# Aléatoire

# MAP 311 - X2013

# Leçon 6

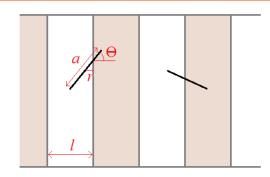
#### Mots clés:

- 1. Application de la loi des Grands Nombres aux méthodes de Monte Carlo
- 2. Convergence en loi
- 3. Fonction caractéristique d'un vecteur aléatoire
  - (a) Définition, propriétés
  - (b) Variables aléatoires indépendantes
  - (c) Un autre critère de convergence en loi : théorème de Lévy
- 4. Fluctuations gaussiennes et Théorème de la Limite Centrale

# MÉTHODES DE MONTE CARLO

Expériencede l'aiguille deBuffon (1733)





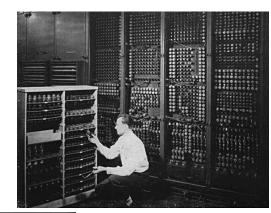
Source: http://fr.wikipedia.org/wiki/Aiguille\_de\_Buffon

Si  $a \leq l$ :

 $\mathbb{P}(\text{intersection}) = \frac{2\mathbf{a}}{\pi \mathbf{l}}.$ 

▶ Los Alamos National Laboratory (dans les années 40-50). Nouvelle ère du nucléaire (1er essai, bombes atomiques, recherches intensives) et nouvelle ère informatique (premiers ordinateurs électroniques, ENIAC).

Début de la simulation numérique avec premiers calculs de neutronique à base de simulations aléatoires (Metropolis, von Neumann, Ulam...).









# Méthodes de Monte Carlo et calcul d'intégrales

Proposition. Soit  $(U_n)_n$  une suite de v.a. indépendantes de loi uniforme sur [0,1] et  $g:[0,1] \mapsto \mathbb{R}$  une fonction intégrable. Alors, quand  $n \to \infty$ ,

$$rac{1}{n}\sum_{\mathbf{j=1}}^{\mathbf{n}}\mathbf{g}(\mathbf{U_{j}})\overset{\mathbf{p.s.}}{
ightarrow}\int_{[\mathbf{0,1}]}\mathbf{g}(\mathbf{x})d\mathbf{x}.$$

Preuve.  $X_j = g(U_j)$  définit une suite de v.a.r. indépendantes de même loi, intégrables car  $\mathbb{E}|X_1| = \int_{[0,1]} |g(x)| dx < +\infty$ .

Par la Loi des Grands Nombres,  $\frac{1}{n} \sum_{j=1}^{n} \mathbf{g}(\mathbf{U}_{j}) \stackrel{\mathbf{p.s.}}{\to} \mathbb{E}(\mathbf{g}(\mathbf{U}_{1})) = \int_{[0,1]} \mathbf{g}(\mathbf{x}) d\mathbf{x}.$ 

En dimension d, avec des variables de loi plus générale :

Proposition. Soit  $(V_n)_n$  une suite de v.a. indépendantes dont la loi a une densité p(.) sur  $\mathbb{R}^d$ , et  $g: \mathbb{R}^d \mapsto \mathbb{R}$  telle que  $\int_{\mathbb{R}^d} |g(x)| p(x) dx < +\infty$ :

$$\frac{1}{n} \sum_{\mathbf{j}=\mathbf{1}}^{\mathbf{n}} \mathbf{g}(\mathbf{V_j}) \overset{\mathbf{p.s.}}{\rightarrow} \int_{\mathbb{R}^{\mathbf{d}}} \mathbf{g}(\mathbf{x}) \mathbf{p}(\mathbf{x}) d\mathbf{x}.$$

Aléatoire: Section 5.3 page 3

# Calcul de $\int_{\mathbb{R}^d} \phi(x) dx$ par méthode de Monte Carlo

Se base sur une décomposition de la forme  $\phi(x) = g(x)p(x)$  avec p densité de probabilité d'une v.a.  $V: \int_{\mathbb{R}^d} \phi(\mathbf{x}) d\mathbf{x} = \mathbb{E}(\mathbf{g}(\mathbf{V}))$ .

- Quelle est la meilleure décomposition? Expertise de l'utilisateur : facilité de simulation des  $(V_i)_i$  de densité p, convergence rapide (vitesses obtenues avec le théorème de la limite centrale)...
- La méthode de Monte Carlo converge sans condition de régularité sur g : algorithme robuste, inconditionnellement stable.
   ≠ méthodes déterministes (discrétisation, quadratures).
- La vitesse de convergence ne dépend pas de la dimension d'espace (vitesse obtenue plus loin avec le théorème de la limite centrale).

Aléatoire: Section 5.3 page 4

#### Comment simuler une variable aléatoire?

⊳ En dimension 1, **méthode d'inversion de la Fonction de Répartition** (voir Leçon 3 diapositive 12).

> Simulation de loi conditionnelle

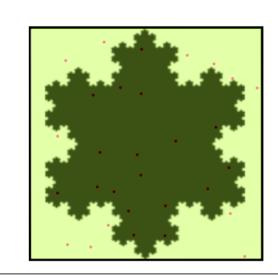
**Théorème.** Pour une v.a. Z et un événement A de probabilité non nulle, considérons  $(Z_n, A_n)_{n\geq 1}$  la suite d'éléments aléatoires indépendants de même loi que (Z, A). Notons  $\nu = \inf\{n \geq 1 : A_n \text{ est réalisé}\}$  : alors, la v.a.  $Z_{\nu}$  a la loi conditionnelle de Z sachant A.

Preuve. • page 24.

Remarque.  $\nu \stackrel{loi}{=} \mathcal{G}(\mathbb{P}(A)) \longrightarrow \mathbb{E}(\nu) = \frac{1}{\mathbb{P}(A)}$ .

**Exemple.** Comment simuler la loi uniforme sur  $B \subset [0,1]^d$ ?

RÉPONSE : Simuler  $X_1, \ldots, X_n, \ldots$  de loi uniforme sur  $[0,1]^d$  et prendre la 1ère simulation qui tombe dans B.



#### 

**Théorème.** Soient X et Y, deux v.a. dans  $\mathbb{R}^d$ , de densité f et g. On suppose qu'il existe une constante  $c(\geq 1)$  satisfaisant :  $c(g(\cdot)) \geq f(\cdot)$ .

Si U est une v.a. de loi uniforme sur [0,1] indépendante de Y, alors la loi conditionnelle de Y sachant  $\{c\ U\ g(Y) < f(Y)\}$  coïncide avec celle de X.

Preuve. • page 25.

## Algorithme de simulation avec rejet

Répéter (avec des simulations indépendantes)

- --> Simuler  $Y_n$  de densité g
- --> Simuler  $U_n$  de loi uniforme sur [0,1]

Jusqu'au premier n = n' tel que  $cU_ng(Y_n) < f(Y_n)$ .

 $ightharpoonup Y_{n'}$  a la même loi que X.



Nombre de passages = v.a. de loi géométrique  $\mathcal{G}(1/c)$  (il faut c proche de 1).

Aléatoire: Section 4.11.2 page 6

# Illustration : volume de la sphère unité pour différentes dimensions $\boldsymbol{d}$

Ratio volume sphère/cube:

$$\mathbf{R_d} = rac{\mathbf{V_d}}{\mathbf{2^d}} = \int_{[-1,1]^d} \mathbf{1_{x_1^2+...x_d^2 \le 1}} rac{d\mathbf{x_1}}{2} \dots rac{d\mathbf{x_d}}{2}.$$

**Exemples.** 
$$R_2 = \frac{\pi}{4} = 0.785...$$
,  $R_3 = \frac{\pi}{6} = 0.524...$ ,  $R_4 = \frac{\pi^2}{32} = 0.308...$ 

**LGN**: si  $(X^{(n)})_n$  est une suite de v.a. indépendantes de loi uniforme sur  $[-1,1]^d$ , alors

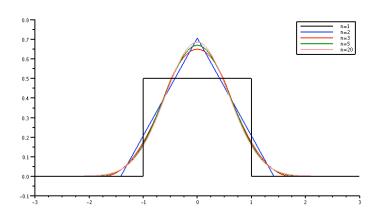
$$rac{1}{n} \sum_{\mathbf{j}=1}^{\mathbf{n}} 1_{|\mathbf{X^{(j)}}|^2 \leq 1} = rac{1}{n} \sum_{\mathbf{j}=1}^{\mathbf{n}} 1_{|\mathbf{X_1^{(j)}}|^2 + \cdots + \mathbf{X_d^{(j)}}|^2 \leq 1} \overset{\mathbf{p.s.}}{
ightarrow} \mathbf{R_d}.$$

Rappel (cours 5):  $\mathbb{V}\operatorname{ar}\left(\sqrt{n}\left(\frac{1}{n}\sum_{j=1}^{n}\mathbf{1}_{|X^{(j)}|^2\leq 1}\right)\right)$  ne dépend pas de n.

ightharpoonup Question: convergence p.s. de  $\sqrt{n} \left( \frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{|X^{(j)}|^2 \le 1} - R_d \right)$ ? **NON**, voir démo.

## Convergence en loi

- Les convergences presque-sûre ou en probabilité ou en moyenne décrivent (dans un certains sens) la proximité des réalisations de  $X_n(\omega)$  et de  $X(\omega)$ ,  $\omega$  par  $\omega$ .
- Nouveau point de vue : proximité des lois.
- $(X_n)_n$  et X pas nécessairement définis sur le même espace de probabilité.
- Application potentielle : convergence d'espérances des variables aléatoires (sans forcément convergence de leurs "réalisations").
- La convergence en loi a déjà été rencontrée dans les précédentes leçons : > leçon 2 diapositive 12 : si  $X_n$  sont des variables de loi binomiale  $\mathcal{B}(n, a_n)$  avec  $na_n \to \theta > 0$  quand  $n \to \infty$ , alors  $\mathbb{P}(X_n = j) \to e^{-\theta} \frac{\theta^j}{i!}$ , pour tout  $j \in \mathbb{N}$ .
  - $\triangleright$  leçon 5 diapositive 5 : si  $(U_i)_i$  sont des variables indépendantes de loi uniforme sur [-1,1], alors la densité de  $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} U_i$  se rapproche très vite de la densité gaussienne.



Aléatoire: Section 6.3

#### Une première définition

Définition. La suite  $(X_n)_n$  converge en loi vers X (noté  $X_n \stackrel{\mathcal{L}}{\to} X$ ) si pour toute fonction f continue bornée

$$\mathbb{E}(\mathbf{f}(\mathbf{X_n})) o \mathbb{E}(\mathbf{f}(\mathbf{X}))$$

lorsque  $n \to \infty$ .

Exemple. Si  $X_n$  de loi normale  $\mathcal{N}(0, \sigma_n^2)$  avec  $\sigma_n^2 \to \sigma^2 > 0$ , alors  $X_n \overset{\mathcal{L}}{\to} X$ , où X est de loi  $\mathcal{N}(0, \sigma^2)$ , car

$$\mathbb{E}(f(X_n)) = \int_{\mathbb{R}} \frac{e^{-\frac{1}{2}\frac{x^2}{\sigma_n^2}}}{\sqrt{2\pi\sigma_n^2}} f(x) dx \longrightarrow \int_{\mathbb{R}} \frac{e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}}{\sqrt{2\pi\sigma^2}} f(x) dx = \mathbb{E}(f(X))$$

par convergence dominée.

Aléatoire: Section 6.3 page 9

Remarque. Si  $X_n$  et X ne prennent que des valeurs entières, on peut montrer que  $X_n \stackrel{\mathcal{L}}{\to} X$  est équivalent à

$$\mathbb{P}(X_n = j) \to \mathbb{P}(X = j), \quad \forall j \in \mathbb{N}.$$

(voir convergence de v.a. de loi binomiale vers une v.a. de loi de Poisson).

Exemple. Si  $X_n$  de loi de Poisson  $\mathcal{P}(\theta_n)$  avec  $\theta_n \to \theta > 0$ , alors  $X_n \overset{\mathcal{L}}{\to} X$ , où X est de loi  $\mathcal{P}(\theta)$ , car

$$\mathbb{P}(X_n = j) = e^{-\theta_n} \frac{\theta_n^j}{j!} \to e^{-\theta} \frac{\theta^j}{j!}.$$

Dans la convergence en loi, les espaces d'état de  $X_n$  et de X ne sont pas nécessairement les mêmes (discret, continu).

Aléatoire: Section 6.3 page 10

# Dans le cas de v.a. réelles, équivalence avec la convergence des fonctions de répartition

**Proposition.** Soit  $(X_n)_n$  une suite de v.a. réelles.

Alors  $\mathbf{X_n} \xrightarrow{\mathcal{L}} \mathbf{X}$  si et seulement si  $\mathbb{P}(X_n \leq x) = F_n(x) \xrightarrow{n \to \infty} F(x) = \mathbb{P}(X \leq x)$  en tout point x de continuité de F.

Corollaire. Soit  $(X_n)_n$  une suite de v.a. réelles, telle que  $X_n \stackrel{\mathcal{L}}{\to} X$ . Si X est une v.a. à densité, alors pour tout a < b

$$\lim_{\mathbf{n}\to\infty} \mathbb{P}(\mathbf{X}_{\mathbf{n}}\in]\mathbf{a},\mathbf{b}]) = \mathbb{P}(\mathbf{X}\in]\mathbf{a},\mathbf{b}]).$$

La convergence en probabilité implique la convergence en loi

Proposition. Si 
$$X_n \stackrel{\mathbb{P}}{\to} X$$
, alors  $X_n \stackrel{\mathcal{L}}{\to} X$ .

Preuve. Déjà vue à la leçon 5, diapositive 18 (corollaire pratique).

#### Un premier exemple du théorème de la limite centrale

**Modèle binomial**:  $S_n = \sum_{i=1}^n X_i$  avec  $\mathbb{P}(X_i = \pm 1) = \frac{1}{2}$  (avec  $\mathbb{E}(X_1) = 0$ ,  $\mathbb{V}$ ar $(X_1) = 1$ ).

- $\triangleright$  Comportement de la moyenne empirique :  $\frac{\mathbf{S_n}}{\mathbf{n}} \stackrel{\mathbf{p.s.}}{\to} \mathbf{0}$ .
- $\triangleright$  Comme  $\operatorname{Var}(\frac{S_n}{n}) = \frac{1}{n}$ , naturel de renormaliser et considérer  $\sqrt{n} \frac{S_n}{n}$ .
- $\triangleright$  Pas de convergence en probabilité de  $\sqrt{n} \frac{S_n}{n}$  (voir simulations début leçon) MAIS convergence en loi vers la loi gaussienne centrée réduite.
- ⊳ Première preuve par A. de Moivre (1667-1754).

PREUVE (AVEC FORMULE DE STIRLING):

$$\mathbb{P}(a < \frac{S_n}{\sqrt{n}} \le b)$$

$$= \sum_{a < \frac{(2k-n)}{\sqrt{n}} \le b} \frac{n!}{k!(n-k)!} 2^{-n}$$

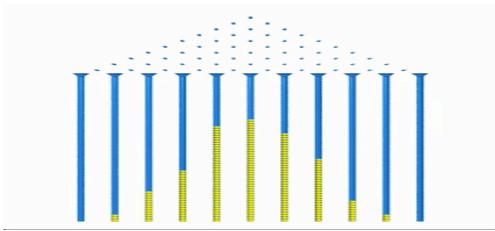
$$\approx \frac{\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n} 2^{-n}}{\sqrt{2\pi}k^{k+\frac{1}{2}}e^{-k}\sqrt{2\pi}(n-k)^{n-k+\frac{1}{2}}e^{-(n-k)}}$$

$$\approx \sum_{a < \frac{j}{\sqrt{n}} \le b} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{j^2}{2n}\right)$$

$$\approx \int_a^b \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}) dx.$$

#### Planche de Galton (1889)

Source: http://images.math.cnrs.fr/La-courbe-en-cloche.html



# LES FONCTIONS CARACTÉRISTIQUES :

#### NOUVEL OUTIL POUR ÉTUDIER LOI ET CONVERGENCE EN LOI

Pour deux vecteurs u et x de  $\mathbb{R}^d$ , leur produit scalaire est noté  $\langle u, x \rangle = \sum_{j=1}^{n} u_j x_j$ .

Définition. Soit  $X = (X_1, \dots, X_d)$  un vecteur aléatoire de  $\mathbb{R}^d$ . Sa fonction caractéristique est la fonction de  $\mathbb{R}^d$  dans  $\mathbb{C}$  définie par

$$\mathbf{u} = (\mathbf{u_1}, \dots, \mathbf{u_d}) \mapsto \phi_{\mathbf{X}}(\mathbf{u}) = \mathbb{E}(\mathbf{e}^{\mathbf{i} < \mathbf{u}, \mathbf{X} >}).$$

#### Remarques.

• Espérance bien définie, en séparant parties réelle et imaginaire :

$$e^{i < u, X>} = \cos(< u, X>) + i\sin(< u, X>),$$

et parce que  $|e^{i < u, X>}| \le 1$ .

- $\Phi_X(0) = 1$ .
- $\Phi_X$  ne dépend que de la loi de X.

Aléatoire: Section 6.1 page 13

- Si X est une v.a. réelle,  $\phi_X(u) = \mathbb{E}(e^{iuX})$ .
- Mathématiquement, transformée de Fourier. Ex : si X est réelle et à densité  $p_X$ , alors  $\phi_X(u) = \int_{\mathbb{R}} e^{iux} p_X(x) dx$ .
- ullet Lien avec la fonction génératrice des moments : si X est à valeurs entières

$$\Phi_X(u) = \sum_{k=0}^{+\infty} e^{iuk} \mathbb{P}(X = k) = G_X(e^{iu}).$$

## Quelques propriétés simples

**Proposition.** Soit X un vecteur aléatoire de  $\mathbb{R}^d$ . Alors la fonction caractéristique  $u \in \mathbb{R}^d \mapsto \Phi_X(u)$  est continue et  $\overline{\Phi_X(\mathbf{u})} = \Phi_X(-\mathbf{u}) = \Phi_{-\mathbf{X}}(\mathbf{u})$ .

Corollaire. Si -X a même loi que X (loi symétrique), alors  $\Phi_X(u)$  est réelle. (remarque : le théorème d'unicité vu plus loin montre la réciproque)

# Le cas important de variable aléatoire de loi normale

Exemple. Si X est une v.a. réelle de loi  $\mathcal{N}(m, \sigma^2)$ , alors

$$\Phi_X(u) := \mathbb{E}(e^{iuX}) = e^{ium - \frac{1}{2}\sigma^2 u^2}.$$

Preuve. On montre le cas X de loi  $\mathcal{N}(0,1)$ . Loi symétrique

$$\Phi_{\mathbf{X}}(\mathbf{u}) = \mathbb{E}(\cos(\mathbf{u}\mathbf{X})) = \int_{\mathbb{R}} \frac{\cos(\mathbf{u}\mathbf{x})}{\sqrt{2\pi}} e^{-\frac{\mathbf{x}^2}{2}} d\mathbf{x}.$$

Par différentiation en u (Théorème de Lebesgue) puis intégration par parties,

$$\Phi_{\mathbf{X}}'(\mathbf{u}) = -\int_{\mathbb{R}} \frac{\sin(\mathbf{u}\mathbf{x})}{\sqrt{2\pi}} \mathbf{x} e^{-\frac{\mathbf{x}^2}{2}} d\mathbf{x} = -\int_{\mathbb{R}} \frac{\mathbf{u}\cos(\mathbf{u}\mathbf{x})}{\sqrt{2\pi}} e^{-\frac{\mathbf{x}^2}{2}} d\mathbf{x} = -\mathbf{u}\Phi_{\mathbf{X}}(\mathbf{u}).$$

Donc  $\Phi_X(u) = c e^{-\frac{1}{2}u^2} : \Phi_X(0) = 1 \implies c = 1.$ 

Le cas général s'en déduit en utilisant la transformation affine  $m + \sigma X$  de loi normale  $\mathcal{N}(m, \sigma^2)$  et

$$\Phi_{m+\sigma X}(u) = \mathbb{E}(e^{iu(m+\sigma X)}) = e^{ium}\Phi_X(\sigma u) = e^{ium}e^{-\frac{1}{2}\sigma^2 u^2}.$$

Aléatoire: Section 6.1.2 page 15

## Un lien (très utile) avec les moments

Proposition. Soit X une v.a. réelle ayant des moments finis jusqu'à

l'ordre  $p: \mathbb{E}(|X|^k) < +\infty$  pour  $k = 1, \dots, p$ .

Alors  $u \in \mathbb{R} \mapsto \Phi_X(u)$  est de classe  $C^p$  et

$$\Phi_{\mathbf{X}}^{(\mathbf{k})}(\mathbf{u}) = \mathbf{i}^{\mathbf{k}} \mathbb{E}(\mathbf{X}^{\mathbf{k}} \mathbf{e}^{\mathbf{i}\mathbf{u}\mathbf{X}}), \quad \mathbf{k} = 1, \dots, \mathbf{p}.$$

En particulier, si X de carré intégrable, alors

$$\mathbf{\Phi}_{\mathbf{X}}'(\mathbf{0}) = \mathbf{i}\mathbb{E}(\mathbf{X}), \quad \mathbf{\Phi}_{\mathbf{X}}''(\mathbf{0}) = -\mathbb{E}(\mathbf{X}^{2}).$$

Corollaire. Si X a la loi  $\mathcal{N}(0,1)$ , alors pour  $n \in \mathbb{N}$ ,

$$\mathbb{E}(\mathbf{X^{2n+1}}) = \mathbf{0}$$
 et  $\mathbb{E}(\mathbf{X^{2n}}) = \frac{(\mathbf{2n})!}{\mathbf{2^n n!}}$ .

# Deux résultats fondamentaux

Théorème (unicité). La fonction caractéristique caractérise la loi de manière unique : si deux vecteurs aléatoires X et Y ont même fonction caractéristique, ils ont même loi.

Théorème (indépendance de v.a.). Soit  $X = (X_1, ..., X_n)$  un vecteur aléatoire à valeurs dans  $\mathbb{R}^n$ . Les composantes  $X_i$  sont indépendantes si et seulement si

$$\Phi_X(u) = \mathbb{E}(e^{i(u_1 X_1 + \dots + u_n X_n)}) = \prod_{j=1}^n \mathbb{E}(e^{iu_j X_j}) = \prod_{j=1}^n \Phi_{X_j}(u_j)$$

pour tout  $u = (u_1, \ldots, u_n)$ .

Application importante : analyse simple de la somme de v.a. indépendantes.

# Exemples de fonction caractéristique pour des v.a. réelles

| Loi                                                                                         | $\Phi_X(u)$                                                                                                                                      | Remarques complémentaires                                                                  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| Normale $\mathcal{N}(m,\sigma^2)$                                                           | $e^{ium-\frac{1}{2}\sigma^2u^2}$                                                                                                                 | Si Y de loi normale $\mathcal{N}(\mu, \tau^2)$ indépendante de X,                          |  |  |  |  |  |
|                                                                                             |                                                                                                                                                  | alors $X + Y$ a la loi normale $\mathcal{N}(m + \mu, \sigma^2 + \tau^2)$ .                 |  |  |  |  |  |
| Binomiale $\mathcal{B}(n,p)$                                                                | $(\mathbf{e^{iu}p} + 1 - \mathbf{p})^{\mathbf{n}}$                                                                                               | $(-\mathbf{p})^{\mathbf{n}}$ Si Y de loi binomiale $\mathcal{B}(m,p)$ indépendant de $X$ , |  |  |  |  |  |
|                                                                                             |                                                                                                                                                  | alors $X + Y$ de loi $\mathcal{B}(n + m, p)$ .                                             |  |  |  |  |  |
|                                                                                             | $\mathrm{e}^{	heta(\mathrm{e}^{\mathrm{i}\mathrm{u}}-1)}$                                                                                        | Si Y de loi Poisson $\mathcal{P}(\theta')$ indépendante de X                               |  |  |  |  |  |
|                                                                                             |                                                                                                                                                  | alors $X + X'$ de loi de Poisson $\mathcal{P}(\theta + \theta')$ .                         |  |  |  |  |  |
| Uniforme sur $[a,b]$                                                                        | $rac{\mathrm{e}^{\mathrm{i}\mathbf{u}\mathbf{b}} - \mathrm{e}^{\mathrm{i}\mathbf{u}\mathbf{a}}}{\mathrm{i}\mathbf{u}(\mathbf{b} - \mathbf{a})}$ |                                                                                            |  |  |  |  |  |
| Cauchy                                                                                      | $\mathrm{e}^{- \mathbf{u} }$                                                                                                                     | Si $Y$ de loi de Cauchy indépendante de $X$ ,                                              |  |  |  |  |  |
| $p_X(x) = \frac{1}{\pi(1+x^2)}$                                                             |                                                                                                                                                  | alors $\frac{X+Y}{2}$ de loi Cauchy.                                                       |  |  |  |  |  |
| Exponentielle $\mathcal{E}(\lambda)$                                                        | $\frac{\lambda}{\lambda - \mathbf{i}\mathbf{u}}$                                                                                                 |                                                                                            |  |  |  |  |  |
| Gamma $\Gamma(\alpha, \lambda)$                                                             | $\left(\frac{\lambda}{\lambda - \mathbf{i}\mathbf{u}}\right)^{\alpha}$                                                                           | Si $\alpha$ est entier, $X$ peut s'écrire comme                                            |  |  |  |  |  |
| $p_X(x) = \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\alpha x}}{\Gamma(\alpha)} 1_{x \ge 0}$ |                                                                                                                                                  | la somme de $\alpha$ v.a.r. indépendantes de loi $\mathcal{E}(\lambda)$ .                  |  |  |  |  |  |

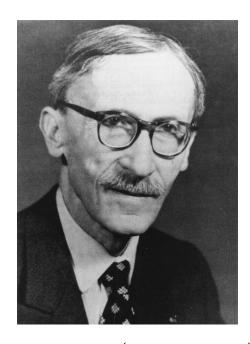
Aléatoire: Section 6.1.2

#### Pour s'entrainer et aller plus loin

- 1. Que dire sur la v.a. X si  $\Phi_X(u) = e^{i\langle m,u\rangle}$  pour un certain vecteur  $m \in \mathbb{R}^d$ ?
  - Réponse :  $\mathbb{P}(X=m)=1$ .
- 2. Si X a pour fonction caractéristique  $\Phi_X(.)$ , quelle variable aléatoire a pour fonction caractéristique  $u \mapsto |\Phi_X(u)|^2$ ?
  - Réponse :  $X \tilde{X}$  avec X et  $\tilde{X}$  indépendants de même loi.
- 3. Si  $|\Phi_X(u)| = 1$  pour tout  $|u| \le \varepsilon$  (pour un certain  $\varepsilon > 0$ ), que dire de X?
  - $\bullet\,$  Réponse : X est presque-sûrement constante.
  - Indication : appliquer 2) pour montrer  $X \tilde{X} = 0$  p.s., puis conclure.
- 4. Que dire sur la v.a. X si X et Y sont indépendants et si X+Y a même loi que Y?
  - Réponse : X = 0 p.s.
  - Indication : le montrer directement si X et Y sont de carré intégrable. Puis sans cette hypothèse, avec les fonctions caractéristiques.
- 5. Que dire sur X Y si X Y est indépendant de X et de Y?
  - Réponse : X Y est presque-sûrement constante.

Aléatoire: Section 6.1.2 page 19

# Un critère efficace de convergence en loi à l'aide des fonctions caractéristiques : le théorème de Lévy



Paul Lévy (1886-1971), X1904, professeur à l'Ecole Polytechnique à partir de 1920 Théorème (admis). Soit  $(X_n)_n$  une suite de v.a. à valeurs dans  $\mathbb{R}^d$ .

- a) Si  $X_n \stackrel{\mathcal{L}}{\to} X$ , alors  $\Phi_{X_n}$  converge simplement vers  $\Phi_X$ .
- b) Si  $\Phi_{X_n}$  converge simplement vers une fonction  $\Phi: u \in \mathbb{R}^d \mapsto \mathbb{C}$  et si  $\Phi$  est continue en 0, alors  $\Phi$  est la fonction caractéristique d'une v.a. X et  $X_n \stackrel{\mathcal{L}}{\to} X$ .

#### Exemples.

- Reprendre les convergences des diapositives 9-10.
- $X_n$  de loi Gamma  $\Gamma(\alpha_n, \lambda_n) : \Phi_{X_n}(u) = \left(\frac{\lambda_n}{\lambda_n iu}\right)^{\alpha_n}$ . Si  $(\lambda_n, \alpha_n) \to (\lambda, \alpha) \in [\mathbb{R}^+ \setminus \{0\}]^2$ , alors  $X_n \stackrel{\mathcal{L}}{\to} X$  de loi  $\Gamma(\alpha, \lambda)$ .

Aléatoire: Théorème 6.3.9

# Application fondamentale : le théorème de la limite centrale

**Théorème.** Soit  $(X_n)_n$  une suite de v.a. réelles indépendantes, de même loi, de carré intégrable :  $m = \mathbb{E}(X_1)$  et  $\sigma^2 = \mathbb{V}ar(X_1) > 0$ . Alors

$$\frac{\sqrt{n}}{\sigma} \left( \frac{S_n}{n} - m \right)$$

converge en loi vers une variable aléatoire de loi normale  $\mathcal{N}(0,1)$ .

#### Remarques.

- $\sqrt{n}(\frac{S_n}{n}-m)$  converge en loi vers une variable aléatoire de loi normale  $\mathcal{N}(0,\sigma^2)$ .
- Limite universelle : la moyenne de n v.a.r. indépendantes de même loi et de carré intégrable a une loi qui ressemble à la loi normale (lorsque  $n \to \infty$ ).
- Historique : résultat énoncé par Laplace (1749-1827), démontré par Lyapunov (1901). Ici, preuve par le théorème de Lévy.

Aléatoire: Théorème 6.4.1 page 21

#### Une application concrète du TCL

Une maternité procède chaque jour à un nombre  $X_i$  d'accouchements : on suppose que les  $(X_i)_i$  sont des variables indépendantes, de même loi, de loi de Poisson  $\mathcal{P}(\theta)$ , avec  $\theta = 20$ .

Quelle est la probabilité que sur un an, il y ait plus de 7400 accouchements?

SOLUTION. On pose  $S_n = \sum_{i=1}^n X_i$  pour le nombre d'accouchement annuel. Ici, n = 365,  $\mathbb{E}(X_i) = \theta$ ,  $\mathbb{V}ar(X_i) = \theta$ . Alors

$$\mathbb{P}(S_n \ge 7400) = \mathbb{P}\left(\frac{\sqrt{n}}{\sqrt{\theta}}\left(\frac{S_n}{n} - \theta\right) \ge \frac{\sqrt{n}}{\sqrt{\theta}}\left(\frac{7400}{n} - \theta\right)\right) \approx \int_{\frac{\sqrt{n}}{\sqrt{\theta}}\left(\frac{7400}{n} - \theta\right)}^{+\infty} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx.$$

Comme 
$$\frac{\sqrt{n}}{\sqrt{\theta}} \left( \frac{7400}{n} - \theta \right) \approx 1.17,$$
  
 $\mathbb{P}(S_n \geq 7400) \approx \mathbb{P}(\mathcal{N}(0, 1) \geq 1.17) =$   
**12.10**%.

Un calcul exact donne 11.99%.

De même,  $\mathbb{P}(S_n \geq 7500) \approx 0.962\%$  (valeur exacte : 0.969%).

| 0.09   | 0.08   | 0.07   | 0.06   | 0.05   | 0.04   | 0.03   | 0.02   | 0.01   | 0.00   | Z   |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|
| 0.5359 | 0.5319 | 0.5279 | 0.5239 | 0.5199 | 0.5159 | 0.5120 | 0.5080 | 0.5040 | 0.5000 | 0.0 |
| 0.5753 | 0.5714 | 0.5675 | 0.5636 | 0.5596 | 0.5557 | 0.5517 | 0.5478 | 0.5438 | 0.5398 | 0.1 |
| 0.6141 | 0.6103 | 0.6064 | 0.6026 | 0.5987 | 0.5948 | 0.5910 | 0.5871 | 0.5832 | 0.5793 | 0.2 |
| 0.6517 | 0.6480 | 0.6443 | 0.6406 | 0.6368 | 0.6331 | 0.6293 | 0.6255 | 0.6217 | 0.6179 | 0.3 |
| 0.6879 | 0.6844 | 0.6808 | 0.6772 | 0.6736 | 0.6700 | 0.6664 | 0.6628 | 0.6591 | 0.6554 | 0.4 |
| 0.7224 | 0.7190 | 0.7157 | 0.7123 | 0.7088 | 0.7054 | 0.7019 | 0.6985 | 0.6950 | 0.6915 | 0.5 |
| 0.7549 | 0.7517 | 0.7486 | 0.7454 | 0.7422 | 0.7389 | 0.7357 | 0.7324 | 0.7291 | 0.7257 | 0.6 |
| 0.7854 | 0.7823 | 0.7794 | 0.7764 | 0.7734 | 0.7704 | 0.7673 | 0.7642 | 0.7611 | 0.7580 | 0.7 |
| 0.8133 | 0.8106 | 0.8078 | 0.8051 | 0.8023 | 0.7995 | 0.7967 | 0.7939 | 0.7910 | 0.7881 | 0.8 |
| 0.8389 | 0.8365 | 0.8340 | 0.8315 | 0.8289 | 0.8264 | 0.8238 | 0.8212 | 0.8186 | 0.8159 | 0.9 |
| 0.8621 | 0.8599 | 0.8577 | 0.8554 | 0.8531 | 0.8508 | 0.8485 | 0.8461 | 0.8438 | 0.8413 | 1.0 |
| 0.8830 | 0.8804 | 0.8790 | 0.8770 | 0.8749 | 0.8729 | 0.8708 | 0.8686 | 0.8665 | 0.8643 | 1.1 |
| 0.9015 | 0.8997 | 0.8980 | 0.8962 | 0.8944 | 0.8925 | 0.8907 | 0.8888 | 0.8869 | 0.8849 | 1.2 |
| 0.9177 | 0.9162 | 0.9147 | 0.9131 | 0.9115 | 0.9099 | 0.9082 | 0.9066 | 0.9049 | 0.9032 | 1.3 |
| 0.9319 | 0.9306 | 0.9292 | 0.9279 | 0.9265 | 0.9251 | 0.9236 | 0.9222 | 0.9207 | 0.9192 | 1.4 |

FdR de la loi normale  $\mathcal{N}(0,1)$  (voir p.107)

Aléatoire: Section 6.4 page 22

# Applications du théorème de la limite centrale

- Permet de contrôler la **précision de la loi des grands nombres** (exemple précédent).
  - ▶ Applications en méthode de Monte Carlo.

Vitesse de convergence de la méthode numérique :  $\sqrt{n}$  (indépendamment de la dimension, de la régularité de la fonction moyennée).

Contrôle a posteriori de l'erreur (aléatoire) par intervalles de confiance (voir leçon 7).

▶ Applications en statistique.

A partir de données, identifier les paramètres du modèle avec des intervalles de confiance.

• Plus généralement, justifie que les perturbations aléatoires soient modélisées par des variables de loi normale.

Aléatoire: Section 6.4 page 23

## Preuve - Simulation de loi conditionelle

Pour tout borélien B,

$$\mathbb{P}(Z_{\nu} \in B) = \sum_{n \geq 1} \mathbb{P}(Z_n \in B; A_1^c; \dots; A_{n-1}^c; A_n)$$

$$= \sum_{n \geq 1} (1 - \mathbb{P}(A))^{n-1} \mathbb{P}(Z_n \in B; A_n)$$

$$= \frac{\mathbb{P}(Z \in B; A)}{\mathbb{P}(A)}$$

$$= \mathbb{P}(Z \in B | A).$$

page 5

Aléatoire: Section 6.4

# Preuve - Algorithme de rejet

Soit  $A = \{c \ U \ g(Y) < f(Y)\}$ . Pour tout borélien  $B \subset \mathbb{R}^d$ ,

$$\mathbb{P}(Y \in B \mid A) = \frac{\mathbb{P}(Y \in B; A)}{\mathbb{P}(A)}$$

$$= \frac{1}{\mathbb{P}(A)} \int \int_{\{(y,u): y \in B, c \ u \ g(y) < f(y)\}} g(y) \ \mathbf{1}_{[0,1]}(u) \ dy \ du$$

$$= \frac{1}{\mathbb{P}(A)} \int_{B} g(y) \frac{f(y)}{c \ g(y)} \ dy = \frac{1}{c \ \mathbb{P}(A)} \int_{B} f(y) \ dy.$$

Le choix  $B = \mathbb{R}^d$  conduit à  $c \mathbb{P}(A) = 1$ , et donc

$$\mathbb{P}(Y \in B \mid A) = \int_{B} f(y) \, dy$$

pour tout B. Cela montre que la loi conditionnelle a pour densité f.

• page 6

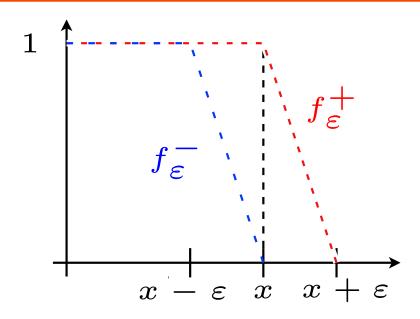
Aléatoire: Section 6.4

# Preuve - Convergence des fonctions de répartition

 $\Longrightarrow$ ) (sens le plus souvent utilisé). Considérons deux fonctions continues  $f_{\varepsilon}^+$  et  $f_{\varepsilon}^-$  encadrant la fonction indicatrice  $\mathbf{1}_{]-\infty,x]}$ : ainsi

$$\mathbb{E}(\mathbf{f}_{\varepsilon}^{-}(\mathbf{X_n})) \leq \mathbb{P}(\mathbf{X_n} \leq \mathbf{x}) \leq \mathbb{E}(\mathbf{f}_{\varepsilon}^{+}(\mathbf{X_n}))$$

pour tout  $\varepsilon$  et tout n.



$$\lim_{\mathbf{n} \to \infty} \mathbb{E}(\mathbf{f}_{\varepsilon}^{-}(\mathbf{X}_{\mathbf{n}})) = \mathbb{E}(f_{\varepsilon}^{-}(X)) \ge \mathbb{P}(X \le x - \varepsilon) \uparrow \mathbb{P}(\mathbf{X} < \mathbf{x}) \text{ quand } \varepsilon \downarrow 0.$$

$$\lim_{\mathbf{n}\to\infty} \mathbb{E}(\mathbf{f}_{\varepsilon}^{+}(\mathbf{X}_{\mathbf{n}})) = \mathbb{E}(f_{\varepsilon}^{+}(X)) \leq \mathbb{P}(X \leq x + \varepsilon) \downarrow \mathbb{P}(\mathbf{X} \leq \mathbf{x}) \text{ quand } \varepsilon \downarrow 0.$$

Si x point de continuité de F, alors  $\mathbb{P}(\mathbf{X} < \mathbf{x}) = \mathbb{P}(\mathbf{X} \le \mathbf{x})$ .

• page 11

 $Al\'{e}atoire$ : Section 6.4 page 26