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Abstract

This document is a tutorial session in Scilab, which presents

where, by definition,

A=A Ap A2 AP .

the max-plus linear algebra facilities currently under develogtoreover, if all the entries oA are strictly less thar-co, then
ment. The implementation is more than tentative: remarks agfithe entries ofA* are strictly less thar-oo iff A* = A% @
suggestions are welcome.

All this session is contained in the Scilab exec fil§tar(A)

..~ @ AK forallk > n— 1. The syntax irScilab is simply
, WhereA is a full max-plus matrix. Let us try some

TPALGLIN.sce , that you can be execute via the comman@Sic values:
exec TPALGLIN.sce or, if you wish a step by step demon-a=#(2)
stration, viaexec('TPALGLIN.sce’,7)
The notions and mathematical notations used here can be 2.
found in standard books on max-plus algebra (e.g. [1]), or &iestar(a)
detailed in [6], [5].
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I. Solving Linear Equationsof theForm x = Axé& b

Let us first recall the following celebrated result:
Theorem 1:Let A denote an x n matrix, andb a n-

dimensional column vector, all with entries in the semif- |,
iNng Rmax = (R U {—00, +-00}, max +).

The minimal

a

b
Inf

a=#(-1)

a

- 1
4 b=star(a)
4

1

0.
6a=%0
ga =
10 -Inf
12 b=star(a)
b

12 0.
12a=%1

13 a

0.
15 Db=star(a)
b

15 0.

15 The same syntax is valid for matrices (our implementation uses
Jordan algorithm [7, Ch. 84.3], which require®(n?) time).

a=%zeros(2,2)

dimensional column vector with entries inRmay, such that

X=AX®b

is given by

X = A*b
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-Inf !
N- 1 _Inf -Inf !
b=star(a)
b =
! 0. -Inf!
I -Inf 0. !

type(b)



ans =

257.

' TTT!
'TTT!

(the type of usual full matrices is 1, the type of max-plus fulHere,star(a) is finite because all the circuits afhave neg-

matrices is 257). Here is a more complicated example:

a=#(-1 2; %0 -3])
a =

- 1. 2.1
I -Inf - 3. !

star(a)
ans =

! 0. 2.1
I' -Inf 0. !

Yet a more complicated example:

a=#([%0 2 3 ; -2 -10 -1 ; -5 -2 %1])
a =

I -Inf 2. 3. !
-2 -10. - 1.!
I -5 -2 0. !
b=star(a)

bh =

I 0. 2. 3. !
- 2. 0. 1. !
-4, -2 0. !

We check that the star operation is idempotent:

star(star(a))==star(a)
ans =

— =
— =
— —

We perform a second consistency check:

star(a)==(a"0+a)"2

ative or zero weight. To find nodes in circuits with exactly zero
weight, we have to compute the zero diagonal entries of the ma-
trix

A=A A2 A3q... = AA .
b=plus(a)
b =
! 0. 2. 3. !
- 2. 0. 1.!
-4 - 2. 0. !

Is it correct ?

b==a*star(a)
ans =

— =
— =
— —

Sinceb(1, 1) = b(2,2) = b(3, 3) = 0, each entry o& belongs
to a circuit of weight 0. Let us modify this:

a(2,1)=-10

a =

I -Inf 2. 3. !
I -10. -10. - 1.'!
I - 5, - 2. 0. !
plus(a)

ans =

I - 2. 2. 3.1
l-6. -3. -1.1

I -5 - 2. 0. !
What happens if a circuit has strictly positive weight ?
a(3,1)=6

a =

I -Inf 2. 3. !
! -10. - 10. - 1.'!
! 6. - 2. 0. !

ans =

I Inf Inf Inf !

ans =
I'TTT!

' TTT!

' TTT!

Since star(a) is finite, the answer to the following test must p&Is(a)
true

(a"0+a)"2==(a"0+a)"3

ans =

'TTT!

I Inf Inf Inf !
I Inf Inf Inf !



Mixing +o00 and—oo:
a=#([2 3; %0 -1])

a =
o2 3. !
I -Inf - 1. !
star(a)

ans =
I Inf Inf !
I -Inf 0. !

Random large example:
a=#(rand(64,64))

a =
column 1 to 5
! 0.2113249 0.3760119 0.6212882...
! 0.7560439 0.7340941 0.3454984...
[suppressed output]
b=star(a)
b =
column 1 to 11
I Inf Inf Inf Inf Inf Inf...
I Inf Inf Inf Inf Inf Inf...

[supressed output]

To makea* convergent, we have to make sure that all circu
have at most zero weigth, e.g. by using the following norm
ization:

a=(%ones(1,size(a,1))*a*..
%ones(size(a,2),1))"(-1)*a;

We check that the new matrix has maximum O:

max(plustimes(a))==0
ans =

T
Since it seems correct, let us put it in a macro:

deff(’[b]=normalize(a)’,..

'b=(%ones(1,size(a,1))*a..
*0pones(size(a,l1),1))"(-1)*a’)

We check that the macro is correct (empty answer=0k)

find(a<>normalize(a))
ans

I

Now, star(a) should be finite. Indeed,

b=star(a)

b =
column 1 to 5
! 0. - 0.0410985 - 0.0491906...
I - 0.1255879 0. - 0.0943671...

[suppressed output]

Let us check the answer (recall thit = (Id@ A)"~1, provided
that it converges).

find(b<>((a"0+a)"8)"8)
ans

I

The naive(-)%* operation would have been a bit slow for such
a “large” matrix. Indeeda* is computed inO(n%) time, and
@ + a)" requires anO(n*) time, unless we use dichotomic
powers.

Most probably, the star converges in less than 64 steps

c=(a"0+a)"8;

The following shows how many entries bf= a* are distinct
fromc = (Id ® a)8, andc?, respectively:

size(find(b<>c),2)
ans

2.

size(find(b<>c"2,2))
ans

0

Hencea* = (Id @ a)6. This raises the interesting question of
derstanding how fast the star of a random matrix converges.

i
E:nally, we find the minimal solution of the equatian= ax®b

using Theorem 1 above.

a=#(-1)
a

- 1.
b=#(2
b

2.

x=star(a)*b
X

2.
Idem for matrices

a=#([%0 %1 %0; %0 %0 -1; %1 %0 %O0])
a

I -Inf 0. -Inf!
I -Inf -Inf - 1.
! 0. -Inf -Inf!



b=#([10: %0; %0])
b =

! 10. !
I -Inf !
I -Inf !

x=star(a)*b

d=diag(a)
t=%ones(1,size(d,1))*d

/lwe overload the entrywise

/lexponent operator, named .

/lso that it works for maxplus matrices
/l(see help overload)

function b=%talg_j_s(a,s)

X = b=#(plustimes(s)*plustimes(a))
! 10. !
! 9. ! function rho=naiveeigenv(a)
! 10. ! n=size(a,1)
x=a
X==a*x+b t=mptrace(a)
ans = for i=2:n
X=x*a
I T! t=t + (mptrace(x))."(1/i)
T end
I T rho=t

The star of sparse matrices is not implemented yet (by the wilye can load this macro in Scilab with:
computing the star of sparse matrices is not allways a sensi
thing to do, since the result is generically full).

Among desirable further developments, let us mention the dest us check the macro for scalars
velopment of sparse algorithms to compute- a*b, whena is
a sparse matrix anlga full or sparse column vector. We plan t
implement two algorithms:

Etle?f(’naiveeigenv.sci’)

naiveeigenv(#(1))
Oans =

1. value iteration which computes the sequenggk) = 1.
ax(k — 1) @ b, x(0) = 0. If a*b is finite, the sequence naiveeigenv(%0)
converges in a finite (possibly small) time to the minimalans =
solution. Of course, Gauss-Seidel refinements can be im-
plemented (all this is fairly easy to do). -Inf

2. policy iteration This is a joint work with Jean Cochet-naiveeigenv(%top)
Terrasson: there is a fixed point analogue of the max-pluans =
spectral policy iteration algorithm a la Howard which is de-
tailed below. In the case of the equatior- ax®b, we can Inf
prove that this policy ?terat_ion algorith_m aIIV\_/ays requirgls_et us try now matrices
less steps than value iteration. It remains to implement it.

a=#([1,4;-1,%0])
I1. Solving the Spectral Problem Ax = Ax a =
A. Computing the Maximal Circuit Mean

L 4.
We first recall the following classical result. I - 1. -Inf !

Theorem 2:An irreducible matrixA with entries in the max-
plus semiringRmax has a unique eigenvalye(A), which is

. 3 ) N rho=naiveeigenv(a)
given by the maximal mean weight of the circuitsAf

rho =
In algebraic terms, for an x n matrix:
P(A) =tr(A) @ (AP & . @ (tr(AN) 1>
Is it correct ?
where t(A) = A11 @ --- & Ann. This formula yields a naive
algorithm to compute the eigenvalue: bgrho_(-l) a
file: naiveeigenv.sci
I - 05 25 1!
function t=mptrace(a) | - 25 -Inf !

/Imax-plus trace



c=plus(b)
C =

! 0. 25!
I -25 0. !

The answer should be zero:

mptrace(c)
ans =

0.

Let us try a larger matrix

a=#(-1 -3 0 ; -10 -5 2; -1 -4 0Q])

a =

-1 - 3. 0. !
I - 10. - 5. 2.1
- 1. -4 0. !

/I Guess what the eigenvalue is...

naiveeigenv(a)

[answer suppressed]

Sincea is irreducible, the cyclicity theorem tells us thett¢ =
,oCa", for somek,c > 1. Let us look manually for the leakt
andc (in fact, we know from the theory that= 1).

a==a"2

T !
T !
T !

TFT
the minimal value ok) can be arbitrarily large. Let us build* TTT!
such a pathological example: TTT

a(1,3)=-1

a =

- 1. -3 -1
I - 10. - 5. 2.1
- 1. - 4, 0. !
a2==a"3

ans =

'TFT
'TTT!

-1 -3 -1
I -10. -5 -5
-1 - 4. 0

Exercise: explain why, for this example, the length of the tran-
sient increases to infinity whex(1, 3) anda(2, 3) both decrease
to —oo.

(Of course, the use of hash tables in SEMIGROUPE allows
much more efficient algorithms to compute the ldgsand its
non-commutative generalizations).

Let us try now a big matrix

a=#(rand(64,64));

timer(); rho=naiveeigenv(a)
rho =



Theorem 3SG, unpublished) Karp’s formula (1), invoked at

0.9913730 indexi, returns thd -th coordinate of the cycle time vector of
timer() the matrixA.
ans = The functionkarp that we have implemented here takes a sec-
ond optional argument, which is precisely the indexBy de-
7.316374 fault,i = 1. The function returns thieth coordinate of the cycle
The execution time is not brilliant. Fortunately, there are fasttérrne of A.
algorithms, e.g., Karp’s [8]. a=#([ 2 %0; %0 3])
timer(); rho2=karp(a) a =
oz = | 2. -nf !
0.9913730 tonfo 3
timer()
ans = karp(a)
ans =
0.349986 5
This is much better, but is the resultkdrp correct ? karp(a,1)
rho==rho2 ans =
ans =
2.
= karp(a,2)
ans =
The answer is false, but we should not panic... we did quite
complex computations inaiveeigenv , and arithmetical er- 3.
rors have accumulated. Let us check that this is the case ... a(1,2)=2
plustimes(rho)-plustimes(rho2) a =
ans =
2 2.
- 1.110D-16 Lenfo 3.

B. Computing the Cycle Time via Karp's and Howard’s algd<arp(a,1)
rithms ans =

Now, it is time to give more technical details about Karp’s
algorithm. Karp proved that iA is irreducible, for all index,

) karp(a,2)
- (AM)ij — (A9 ans =
A = . 1
A 1?1% 1@'& k @)
(AM)jj #—00 3.

In fact, the original redaction of Karp exchanges the roleasfd |s it correct ?
j, butthis is a detail, and we will see soon why (1) is preferable,

The purists wanting to avoid this (rather monstruous) crossiﬁgloo /30”65(2’1)
of algebras should write, with the max-plus notation: ns =

1
(AM)ij \k ! 299. !
p(A) = lg} A\ <m I 300. !
<j=n 1<k=n .
(AT);j #0 We know from the theory that; (A) is equal to the max of the
It turns out that Karp’s algorithm is also interesting in the cast g;TvaIl#_ashqfr:he strongly Ifotn necthed Ec;r:n ponents of the graph
of reducible matrices. To explain the more general quantity tge” O Whicht nas access. Letus checkhis.
it computes, we need the following definition. a(2,2)=1
Definition 1: Thecycle timeof an x n matrix A with entries a =

in the max-plus semirinBmay is then-dimensional column vec-

tor x (A), given by ! 2. 2.1
I -Inf 1.
Xi (A) = Iirkn(Akx)i(l/k), i=1...n,
karp(a,1)

wherex is an arbitranyfinite vector.



ans = The argument 1 in the last expression stands for directed. This is
a huge list... for the graph may contains much more information

2. than its adjacency structure.
karp(a,z_) show_graph(g)
ans = ans =
1. 1
~1 A0 .
aaln(;O 4 gones(z,l) [ncomp,nc]=strong_connex(qg)
- nc =
I 200. ! | |
! 100. ! -ncofﬁp :1' '

Fine ... but if we want to compute thmeentries of the cycle time
vector, shall we invok&arp n times ? Of course, no ... the 2.
cycle time vector is constant on each strongly connected c
ponent of the graph of\, hence, it is enough to invokearp
only onceper strongly connected component.

We next show how we can compute these components u3|
metanet. First, we build the adjacency matrix of the grapA of
(the first argument thagpget returnsis an x 2 vectorij: the

e found that the graph has 2 strongly connected components,
which are{2} and {1}, respectively. Let us see what happens

f we modify the graph. First, we automatize the process, by

rgatlng the macrmp.2_graph , which transforms a max-plus

matrix to a graph for use in metanet.

k-th arc of the graph goes from(k, 1) toij (k, 2)). getfCmp_2_graph.sci’)
ijfspget(sparse(a)) a(1,3)=2

ij = '

L L2 2 2
| ' C I -Inf 1. -Inf!
o2 2.1

We turn it to a 0-1 adjacency matrix for use by metanet a(3,3)=1
adjacency=sparse(ij,ones(1,size(ij,1))) -

adjacency = | 5 5 5
( 2, 2) sparse matrix : :::; -Infl. -Ir11f :

( 1, 1) 1. _ .
(1 2) 1 g2=mp_2_graph(a);

( 2, 2) 1.

show_graph(g2);
Let us see how it looks

full(adjacency) [ncome,nc]=strong_connex(92)

ans = nc =
! 1. 1.1 ! 3. 2. 1. !
0. 1.1 ncomp =
=mat_2_graph(adjacency,1,’'node-node’
gg L _graph(adj y ) 23120
1
o ! 2. 2. 2. !
column 1 to 8 I -Inf 1. -Inf !
! 0. -Inf 1. !

Igraph i
graph name directed node_number g3=mp_2_graph(a);

[suppressed output] show,_graph(ga):



[ncomp,nc]=strong_connex(g3) In the reducible case, by definition, the bias veetd such that

nc =
aw+kxy)=v+k+1yx ,

| |
nco?ﬁ _1' 2 for all k large enough. Let us check this with the above reducible
b= matrix:
2. [chi,v]=howard(a)
It is now easy to buil the irreducible blocks & E.g., here is Vo=
the second connected component of the graph: | o
I=find(nc==2) ! 1.1
I = I 0. !
chi =
! 1. 3. !
and here is thé x | submatrix ofa: : i :
A=a(l,l) L2,
A = /l(tentative dirty conversions...)
o2 2. ! v1=plustimes(v)+plustimes(chi)
I 0. 1. ! vl =

We could use this to compute efficiently the cycle timeaof |
However, another algorithm, namely, Howard’s policy iteratior'1,
computes directhall the coordinates of the cycle time vector;
and in a faster way. The algorithm is documented in [3]. The
Scilab primitive is nametioward :

NN oA

a*#(v1)==#(plustimes(v1)+plustimes(chi))

chi=howard(A) ans =
chi =

I T
! 2.1 I T
o2 LT

Optionnalyhoward returns &ias vector(which is defined be- . ) .
v1=plustimes(v1)+plustimes(chi)

low):
_ vl =
[chi,v]=howard(A)
v = ! 6. !
3!
ro20! I 4.1
] 0. !
chi = a*#(v1)==#(plustimes(v1)+plustimes(chi))
ans =
] 2.1
L2, I T
WhenA is irreducible, the bias vectaris nothing but an eigen- ! T !
vector: P
A*v . .
ans = Let us see how fast these three algorithms are for large matrices.
' . a=#(rand(100,100));
! 2.1 timer();h=howard(a);timer()
ans =
v
v = 0.08333
o2 timer();k=karp(a);timer()

10! ans =



generating family of the eigenspace is obtained by selecting

0.266656 exactly one column oA* per strongly connected component of
thecritical graphof A (which is the subgraph of the graph Af
k==h(1) composed of the circuits whose mean weighi(8)).
ans = Consider
T a=#(0 -2 -10 ; 0 -3 -5; -1 5 -8])
a =

karp and howard vyield less numerical errors than

naiveeigenv , hence, the answer was true here. Much 0. - 2. - 10.'!
of the time is spent in the interface for such relatively small 0. - 3. - 5. !
matrices. The advantage bbward becomes clear for large! - 1. 5. -8 !

matrices, particularly for sparse ones. We first compute an eigenvectorafisinghoward

timer():h=howard(a):timer() Vo=
ans = 0.1
I 0. !
0.066664 |5 |
llkarp chi =
. . I 0. !
timer();k=karp(a);timer() | 0 1
ans = I 0.1
0.91663 Then, we perform a diagonal change of variables
etf(mpdiag.scr’
—=h(1) getf('mpdiag.sci’)
ans = deff([b]=dadinv(a,v)’,..
T 'b=mpdiag(v"(-1))*a*mpdiag(v)’)
Yet a larger one: b=dadinv(a,v)
timer();a=#(sprand(2000,2000,0.01));timer() b=
ans = I 0. -2 -5 I
I 0. -3 0. !
0.983294 Y 0 -8 I
h=howard(a);timer() We compute the saturation graph, whose non-trivial strongly
ans = connected components form the critical graph.
ir,ic]=find(b==#(0
0.783302 ['ic' J=ind(b==#(0))
In other words, computing the cycle time vector Wieward
takes a time which is comparable to the generation of the 1. 1 2. 3. !

random matrix. Usingkarp here would be too slow ir =
for the demo fjoward takes experimentally an almost
linear (=O(number of arcy time, karp takes anO(n x ! 1. 2. 3. 2.1
number of arcstime).

adjacency=sparse([ir,ic’],..
C. Computing the Eigenspace ones(1,size(ir,2)))

Possibly after dividingA by p(A), we may always assume adjacency =
that p(A) = 1(= 0). We will only consider here the case an

an irreducible matrix (the reducible case involves decomposifig 3. 3) sparse matrix
first Ainirreducible blocks, see [4][chap 4] and [6] for the char-
acterization of the spectrum in this case). Then, the minimal 1, 1) 1.

C 2, 1 1.

1The minimal generating family is unique, up to a permutatiod a scaling.



( 2, 3 1.

( 3, 2) 1.
full(adjacency)

ans =
o1 0. 0. !
L 0 1. !
I 0. 1 0. !

g=mat_2_graph(adjacency,1,’node-node’);

show_graph(g)

ans =
1.
[ncomp,nc]=strong_connex(g)
nc =
L 2. 2. !
ncomp =
2.
c=plus(b)
(o3 =
I 0 -2 -2
I 0 0. 0. !
I 0 0. 0. !

rho
We select one node per strongly connected component of the

saturation graph.

critical=[]
critical =

I

basis=#([])
basis =

I

for i=1:ncomp
j=min(find(nc==i))
critical(i)=j
it (c(i.)==#(0))
basis=[basis,c(:,j)]
end
end

j =

1.
critical =

1.
basis =

! 0. !

10

oo

2.
critical =

Now, basis is a minimal generating family of the eigenspace.
Let us automatize this process

getf(’eigenspace.sci’)

a=#([3 0 %0; 0 3 %0 ; 2 1 2))

a =
! 3. 0. -Inf!
! 0. 3. -Inf!
! 2. 1. 2.1

[v,rho]=eigenspace(a)

! - 3.1

-3 0. !
-2

/I Consistency check

a*v==rho*v

ans =

— =
— =

The first output argument @igenspace is (of course) a gen-
erating family of the eigenspace for the maximal eigenvalue of
the matrix. The second (optional) output argument is the maxi-
mal eigenvalue of the matrix.

D. Computing the Spectral Projector

If A has maximal eigenvalug the matrixP, defined by
lim AKA* = P
k—o00

satisfiesAP = PA = P = P2, The matrixP is called the
spectral projector of A, for its image is precisely the eigenspace



of A (we call image ofA its column space, i.e. the set of vec-

appropriate size).

getf(’projspec.sci’)
P=projspec(a)

tors of the formAx, wherex is an arbitrary column vector of ! 0.

P =
I 0. -3 -Inf!

- 3. 0. -Inf!

- 1. -2 -Inf!

Let us check this value by simulation
b=rho"(-1)*a

bh =

I 0. -3. -Inf!

- 3. 0. -Inf!

r-1. -2, -1.!
Q=b"100*(b"0+b) 100

Q =

I 0. -3 ~-Inf !

- 3. 0. -Inf !

l-1. -2 - 100. !

- 3.
I -3 0.
-1 - 2.
1 -9 - 10.
- 11. - 12.
a*v==rho*v

ans =

I TTT!
I TTT!
I TTT!
I TTT!
I TTT!

Let us compute the spectral projector

P=projspec(a)

P =

! 0.
-3
- 1.
-9
I - 11.

- 3.
0.

- 10.
- 12.

ponent of the critical graph. First, we add a circuit with medo=rho”(-1)*a;
Q=b"100*(b"0+b)"100

6/2=3=p(a).

a(4,5)=5;
a(5,4)=1;
a =

! 3. 0. ~-Inf -Inf -Inf!
! 0. 3. -Inf -Inf -Inf !
! 2. 1. 2. -Inf -Inf !
I -Inf -Inf -Inf -Inf 5.1

I -Inf -Inf -Inf 1. -Inf!

Second, we add other non-critical arcs

a(1,4)=-8;
a(5,3)=-7
a =

! 3. 0. -Inf - 8. -Inf!
! 0. 3. -Inf -Inf -Inf !
! 2. 1. 2. -Inf -Inf !
I -Inf -Inf -Inf -Inf 5.1

I -Inf -Inf - 7. 1. -Inf!

Let us compute the eigenspace

[v,rho]=eigenspace(a)
rho =

Q =

1
RHoPw

Q
>
n

1

44 —4-4d
44—
44—

TT

Let us check that the spectral projector leaves the eigenspace

invariant:

P*v==v
ans

==
A==
44—

- 19.
- 22.
- 20.
- 8.

- 10.

- 19.
- 22
- 20.
- 8.

- 10.

- 11.
- 14.
- 12.
0.
- 2.

- 11.
- 14.
- 12,
0.
- 2.

- 9.
- 12.
- 10.
2.
0.

- 9.

- 12,1
- 10. !

2.
0.

Let us now enlarga, creating another strongly connected comlfet us compare it with the resuit of simulation

11



E. Displaying the Critical Graph

Finally, the macrospectral _analysis generates the OT
graph of a matrix, and distinguishes the different strongly coft{%0
nected components of the critical graph by colors. ans

getf(’spectral_analysis.sci’) Inf
g=spectral_analysis(a); a/%top
show_graph(g) ans =

We edited the graph via metanet, saved it in a file, and generated
axfig file viaplot _graph . Currently, the .fig outputis less -Inf
nice than what we see on the metanet window. Thus, we H4Q/760
to modify it slightly in xfig to make it prettier: we choosed &NS
better colors, fonts of appropriate size, made the nodes opaque,

and slightly reshaped some arcs (of course this should be autom- Inf
atized). Here is the result: %%top/%top
3 ans =
3
Inf
Matrix case:

a=#([2,3;%0,1])
a =

! 2. 3. !
I' -Inf 1.

b=#([10; 100])
I11. Solvingthe Inverse Problem Ax = b via Residuation b =

A. Mere Residuation | 10. |
Let A, B, X denote matrices with entries in the completed  100. !
max-plus semirin@®max. We recall the following basic result of
residuation theory. a\b
Theorem 4:The maximal solution ofAX < Bis givenby gns =
X = A\B, where

(A\Bjj = min(—Ai + Byj) L7
Generically,AX = b has no solution. The matri&\B is called
the left residualof A and B. Dually, the maximal solution of
Y A < B is denoted by theight residual B/A. When A is
invertible, A\ B coincides withA— D B.

Exercise: prove that:
(a/a)a=a; (a/a)>=a/a.

These properties allow a consistency check:

a=#(3) p=a/a
a = p =
3. I 0. 2.
b=#(4) I -Inf 0. !
bh =
p*a==a
4 ans =
a/b
ans = I T T
I T T
- 1
a==(a/b)*b p::pAz



I TT!

I TT!

Invertible case:

a=#([%0 %1 %0; %0 %0 %1; %1 %0 %0])

a =

I -Inf 0. -Inf!
I -Inf -Inf 0. !
! 0. -Inf -Inf !

b=#([1;2;3])
bh =

(the inverse of the permutation matgxs its transpose).
Residuation allows us to determine if a vedidrelongs to the
image of a matrixA. Indeedp belongs to ImAiff b = A(A\b).

Exercise: draw the image of the following matrix:

a=#([0,2;%0,0])

a =

I 0. 2.1

I -Inf 0.!

Answer

b=#([4;0])

b =
4.1

I 0. !

b==a*(a\b)
ans =

b=#([3;0])
b —
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3. !
! 0. !

b==a*(a\b)
ans =

b=#([2;0])
b =

2.1
! 0. !

b==a*(a\b)
ans =

b=#([1:0])
b =

1.!
! 0. !

b==a*(a\b)
ans =

T

F

b=#([0;0])
b —

0. !
0. !
b==a*(a\b)
ans =

LT
I F I

(Imais the set of column vectorgs, x2) such thaky > 2+xp).

B. Computing Minimal Generating Families

Let F denote a finite set of pairwise non-proportional vectors
of (Rmax)". We say that a vectar in this setF is redundant
if it belongs the the semimodule generated by the vectos of
distinct of v.

Theorem 5:By deleting redundant vectors of the finite et
we obtain a minimal generating sét of the semimodule that
it generates. This séb is unique, up to multiplication of its
elements by invertible constants.



Since residuation allows us to determine redundant vectors,

can easily build minimal generating families. In fact, we doans
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emalspan(b,b)

not check thab = A(A\b), but we rather use the “east-europe”
variant of this algorithm (which can be found e.g. in U. Zimmer- T

mann’s book [9] or in P. Butkovic’s survey [2]). The algorithm

is readily obtained from the following result:
Theorem 6:The vectob € (Rmax)" belongs to the image of
A € (Rmax)" P iff

U argmin—Aji +bj) ={1,...,n} .
1<i<p 1l=i=n
Checking this is twice faster than checking tgtA\b) = b.
The Scilab macro is namddspan . inspan (a, b) returns
true if the vectob is in the image of the matria.

inspan(a,b)
ans

F
b=#([3;0])
b

3. !
! 0. !

inspan(a,b)
ans

T

Similarly, includespan (A, B) returns true if ImB is in-
cluded in ImA, andequalspan (A, B) returns true if ImA is
equal to ImB.

includespan(a,b)
ans =
T
includespan(b,a)
ans =
F
b=%ones(2,1)
b

0. !
0. !
includespan(a,b)
ans =

F
equalspan(a,b)
ans

F
equalspan(a,a)
ans

T

weakbasis (A) returns a matrix whose colums form a minimal
generating set of the column spacefof

weakbasis(a)

ans =
o2 0. !
' 0. -Inf!

Finitely generated subsemimodules (@ a2 have minimal
generating sets with,@, or 2 elements

a=#(0 2 3; 7 5 2))

a =
I 0. 2. 3. !
7. 5. 2.1
b=weakbasis(a)

bh =
I3 0. !
! 2. 7.1

a=#(rand(2,20))

a =
column 1 to 5
! 0.7093614 0.2281042 0.5695345...
! 0.3137576 0.3097598 0.0957654...

[output suppressed]
b=weakbasis(a)
b

! 0.0405107
! 0.7767725

0.7819632 !
0.1604007 !

equalspan(a,b)
ans
T

Finitely generated subsemimodules(@nax)® can have mini-
mal generating sets of arbitrarily large cardinality.

a=#([0,0,0;0,-1,-2;0,1,2])

a =
I 0. 0. 0. !
0 -1 -2 !
I 0. 1. 2.1
weakbasis(a)

ans =
I 0. 0. 0. !



a=[a,#([0;-3;3])]

a =
I 0. 0. 0. 0.!
I 0 -1 -2 -3.1!
I 0. 1. 2. 3. !
weakbasis(a)

ans =
I 0. 0. 0. 0.!
- 3 0. -1 -2
I3 0. 1. 2. !
a=[a,#([0;-4;4])]

a =
I 0. 0. 0. 0. 0. !
! 0. -1. -2. -3. -4.1
I 0 1. 2. 3. 4, )

weakbasis(a)
ans =

I 0. . . .
-4, 0 -1 -2 -3
1 4.

For ann x p matrix,weakbasis runs innp? time
a=#(rand(10,200));

timer();

b=weakbasis(a);

timer()

ans =
1.33328

size(b)

ans =

I 10. 195. !

equalspan(a,b)
ans =

T

V. Solving Ax = Bx
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Appendix
I. Loading the Max-plus Environment

The following Scilab command, which can be executed di-
rectly in Scilab, or put in thé/scilab.star initialization
file, links incrementally Scilab with the max-plus libraries, and
defines some max-plus macros.

exec(SCl+'/routines/maxplus/mploader.sce’)

1. Availability

The max-plus toolbox requires the version 2.4 of Scilab,
which will be released in the next few days. The max-plus tool-
box will be made available via the web pages of the authors, as
soon as released (hopefully not much later than the version 2.4
of Scilab).
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Index of Primitivesfor Max-plus Linear Algebra

howard , 8

includespan ,14

inspan , 14

karp , 6

plus ,2

star ,1

weakbasis , 14

These primitives are written in C and interfaced with Scilab.
The other functionalities presented here (except basic ma-
trix operations, including residuation, which are at FOR-
TRAN level) are Scilab macros, which make use of the
above primitives and of the general Scilab facilities for han-
dling max-plus objects.

This is an interesting research subject. Please ask privately to

see the demo of the currently implemented algorithm.



