I of elements ofS, when
the sup exists. We say that the idempotent semiringS is completeif any family has
a supremum, and if the product distributes over infinite sums. WhenS is complete,(S;�) becomes automatically a complete lattice, the greatest lower bound being equal
to
Vi2I xi = supfy 2 S j y � xi; 8i 2 Ig. The (max;+) semiringRmax is not

complete (a complete idempotent semiring must have a maximal element), but it can be
embedded in the complete semiringRmax.

3.3 SolvingAx = b using Residuation

In general,Ax = b has no solution4, butAx � b always does (takex = 0). Thus,
a natural way of attackingAx = b is to relax the equality and study the set of its
subsolutions. This can be formalized in terms ofresiduation[5], a notion borrowed
from ordered sets theory. We say that a monotone mapf from an ordered setE to an
ordered setF is residuatedif for all y 2 F , the setfx 2 E j f(x) � yg has a maximal
element, denotedf ℄(y). The monotone mapf ℄, calledresidualor residuated mapoff , is characterized alternatively byf Æ f ℄ � Id; f ℄ Æ f � Id. An idempotent semiringS is residuatedif the right and left multiplication maps�a : x 7! ax, �a : x 7! xa,S ! S, are residuated, for alla 2 S. A completeidempotent semiring is automatically
residuated. We setanb def= �℄a(b) = maxfx j ax � bg ; b=a def= �℄a(b) = maxfx j xa � bg :
In the completed(max;+) semiringRmax, anb = b=a is equal tob� a whena 6= 0(=�1), and is equal to+1 if a = 0. The residuated character is transfered from scalars
to matrices as follows.

Proposition 2 (Matrix residuation). Let S be a complete idempotent semiring. LetA 2 Sn�p. The map�A : x 7! Ax;Sp ! Sn, is residuated. For anyy 2 Sn,Any def= �℄A(y) is given by(Any)i = V1�j�nAjinyj .
In the case ofRmax, this reads:(Any)i = min1�j�n(�Aji + yj) ; (19)

4 It is an elementary exercise to check that the mapx 7! Ax; (Rmax)p ! (Rmax)n, is surjective
(resp. injective) iff the matrixA contains a monomial submatrix of sizen (resp.p), a very
unlikely event — recall that a square matrixB is monomialif there is exactly one non zero
element in each row, and in each column, or (equivalently) ifit is a product of a permutation
matrix and a diagonal matrix with non zero diagonal elements. This implies that a matrix has
a left or a right inverse iff it has a monomial submatrix of maximal size, which is the analogue
of a well known result for nonnegative matrices [4, Lemma 4.3].
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with the convention dual to that ofRmax, (+1) + x = +1, for anyx 2 R [ f�1g.
We recognize in (19) a matrix product in the semiringRmin = (R [ f�1g;min;+),
involving the transpose of the opposite ofA.

Corollary 3 (Solving Ax = y). LetS denote a complete idempotent semiring, and letA 2 Sn�p, y 2 Sn. The equationAx = y has a solution iffA(Any) = y.

Corollary 3 allows us to check the existence of a solutionx of Ax = y in timeO(np)
(scalar operations are counted for one time unit). In the(max;+) case, a refinement
(due to the total order) allows us to decide the existence of asolution by inspection of
the minimizing sets in (19), see [15,44].

3.4 Basis Theorem for Finitely Generated Semimodules overRmax
A finitely generated semimoduleV � (Rmax)n is the set of linear combinations of a
finite family fu1; : : : ; upg of vectors of(Rmax )n:V = � pMi=1 �iui ���1; : : : ; �p 2 Rmax	 :
In matrix terms,V can be identified to thecolumn spaceor imageof then � p matrixA = [u1; : : : ; up℄, V = ImA def= fAx j x 2 (Rmax )pg. The row spaceof A is the
column space ofAT (the transpose ofA). The familyfuig is aweak basisof V if it is a
generating family, minimal for inclusion. The following result, due to Moller [33] and
Wagneur [42] (with variants) states that finitely generatedsubsemimodules of(Rmax)n
have (essentially) a unique weak basis.

Theorem 4 (Basis Theorem).A finitely generated semimoduleV � (Rmax )n has a
weak basis. Any two weak bases have the same number of generators. For any two
weak basesfu1; : : : ; upg, fv1; : : : ; vpg, there exist invertible scalars�1; : : : ; �p and
a permutation� of f1; : : : ; pg such thatui = �iv�(i).
The cardinality of a weak basis is called theweak rankof the semimodule, denoted
rkwV . Theweak column rank(resp. weak row rank) of the matrixA is the weak rank
of its column (resp. row) space. Unlike in usual algebra, theweak row rank in gen-
eral differs from the weak column rank (this is already the case for Boolean matrices).
Theorem 4 holds more generally in any idempotent semiringS satisfying the following
axioms:(a � �a anda 6= 0) =) 1 � �, (a = �a � b and� � 1) =) a = b.
The axioms needed to set up a general rank theory in idempotent semirings are not cur-
rently understood. Unlike in vector spaces, there exist finitely generated semimodulesV � (Rmax)n of arbitrarily large weak rank, if the dimension of the ambient spacen
is at least3; and not all subsemimodules of(Rmax )n are finitely generated, even withn = 2.

Example 5 (Cuninghame-Green [15],Th. 16.4).The weak column rank of the3�(i+1)
matrix Ai = 240 0 : : : 00 1 : : : i0 �1 : : : �i35
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is equal toi+1 for all i 2 N. This can be understood geometrically using a representa-
tion due to Mairesse. We visualize the set of vectors with finite entries of a semimoduleV � (Rmax)3 by the subset ofR2 , obtained by projectingV orthogonally, on any plane
orthogonal to(1; 1; 1). SinceV is invariant by multiplication by any scalar�, i.e. by
the usual addition of the vector(�; �; �), the semimoduleV is well determined by its
projection. We only loose the points with0 entries which are sent to some infinite end
of theR2 plane. The semimodules ImA1; ImA2; ImA3 are shown on Fig 3. The gener-
ators are represented by bold points, and the semimodules bygray regions. The broken
line between any two generatorsu; v represents Im[u; v℄. This picture should make it
clear that a weak basis of a subsemimodule of(Rmax )3 may have as many generators
as a convex set ofR2 may have extremal points. The notion of weak rank is therefore a
very coarse one.

y ImA1z
ImA2 y ImA3z z xxx y

Fig. 3. An infinite ascending chain of semimodules of(Rmax)3 (see Ex. 5).

Let A 2 (Rmax )n�p. A weak basis of the semimodule ImA can be computed by a
greedy algorithm. LetA[i℄ denote thei-th column ofA, and letA(i) denote then �(p � 1) matrix obtained by deleting columni. We say that columni of A is redundant
if A[i℄ 2 ImA(i), which can be checked by Corollary 3. ReplacingA by A(i) whenA[i℄ is redundant, we do not change the semimodule ImA. Continuing this process, we
terminate inO(np2) time with a weak basis.

Application 6 (Controllability).The fact that ascending chains of semimodules need not
stationnarize yields pathological features in terms of Control. Consider the controlled
dynamical system:x(0) = 0; x(k) = Ax(k � 1)�Bu(k); k = 1; 2; : : : (20)

whereA 2 (Rmax)n�n, B 2 (Rmax )n�q , andu(k) 2 (Rmax )q ; k = 1; 2; : : : is a
sequence of control vectors. Given a state� 2 (Rmax)n, theaccessibilityproblem (in
time N ) asks whether there is a control sequenceu such thatx(N) = �. Clearly,�
is accessible in timeN iff it belongs to the image of thecontrollability matrix CN =[B;AB; : : : ; AN�1B℄. Corollary 3 allows us to decide the accessibility of�. However,
unlike in conventional algebra (in which ImCN = Im Cn, for anyN � n, thanks
to Cayley-Hamilton theorem), the semimodule of accessiblestates ImCN may grow
indefinitely asN !1.
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3.5 SolvingAx = Bx by Elimination

The following theorem is due to Butkovič and Hegedüs [9]. It was rediscovered in [18,
Chap. III].

Theorem 7 (Finiteness Theorem).LetA;B 2 (Rmax)n�p. The setV of solutions of
the homogeneous systemAx = Bx is a finitely generated semimodule.

This is a consequence of the following universal elimination result.

Theorem 8 (Elimination of Equalities in Semirings). Let S denote an arbitrary
semiring. LetA;B 2 Sn�p. If for any q � 1 and any row vectorsa; b 2 Sq ,
the hyperplanefx 2 Sq j ax = bxg is a finitely generated semimodule, thenV = fx 2 Sp j Ax = Bxg is a finitely generated semimodule.

The fact that hyperplanes of(Rmax )q are finitely generated can be checked by ele-
mentary means (but the number of generators can be of orderq2). Theorem 8 can be
easily proved by induction on the number of equations (see [9,18]). In theRmax case,
the resulting naive algorithm has a doubly exponential complexity. But it is possible
to incorporate the construction of weak bases in the algorithm, which much reduces
the execution time. The making (and complexity analysis) ofefficient algorithms forAx = Bx is a major open problem. When only a single solution is needed, the algo-
rithm of Walkup and Borriello (in [24]) seems faster, in practice.

There is a more geometrical way to understand the finiteness theorem. Consider
the following correspondence between semimodules of((Rmax )1�n)2 (couples of row
vectors) and(Rmax )n�1 (column vectors), respectively:W � ((Rmax)1�n)2 �! W> = fx 2 (Rmax )n�1 j ax = bx; 8(a; b) 2 Wg ;V? = f(a; b) 2 ((Rmax)1�n)2 j ax = bx; 8x 2 Vg  � V � (Rmax )n�1 :

(21)

Theorem 7 states that ifW is a finitely generated semimodule (i.e. if all the row vectors[a; b℄ belong to the row space of a matrix[A;B℄) then, its orthogonalW> is finitely
generated. Conversely, ifV is finitely generated, so doesV? (since the elements(a; b) ofV? are the solutions of a finite system of linear equations). Theorthogonal semimoduleV? is exactly the set oflinear equations(a; b) : ax = bx satisfied by all thex 2 V .
Is a finitely generated subsemimoduleV � (Rmax)n�1 defined by its equations ? The
answer is positive [18, Chap. IV,1.2.2]:

Theorem 9 (Duality Theorem). For all finitely generated semimodulesV �(Rmax )n�1, (V?)> = V .

In general,(W>)? ) W . The duality theorem is based on the following analogue of
the Hahn-Banach theorem, stated in [18]:if V � (Rmax )n�1 is a finitely generated
semimodule, andy 62 V , there exist(a; b) 2 ((Rmax )1�n)2 such thatay 6= by andax = bx; 8x 2 V .

Thekernelof a linear operatorC should be defined askerC = f(x; y) j Cx =Cyg. When is the projector on the image of a linear operatorB, parallel tokerC,
defined? The answer is given in [12].



14

3.6 Solvingx = Ax� b using Rational Calculus

Let S denote a complete idempotent semiring, and letA 2 Sn�n; b 2 Sn. The least
solution ofx � Ax � b isA�b, where the star operation is given by:A� def= Mn2NAn : (22)

Moreover,x = A�b satisfies the equationx = Ax� b. All this is most well known (see
e.g. [38]), and we will only insist on the features special tothe(max;+) case. We can
interpretA�ij as themaximal weightof a path fromi to j of any length, in the graph2

associated withA. We next characterize the convergence ofA� in (Rmax)n�n (A� is
a priori defined in(Rmax)n�n, but the+1 value which breaks the semifield character
of Rmax is undesired in most applications). The following fact is standard (see e.g. [2,
Theorem 3.20]).

Proposition 10. LetA 2 (Rmax )n�n. The entries ofA� belong toRmax iff there are
no circuits with positive weight in the graph2 ofA. Then,A� = A0 �A� � � � �An�1.
The matrixA� can be computed in timeO(n3) using classical universal Gauss algo-
rithms (see e.g. [21]). Special algorithms exist for the(max;+) semiring. For instance,
the sequencex(k) = Ax(k � 1) � b, x(0) = 0 stationarizes before stepn (withx(n) = x(n+ 1) = A�b) iff A�b is finite. This allows us to computeA�b very simply.
A complete account of existing algorithms can be found in [21].

3.7 The(max;+) Perron-Frobenius Theory

The most ancient, most typical, and probably most useful(max;+) results are relative
to the spectral problemAx = �x. One might argue that 90% of current applications of(max;+) algebra are based on a complete understanding of the spectral problem. The
theory is extremely similar to the well known Perron-Frobenius theory (see e.g. [4]).
The(max;+) case turns out to be very appealing, and slightly more complex than the
conventional one (which is not surprising, since the(max;+) spectral problem is a
somehow degenerate limit of the conventional one, seex2.2). The main discrepancy is
the existence of two graphs which rule the spectral elementsof A, the weighted graph
canonically2 associated with a matrixA, and one of its subgraphs, calledcritical graph.

First, let us import the notion ofirreducibility from the conventional Perron-
Frobenius theory. We say thati has accessto j if there is a path fromi to j in the
graph ofA, and we writei �! j. Theclassesof A are the equivalence classes for the
relationiRj , (i �! j andj �! i). A matrix with a single class isirreducible. A classC is upstreamC0 (equivalentlyC0 is downstreamC) if a node ofC has access to a node ofC0. Classes with no other downstream classes arefinal, classes with no other upstream
classes areinitial .

The following famous(max;+) result has been proved again and again, with vari-
ous degrees of generality and precision, see [37,41,15,44,22,2,31].
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Theorem 11 (“(max;+) Perron-Frobenius Theorem”). An irreducible matrixA 2(Rmax )n�n has a unique eigenvalue, equal to the maximal circuit mean ofA:�max(A) = nMk=1 tr (Ak) 1k = max1�k�n maxi1;::: ;ik Ai1i2 + � � �+Aik i1k : (23)

We have the following refinements in terms of inequalities [18, Chap IV], [3].

Lemma 12 (“Collatz-Wielandt Properties”). For anyA 2 (Rmax )n�n,�max(A) = maxf� 2 Rmax j 9u 2 (Rmax )n n f0g; Au � �ug : (24)

Moreover, ifA is irreducible,�max(A) = minf� 2 Rmax j 9u 2 (Rmax )n n f0g; Au � �ug : (25)

The characterization (25) implies in particular that, for an irreducible matrixA,�max(A) is the optimal value of the linear programmin� s.t. 8i; j Aij + uj � ui + � :
This was already noticed by Cuninghame-Green [15]. The standard way to compute
the maximal circuit mean�max(A) is to use Karp algorithm [27], which runs in timeO(n3). The specialization of Howard algorithm (see e.g. [35]) to deterministic Markov
Decision Processes with average reward, yields an algorithm whose average execution
time is in practice far below that of Karp algorithm, but no polynomial bound is known
for the execution time of Howard algorithm. Howard algorithm is also well adapted to
the semi-Markov variants (12).

Unlike in conventional Perron-Frobenius theory, an irreducible matrix may have
several (non proportional) eigenvectors. The characterization of the eigenspace uses the
notion of critical graph. An arc (i; j) is critical if it belongs to a circuit(i1; : : : ; ik)
whose mean weight attains themax in (23). Then, the nodesi; j arecritical. Critical
nodes and arcs form thecritical graph. A critical classis a strongly connected compo-
nent of the critical graph. LetC
1; : : : ; C
r denote the critical classes. Let~A = ��1max(A)A
(i.e. ~Aij = ��max(A) + Aij ). Using Proposition 10, the existence of~A� (def= ( ~A)�) is
guaranteed. Ifi is in a critical class, we call the column~A��;i of ~A� critical. The follow-
ing result can be found e.g. in [2,16].

Theorem 13 (Eigenspace).LetA 2 (Rmax)n�n denote an irreducible matrix. The crit-
ical columns of~A� span the eigenspace ofA. If we select only one column, arbitrarily,
per critical class, we obtain a weak basis of the eigenspace.

Thus, the cardinality of a weak basis is equal to the number ofcritical classes. For any
two i; j within the same critical class, the critical columns~A��;i and ~A��;j are proportional.

We next show how the eigenvalue�max(A) and the eigenvectors determine the
asymptotic behavior ofAk ask !1. Thecyclicityof a critical classC
s is by definition
theg
d of the lengths of its circuits. Thecyclicity 
 of A is the lcm of the cyclicities of
its critical classes. Let us pick arbitrarily an indexis within each critical classC
s , fors = 1; : : : ; r, and letvs; ws denote the column and row of indexis of ~A� (vs; ws are
right and left eigenvectors ofA, respectively). The following result follows from [2].
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Theorem 14 (Cyclicity). Let A 2 (Rmax )n�n be an irreducible matrix. There is an
integerK0 such that k � K0 =) Ak+
 = �max(A)
Ak ; (26)

where
 is the cyclicity ofA. Moreover, if
 = 1,k � K0 =) Ak = �max(A)kP; where P = rMs=1 vsws : (27)

The matrixP which satisfiesP 2 = P , AP = PA = �max(A)P is called thespec-
tral projector of A. The cyclicity theorem, which writesAk+
ij = �max(A) � 
 + Akij
in conventional algebra, implies thatAkx grows ask � �max(A), independently ofx 2 (Rmax )n, and that a periodic regime is attained in finite time. The limit behavior is
known a priori. Ultimately, the sequence�max(A)�kAk visits periodically
 accumu-
lation points, which areQ;AQ; : : : ; A
�1Q, whereQ is the spectral projector ofA
.
The length of the transient behaviorK0 can be arbitrarily large. In terms of Markov
Decision, Theorem 14 says that optimal long trajectories stay almost all the time on the
critical graph (Turnpike theorem). Theorem 14 is illustrated in Fig. 4, which shows the
images of a cat (a region of theR2 plane) by the iterates ofA (A;A2; A3, etc.),B andC, where A = �0 00 2� ; B = �2 00 2� ; C = �0 22 0� : (28)

We have�max(A) = 2. SinceA has a unique critical circuit, the spectral projectorP
is rank one (its column and row spaces are lines). We find that~A2 = P : every point of
the plane is sent in at most two steps to the eigenliney = 2 
 x = 2 + x, then it is
translated by(2; 2) at each step. Similar interpretations exist forB andC.

AAA B B CImB CImA ImCC
Fig. 4.A cat in a(max;+) dynamics (see (28))

Let us now consider a reducible matrixA. Given a classC, we denote by�max(C)
the(max;+) eigenvalue of the restriction of the matrixA to C. Thesupportof a vectoru is the set suppu = fi j ui 6= 0g. A set of nodesS is closedif j 2 S; i �! j impliesi 2 S. We say that a classC � S is final inS if there is no other downstream class inS.
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Theorem 15 (Spectrum of reducible matrices).A matrixA 2 (Rmax )n�n has an
eigenvector with supportS � f1; : : : ; ng and eigenvalue� iff S is closed,� is equal to�max(C) for any classC that is final inS, and� � �max(C0) for any other classC0 inS.

The proof can be found in [43,18]. See also [3]. In particular, eigenvalues of initial
classes are automatically eigenvalues ofA. The maximal circuit mean�max(A) (given
by (23)) is also automatically an eigenvalue ofA (but the associated eigenvector need
not be finite). A weak basis of the eigenspace is given in [18, Chap. IV,1.3.4].

Example 16 (Taxicab eigenproblem).The matrix of the taxicab MDP, shown in Fig 1,
has2 classes, namelyC1 = f
1; a; 
2g, C2 = f
3g. Since�max(C2) = 2 � �max(C1) =5, there are no finite eigenvectors (which have supportS = C1 [ C2). The only other
closed set isS = C1, which is initial. Thus�max(A) = �max(C1) = 5 is the only
eigenvalue ofA. LetA0 denote the restriction ofA to C1. There are two critical circuits(
1) and(a; 
2), and thus two critical classesC
1 = f
1g, C
2 = fa; 
2g. A weak basis of
the eigenspace ofA0 is given by the columns
1 and (e.g.)
2 of( ~A0)� = 0� 
1 a 
2
1 0 �1 0a �1 0 1
2 �2 �1 0 1A
Completing these two columns by a0 in row 4, we obtain a basis of the eigenspace ofA. The non existence of a finite eigenvector is obvious in termsof control. If such an
eigenvector existed, by Fact 2, the optimal reward of the taxicab would be independent
of the starting point. But, if the taxi driver starts from City 3, he remains blocked there
with an income of2 $ per journey, whereas if he starts from any other node, he should
clearly either run indefinitely in City 1, either shuttle from the airport to City 2, with
an average income of5 $ per journey (these two policies can be obtained by applying
Fact 2 to the MDP restricted toC1, taking the two above eigenvectors).

The following extension to the reducible case of the cyclicity theorem is worth being
mentioned.

Theorem 17 (Cyclicity, reducible case).LetA 2 (Rmax )n�n. There exist two integersK0 and
 � 1, and a family of scalars�ijl 2 Rmax , 1 � i; j � n, 0 � l � 
� 1, such
that k � K0; k � l mod 
 =) Ak+
ij = �
ijlAkij ; (29)

Characterizations exist for
 and�ijl . The scalars�ijl are taken from the set of eigen-
values of the classes ofA. If i; j belong to the same classC, �ijl = �max(C) for all l.
If i; j do not belong to the same class, the theorem implies that the sequence1k � Akij
may have distinct accumulation points, according to the congruence ofk modulo
 (see
[18, Chap. VI,1.1.10]).

The cyclicity theorems for matrices are essentially equivalent to the characterization
of rational series in one indeterminate with coefficient inRmax , as a merge of ultimately
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geometric series, see the paper of Gaubert in [13] and [28]. Transfer series and rational
algebra techniques are particularly powerful for DiscreteEvent Systems. Timed Event
Graphs can be represented by a remarkable (quotient) semiring of series with Boolean
coefficients, in two commuting variables, calledMmaxmin [[
; Æ℄℄ (see [2, Chap. 5]). The
indeterminates
 andÆ have natural interpretations asshiftsin dating and counting. The
complete behavior of the system can be represented by simple—often small— com-
mutative rational expressions [2],[18, Chap. VII–IX] (seealso [28] in a more general
context).

3.8 Symmetrization of the(max;+) Semiring

Let us try to imitate the familiar construction ofZ from N, for an arbitrary semiringS. We build the set of couplesS2, equipped with (componentwise) sum(x0; x00) �(y0; y00) = (x0 � y0; x00 � y00), and product(x0; x00)
 (y0; y00) = (x0y0 � x00y00; x0y00 �x00y0). We introduce thebalancerelation(x0; x00)r(y0; y00) () x0 � y00 = x00 � y0 :
We haveZ = N2=r, but for an idempotent semiringS, the procedure stops, sincer is not transitive (e.g.(1; 0)r(1; 1)r(0; 1), but (1; 0) 6 r(0; 1)). If we renounce
to quotientS2, we may still manipulate couples, with the	 operation	(x0; x00) =(x00; x0). Indeed, since	 satisfies the sign rules		x = x,	(x� y) = (	x)� (	y),	(xy) = (	x)y = x(	y), and sincexry () x	yr0 (we setx	y def= x� (	y)),
it is not difficult to see thatall the familiar identities valid in rings admit analogues inS2, replacing equalities by balances. For instance, ifS is commutative, we have for all
matrices (of compatible size) with entries inS2 (determinants are defined as usual, with	 instead of�):det(AB) r detA detB; (30)PA(A) r 0 wherePA(�) = det(A	 �Id) (Cayley Hamilton). (31)

Eqn 30 can be written directly inS, introducing the positive and negative determi-
nants det+A = L� even

N1�i�nAi�(i), det�A = L� odd

N1�i�nAi�(i) (the sums
are taken over even and odd permutations off1; : : : ; ng, respectively). The balance
(30) is equivalent to the ordinary equality det+AB � det+A det�B � det�A det+B =
det�AB � det+A det+B � det�A det�B, but (30) is certainly more adapted to com-
putations. Such identities can be proved combinatorially (showing a bijection between
terms on both sides), or derived automatically from their ring analogues using a sim-
ple argument due to Reutenauer and Straubing [36, Proof of Lemma 2] (see also the
transfer principlein [18, Ch. I]).

But in theRmax case, one can do much better. Consider the following application
of the Cayley-Hamilton theorem:A = �1 34 1� ; A2 	 tr (A)A� detAr0; i.e A2 � 2Id = 1A� 7Id :
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Obviously, we may eliminate the2Id term which will never saturate the identity (since2 < 7), and obtainA2 = 1A � 7Id. Thus, to some extent7 	 2 = 7. This can be
formalized by introducing the congruence of semiring:(x0; x00) R (y0; y00), (x0 6= x00; y0 6= y00 andx0 � y00 = x00 � y0) or (x0; x00) = (y0; y00):
The operations�;	;
 and the relationr are defined canonically on the quotient
semiring,Smax = R2max=R, which is called thesymmetrized semiringof Rmax . This
symmetrization was invented independently by G. Hegedüs [26] and M. Plus [34].

In Smax, there are three kinds of equivalence classes; classes withan element of the
form (a; 0), identified toa 2 Rmax , and calledpositive, classes with an element of the
form (0; a) denoted	a, callednegative, classes with a single element(a; a), denoteda� and calledbalanced, sincea�r0 (for a = 0, the three above classes coincide, we
will consider0 as both a positive, negative, and balanced element).

We have the decomposition ofSmax in sets of positive, negative, and balanced ele-
ments, respectively Smax = S�max[ S	max[ S�max :
This should be compared withZ= Z+[Z�[f0g. For instance,3	2 = 3, 2	3 = 	3,
but3	 3 = 3�. We say that an element issignedif it is positive or negative.

Obviously, if a systemAx = b has a solution, the balanceAxrb has a solution.
Conversely ifAxrb has a positive solutionx, and ifA; b are positive, it is not difficult
to see thatAx = b. It remains to solve systems of linear balances. The main difficulty
is that the balance relation is not transitive. As a result,xra and
xrb do not imply
arb. However, whenx is signed, the implication is true. This allows us to solve linear
systems of balances by elimination, when the unknowns are signed.

Theorem 18 (Cramer Formulæ).LetA 2 (Smax)n�n, andb 2 (Smax)n. Every signed
solution ofAxrb satisfies the Cramer conditionDxirDi, whereD is the determinant
ofA andDi is thei-th Cramer determinant5. Conversely, ifDi is signed for alli, and
if D is signed and nonzero, thenx = (D�1Di)1�i�n is the unique signed solution.

The proof can be found in [34,2]. For the homogeneous system of n linear equations
with n unknowns,Axr0 has a signed non zero solution iffdetAr0 (see [34,18]),
which extends a result of Gondran and Minoux (see [22]).

Example 19.Let us solve the taxicab eigenproblemAx = 5x by elimination inSmax
(A is the matrix shown in Fig 1). We have5�x1 � 4x2 � 7x4 r 0 (32a)4x1 	 5x2 � 6x3 � 3x4 r 0 (32b)4x2 	 5x3 r 0 (32c)	5x4 r 0 : (32d)

The only signed solution of (32d) isx4 = 0. By homogeneity, let us look for the
solutions such thatx3 = 0. Then, using (32c), we get4x2r5x3 = 5. Since we search

5 Obtained by replacing thei-th column ofA by b.
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a positivex2, the balance can be replaced by an equality. Thusx2 = 1. It remains to
rewrite (32a),(32b):5�x1r	 5, 4x1r6�, which is true forx1 positive iff 0 � x1 � 2.
The two extremal values give (up to a proportionality factor) the basis eigenvectors
already computed in Ex. 19.

Determinants are not so easy to compute inSmax. Butkovič [8] showed that the com-
putation of the determinant of a matrix with positive entries is polynomially equivalent
(we have to solve an assignment problem) to the research of aneven cycle in a (di-
rected) graph, a problem which is not known to be polynomial.We do not know a non
naive algorithm to compute the minor rank (=size of a maximalsubmatrix with unbal-
anced determinant) of a matrix in(Rmax)n�p. The situation is extremely strange: we
have excellent polynomial iterative algorithms [34,18] tofind a signed solution of the
square systemAxrb whendetA 6= 0, but we do not have polynomial algorithms to
decide whetherAxr0 has a signed non zero solution (such algorithms would allow
us to computedetA in polynomial time). Moreover, the theory partly collapsesif one
considers rectangular systems instead of square ones. The conditions of compatibility ofAxr0 whenA is rectangular cannot be expressed in terms of determinants[18, Chap.
III, 4.2.6].

Historical and Bibliographical Notes

The(max;+) algebra is not classical yet, but many researchers have worked on it (we
counted at least 80), and it is difficult to make a short history without forgetting im-
portant references. We will just mention here main sources of inspiration. The first use
of the (max;+) semiring can be traced back at least to the late fifties, and the the-
ory grew in the sixties, with works of Cuninghame-Green, Vorobyev, Romanovskiı̆,
and more generally of the Operations Research community (onpath algebra). The first
enterprise of systematic study of this algebra seems to be the seminal “Minimax al-
gebra” of Cuninghame-Green [15]. A chapter on dioids can be found in Gondran et
Minoux [21]. The theory of linear independence using bideterminants, which is the
ancester of symmetrization, was initiated by Gondran and Minoux (following Kuntz-
mann). See [22]. The last chapter of “Operatorial Methods” of Maslov [32] inaugurated
the (max;+) operator and measure theory (motivated by semiclassical asymptotics).
There is an “extremal algebra” tradition, mostly in East Europe, oriented towards algo-
rithms and computational complexity. Results in this spirit can be found in the book of
U. Zimmermann [44]. This tradition has been pursued, e.g. byButkovič [7]. Theincline
algebrasintroduced by Cao, Kim and Roush [10] are idempotent semirings in whicha� ab = a. The tropical semiring was invented by Simon [39]. A number of language
and semigroup oriented contributions are due to the tropical school (Simon, Hashiguchi,
Mascle, Leung, Pin, Krob, Weber,: : : ). See the survey of Pin in [24], [40,25,29,28],
and the references therein. Since the beginning of the eighties, Discrete Event Systems,
which were previously considered by distinct communities (queuing networks, schedul-
ing, : : : ), have been gathered into a common algebraic frame. “Synchronization and
Linearity” by Baccelli, Cohen, Olsder, Quadrat [2] gives a comprehensive account of
deterministic and stochastic (max,+) linear discrete event systems, together with recent
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algebraic results (such as symmetrization). Another recent text is the collection of ar-
ticles edited by Maslov and Samborskiı̆ [31] which is only the most visible part of the
(considerable) work of the Idempotent Analysis school. A theory of probabilities in(max;+) algebra motivated by dynamic programming and large deviations, has been
developed by Akian, Quadrat and Viot; and by Del Moral and Salut (see [24]). Recently,
the(max;+) semiring has attracted attention from the linear algebra community (Ba-
pat, Stanford, van den Driessche [3]). A survey with a very complete bibliography is
the article of Maslov and Litvinov in [24]. Let us also mention the forthcoming book
of Kolokoltsov and Maslov (an earlier version is in Russian [30]). The collection of
articles edited by Gunawardena [24] will probably give the first fairly global overview
of the different traditions on the subject.
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7. P. Butkovič. Strong regularity of matrices — a survey of results. Discrete Applied Mathe-

matics, 48:45–68, 1994.
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