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Abstract

In this paper, we consider the problem of the numerical computation of Greeks for a multidi-
mensional barrier and lookback style option: the payoff function depends in a rather general way
on the minima and maxima of the coordinates of the d-dimensional underlying asset process. Using
Malliavin calculus techniques, we derive additional weights which enable one to compute the Greeks
using Monte Carlo simulations. Numerical experiments confirm the efficiency of the method. This
work is a multidimensional extension of previous results (see Gobet et al. (2001)).
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Introduction

In a frictionless market, we consider a d-dimensional risky asset (S; := (S}, - ,Sf))tzo, whose dy-
namics, under the risk neutral probability P, is log-normal with constant volatility o = (0} j)1<i j<a:

ds - j
Si =rdt + Z U’i,det . (1)
t j=1
The process (W; = (W}, -+, W))i>o is a standard Brownian motion in R? and r is the interest

rate. We focus our attention on barrier and lookback European style options, the payoff of which is a
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general function of the extrema of each S’ and of their values S% at maturity 7. The payoff function
® is hence of the form

1 d : 1 . d ¢l d
© (map - mar Stomip L - mipsh 51 ®
The set I C [0,T] is a set of times when the extrema are monitored: I = [0,7'] corresponds to the
continuous time case, and I = {0 =1 <t <--- <t; <--- <ty =T} to the discrete time one. This
setting includes obviously usual barrier and lookback options, but also other exotic options. Let us
give two illustrative examples:

o Best-Off (or Worst-Off) option: the payoff function may be of the form

max (maxS;,--- ,maxS?,K) .
sel sel
e BLAC (Basket Lock Active Coupon) Down & Out option: this option pays 1 Euro if at most
one of the underlying assets has touched a lower barrier L before the expiration. Hence, the
payoft is
H 1minS§ VminS? > L
i£j s€l sel
In this Black & Scholes model, the price at time 0 of the option, whose payoff is given by (2), is equal

to
P(S§,++,88) =E(e™™d),

and can be computed by Monte Carlo methods. For the discrete time case this calculation is straight-
forward, but for the continuous time case this may sometimes be difficult, because one may need to sim-
ulate local multidimensional minima and maxima (for multidimensional barrier options, such kinds of
problems have been handled by one of the authors in Gobet (2001)). Rather than considering the pric-
ing issue, here we focus on the hedging problem, that is, to numerically compute the so-called Greeks, in
particular the Delta A = (BséP(Sé, .. ,Sg))lgigd and the Gamma I" = ((');l SjP(Sé, e ,Sg))lgi,jgd-
The idea of this paper is to rewrite these sensitivities as expectations, so tol,laqc the same simulations
used to compute the price can also be used to evaluate the Greeks. For this we will derive an integra-
tion by parts formula of Malliavin calculus, which will give that A = E(e"7® HA). This formula will
provide an alternative method of unbiased simulation if one simulates also the random weight Ha. A
similar formula will be also obtained for the Gamima.

Recently the interest of Malliavin calculus for Monte Carlo computations has increased because it has
led to new efficient algorithms to evaluate the Greeks for example; we refer to the articles by Fournié
et al. (1999), Fournié et al. (2001), Benhamou (2000) and Gobet et al. (2001). The evaluation
of sensitivities using an integration by parts formula is not new and has been already considered in
other problems; it has been known as the likelihood ratio method or score method, and this essen-
tially requires to know the joint density of the random variables involved in the problem. For general
sensitivities, see Glynn (1986,1987) and Reiman et al. (1986); for an application to the Greeks, see



Broadie et al. (1996); for an application to stochastic control problems, see Kushner et al. (1991).
The real advantage of Malliavin calculus is to generalize the previous approach even if the density
is unknown, which is the most usual situation. In the framework of this paper, we have to face this
nasty situation since the law of (maxsel Sl ... max,er 8% minger SL,- -+, mingcs S, S;lp, e ,S%) is
not explicitly known, especially because of the possible correlation between the assets.

Compared to the Finite Difference method (FD in short) (see Glasserman et al. (1992), L’Ecuyer
et al. (1994)), this approach using the integration by parts formula of Malliavin calculus in order to
obtain additional random weights has several advantages: for example, the number of parameters to
be chosen is smaller and the sensitivity estimation is unbiased. The remaining key point is to know
how large is the variance of the simulated random variables for both methods. Numerical evidence
(see Fournié et al. (1999)) tends to prove that if the payoff function is irregular, the FD method
leads to high variance and the integration by parts approach is more accurate, while for smooth pay-
off functions the converse is true. Hence, in our framework of barrier style options where indicator
functions may be involved in the payoff, finding additional weights H is promising for an efficient com-
putation of the Greeks, and some numerical illustrations at the end of the paper will illustrate this fact.

The case of vanilla and Asian options has been previously handled in Fournié et al. (2001) and in
Benhamou (2000). We consider here the context of barrier and lookback style options on multidimen-
sional assets and we present new results, extending those obtained in the case of one risky asset by
the two last authors in Gobet et al. (2001). Actually, in the cited paper, the dynamic of the asset
is supposed to be a generalized Black-Scholes model with non-constant volatility; our contribution is
to consider the multidimensional case, with a restriction to the usual Black-Scholes setting (1). The
way to derive the appropriate weights involves Malliavin calculus techniques, which are not so easy
in our context because the maxima and minima of stochastic processes are usually not smooth, even
if the underlying processes are smooth (see the paper by Bermin (2000), where such questions are
discussed through the application of Clark-Ocone’s formula). The derivation of weights will require
one to localize the usual integration by parts formula as is done in Nualart (1995), Section 2.1.4.

Before going further, we should mention that for the discrete time case I = {0 =ty < t; < --- <
t; < --- <ty = T} the payoff & depends only on a finite number of dates t; (2 = f(Sy, -, Sty)),
and formulae from Fournié et al. (1999) can be used. For the delta A with only one risky asset,
for example, one finds out that H = Wy, /(S{o1,1t1). This weight is really easy to simulate, but it
has the undesirable drawback of an exploding variance when the frequency of monitoring increases:
Var(H) = C/t; — oo when t; — 0. Some numerical experiments below illustrate that the use of this
weight for daily monitored option is really not appropriate, even compared to the FD method, while
the weights obtained in Theorem 2.1 behave significantly better than the previous alternatives.

The paper is organized as follows: in Section 1 we give the notations and assumptions used throughout
the paper. We also recall some Malliavin calculus results which are useful in our setting. In Section
2 we introduce a dominating process, crucial for our Malliavin calculus computations; then we state
the main result concerning the derivation of weights for A and I". Our results are valid if the support



assumption (S) is fulfilled. This condition states that the support of the payoff function (modulo
constants) should be included in the interior of the support of the density. This hypothesis may seem
undesirable at first but we also show that it is satisfied in the examples we consider. We also study the
influence of assumption (S) in the numerical results; in particular, we show that in an asymptotic case
our results coincide with those of Fournié et al. (1999). In Section 3, we show numerical experiments
on the discrete time case, that is, cases where path-dependent payoffs are discretely monitored. In
this situation our numerical procedure behaves better than other proposed methods. Proofs are in
general postponed to the Appendices.

1 Preliminaries

1.1 Notations and assumptions

We consider the d-dimensional asset process defined in (1), for which one has:

log(S}) = log(Sy) + p't + o'W, (3)
with S > 0, where we set pu* = (r — 3||0%||?) and o® = (07,1, ,04,4)* is the transposition of the i-th
row of the matrix o = (04,7)1<sj<a- Put p = (p', -+, u?)*. In the sequel, we also assume that the

matrix o is invertible.

Let us denote by M’ = max,c; Sé and m’ = minges Sg the maximum and minimum of the i-th
asset. We consider in this work a payoff of the form ® (Mi, co MY ml - md, Sk, .- ,S%), which
is assumed to be square-integrable; sometimes we will denote it simply by ®. It may be natural
to think that no other properties of the payoff function should be required; nevertheless it appears
that an integration by parts formula for barrier and lookback style options cannot be obtained in full
generality without an additional support type condition on the payoff function. Before stating the
appropriate assumption on ®, we illustrate this fact with a simple probabilistic example.

Example 1.1. Let X% = (X7 = 4+ W);>0 be a linear Brownian motion starting at x € R. Here, the
quantity of interest is E(f (inf,c(o,1] X¥)), and suppose we are interested in rewriting 0;E(f (infycp0 1) XT)) =
E(f(infseo,1) X¥)H) for some square integrable random variable H and for some bounded continuous
function f. Using the ezplicit law of infycjo 1) X7, one has:

; z _ z 2 (y_a;)z
0Bt x7) = 0. [ s ——ew (U5 )4

- o=+ [ 1w =- e (<25 ) 4

2
= — 4+ E inf X*¥)( inf X* — .
fo) =+ (f(teu[%,l] ) int, X :c>)

Hence this basic computation shows that finding a weight H if f(x) # 0 turns out to be hard.
The preceding example illustrates the necessity of a support type condition of ®. The following

assumption (S) is not exactly analogous to f(z) = 0 in the previous example, this slight modification
coming from the fact that the weights will be centered random variables.



We assume, in the sequel, that the condition® below is fulfilled.

(S) There exists a > 0 such that for any 5 € {1,--- ,d}, the function ®(M1!,--- M4 m! ... m?
Sk, .-+ ,5%) does not depend on M* (resp. m;) if M* < S} exp(a) (resp. m® > S} exp(—a)).

In fact, assumption (S) is not so restrictive; it is fulfilled for usual options. For instance, it holds for
the two examples from the introduction:

e Best-Off option with ® = max (M',--- , M4 K) for maxi<;j<qS; < K. Assumption (S) is
clearly satisfied with a = min;<;<4 log(K/S§) > 0.

e BLAC Down & Out option with & = Hi#j 1ivmi>r for minj<i<q Si > L. Write ® =
[Li<icglmisr + 2?21 Li<r [ 12 1mi>L; it is now easy to see that assumption (S) is fulfilled
taking @ = min;<;<qlog(S§/L) > 0.

1.2 Some basic results from Malliavin Calculus

In this section, we introduce the necessary material for our Malliavin calculus computations. We
follow standard definitions and notations from Nualart (1995).

For h(.) € H = Ly([0,T],R%), denote by W (h) the Wiener stochastic integral fOT h(t) . dW; . Let
S denote the class of random variables of the form F = f(W(hy),...,W(hy)) where f € C3°(RY),
(hi,...,hy) € HYN and N > 1. For F € S, we define its derivative DF = (DiF)iefo,1) as the H-valued
random variable given by D, F = Zf\il Og; fW(h1),...,W(hn)) hi(t). The operator D is closable as
an operator from L,() to L,(Q, H), for any p > 1. Its domain is denoted by D'? with respect to
the norm ||F||;, = [E|F|P + E(|DF||%)] YP  We can define the iteration of the operator D in such
a way that for a smooth random variable F, the derivative D¥F is a random variable with values in
H®k. As in the case k = 1, the operator DF is closable from S C L,(Q) into L,(Q; H®), p > 1. If we
define the norm || F ||, = [E|F|P + Zle E(||DJ'F||1;I®].)]1/P’ we denote its domain by D*” and we put
DF: = npzl DFP. We also introduce d, the Skorohod integral, defined as the adjoint operator of D:
this is a linear operator on Ly ([0, T]x 2, R%) with values in Ly(2) and we denote by Dom(§) its domain.

The following proposition puts together basic properties of these operators:
Proposition 1.1.

1. Chain rule property. Fiz p > 1. For f € C}(R%,R) and F = (F1,--- ,F;) a random vector
whose components belong to DYP, f(F) € DY and for t € [0,T], one has

q

Dy(f(F)) =Y, 00, f(F) DiF;.

=1

'In Gobet et al. (2001), a stronger condition has been stated but the next computations will show that in fact,
assumption (S) stated here is sufficient.



2. Integration by parts formula. If u belongs to Dom(d), then é(u) = fOT ut OWy is the element
of La(Q) characterized by the integration by parts formula

VFeD2,  E(Fow)=E (/OT D,F . uy dt) . (4)

3. Some elements in Dom(8). If u is an adapted process belonging to Ly([0,T] x Q,R%), then
the Skorohod integral and the Ito integral coincide. The space of weakly differentiable H-valued
variables DY2(H) is a subset of Dom(d).

4. Skorohod integral of a process multiplied by a random variable. If F € D2 and
u € Dom(d) such that E(F? OT u? dt) < 400, one has

T
S(F u) = F 5(u) —/ DiF . uy dt.
0
In particular, if u is moreover adapted, one simply has:

T T
0 0

Actually, the equality (5), which rewrites the Skorohod integral into Ito and Lebesgue integrals, will
be used to simulate the weights in the alternative expressions for the Greeks in Theorem 2.1.

The core of the next computations will concern the differentiability of the maximum/minimum of
(S¥)ter or equivalently of (log(S?))ier. For this, we denote by 7i, and 7%, the random times? in I
where the maximum M? and minimum m! are attained:

M' =5, and m' =5, .
’TM Tm

A straightforward application of the more general result from Nualart et al. (1988) yields:
Dy (I?glx[uit + oi.Wt]) =11ri 0i and Dy (I{éi]ﬂ[p,it + Ui.Wt]) = ly<si 0;.

Combining the chain rule property with M* = S} exp(max;¢[p‘t+0'. Wy]) and m* = S§ exp(minger[p't+
o'.W]), we complete the proof of the following lemma.

Lemma 1.1. For anyi € {1,--- ,d}, the random variables M', m?, S% belong to DV and their first
weak derivatives are given for t <T by

DM' = M'1,,i o',  Dym'=m'lic;i0"  and  DySp = Sro’.

Since M* and m* do not belong to D?P, the classical integration by parts formula can be performed
and one needs to use a localization procedure as in Nualart (1995), Proposition 2.1.5.

2Owing to the non-degeneracy of o, it is known that these random times are uniquely defined with probability 1.



2 Main results: computations of A and I

2.1 Dominating processes

We now introduce some notation to formalize the localization technique; this approach has already
been developed in the one-dimensional setting (see Gobet et al. (2001)) and the multidimensional
extension requires only minor modifications. Hence, we only state the results, omitting their proofs.
First, consider the parameter a > 0 from assumption (S) and choose a C;° function ¥ such that
1 oo,a/2)(7) < ¥ (7) < 1 q)(2); without loss of generality we assume that sup,cg [Tk ()| < Cr/a®
for some constants Cj > 0. Second, we set a definition for a dominating process:

Definition 2.1. The increasing adapted right-continuous process (Y)o<i<7 is a dominating process
if
o it satisfies |u't + o' Wy| <Y, for anyt € I and i € {1,--- ,d}.

e there exists a positive function o : N — R, with lim,_,« a(q) = oo, such that, for any ¢ > 1,
one has: YVt € [0,T] E(Y) < Cut™9. Note that Yo = 0.

It is natural that (Y})o<i<7 may not depend on the initial values (58)19'5(1, and that is what we
assume in the following. Furthermore, the process Y will be required to be differentiable enough for
Malliavin calculus computations; this is the following assumption stated for some g € N*.

(R(q)) The random variable ¥(Y;) belongs to D% for each ¢. Moreover, for j =1,--- ,q, one has

T1,0 1€ T'1V---VTjStST

Vp>1 sup E ( sup ||DT1,...,TJ.\II(Yt)||p) < Cy.
[0,7]

We now give some examples of dominating processes, depending on the set I.
Proposition 2.1. Consider the discrete time case: I = {0 =ty <--- <t; <--- <ty =T}.

1. The extreme process

Y, = i+ ot Wy, — i Ui+ ot Wy, 6
K glflgxd (0<jréllz\17§j<t[u ite tj] OSJ_ISHZ{TI:Itht[u jto tj]) ( )

is a dominating process satisfying (R(1)).

2. The averaged quadratic increments process

Yo= [N Y ulty —tim) +o(Wy, = W) (M
1<j<N:t;<t

is a dominating process satisfying (R(q)) for any g > 1.

Proposition 2.2. Consider the continuous time case: I = [0,7].



1. The extreme process

Y, = 112?3}((1 (gggﬁt[u s+ ot W,] — mln [u s+ "W, ]) (8)

is a dominating process satisfying (R(1)).

2. The averaged modulus continuity process

_ ¥ 1/
(// l|lp(s u+a(W W)l dsdu) m+2tm/7, 9)

u|m+2 m

for an even integer v and for 0 < m < % — 2, is a dominating process satisfying (R(q)) under
the condition 1 < g <~y —2(m + 2).

For the proofs of these results, we refer to Gobet et al. (2001): the arguments are quite basic, except
for the last case (the averaged modulus continuity process) for which we need Garsia, Rodemich and
Rumsey’s Lemma (see Garsia et al. (1970)). A dominating process for the case I = [0,7] obviously
works for any subset I C [0,7], but in general, it will not lead to more efficient numerical results.
Hence, in the discrete time case, it is recommended to use dominating processes from Proposition 2.1.

2.2 Statement of the results

Put ¢’ = (0---010---0)*, where 1 is the i-th coordinate. Our main result is the following theorem.
Theorem 2.1. Suppose (S) is fulfilled.
1) Delta. If Y is a dominating process satisfying (R(1)), then one has
1<i<d: A = 9gE (e’TTQ(Ml,--- M4 mt, . md Sk, .. ,S%))

= E (eirT(I’(Mla"' aMdamla"' 7md’S’11"7"' as’%)HAi)’ (10)

2) Gamma. IfY is a dominating process satisfying (R(2)), then one has
1S21]Sd FZ,J = ag‘éasﬂ ( _TT(b(Mlﬁ""Mdamla"'7mdﬂS’}"a"'7S%))

= E (eirTq)(Mla"' ’Mdamla"' amdasil"a"' 75%)Hri’j> J (11)

; o 1 v(Y) —1 3 v(y) —1,5\ _ _1 U(Y) —1,)1. .
’U)’Lth HIV,,] == S(Z) 565 ( (S <f0 )/t) dtO’ el) fo )/t) dtO' 6'7> (58)2 (5 (f(;r \II(Yt) dtU el> 112].

Proof. See Appendix A. O




2.3 About the hypothesis (S)

In this paragraph, we discuss the sensitivity of our weights to the parameter a from condition (S).

We first consider the case when a shrinks to 0. This corresponds to asymptotically removing the
assumption (S), or in other words to consider payoffs which depend on extrema at time T close to
their initial values. To discuss this case, remark first that using standard computations combined with
estimate (16), we can easily obtain that ||Hail/z, + ||Hriillz, < Cp/(1 A aP®) for any p > 1 and for
some positive function 8, which depends on the dominating process. Hence, in general, we cannot
ensure that our weights keep a bounded variance when a goes to 0. Actually, this even seems to be
false in the continuous time case I = [0,7'], in the light of Example 1.1 where an appropriate weight
would involve a Dirac measure at the initial value . Nevertheless, for the discrete time case, in the
limit case a = 0 our weights coincide with those of Fournié et al. (1999). This is the statement of the
following proposition.

Proposition 2.3. Consider the discrete time case: I ={0 =ty < --- <t; <--- <ty =T}.
Take for the dominating process Y either the extreme process (6) or the averaged quadratic increments

process (7). Then one has

—1_2 Ww.
lim H o a.s. (0' 6) t1
lim H xi(a) TS

and the convergence also holds in L, with p < d.
Proof. See Appendix B.1 O

Consider now the opposite situation, i.e. a is large. Regarding the maxima and minima, the payoff
depends only on their extreme values, and asymptotically only the values of St are involved in the
payoff. Hence, the weights should correspond to the case of payoffs of the form ®(S7) and Proposition
2.4 below justifies this fact.

Proposition 2.4. Consider the discrete time case: I ={0=ty <---<t; <--- <ty =T}.
One has (o-1)
~1i) W
lim H ai a.s. o) e W
o Haile) = g
and the convergence also holds in L, for any p > 1.
Proof. See Appendix B.2 O

In view of these two results, we can conclude that our weights behave better than those from Fournié
et al. (1999), which involve only the first increment W;, and lead to high variance when ¢; — 0, as
will be seen in the next section about numerical results. In fact, for usual positive values of a, one
may expect that

(oc71e"). Wy (o~ te!).Wy,
Var ( ST & Var (Hpi(a)) < Var St



3 Numerical experiments

We now illustrate the efficiency of formulae from Theorem 2.1. We restrict the presentation to the
discrete time case (the continuous time one has already been studied in Gobet et al. (2001)). In the
sequel we take d = 5 underlying assets; we set r = 0% for the interest rate and T' = 1 year for the
maturity.

The initial value of each asset is S§ = 100 Euros. Their volatilities are given by ||| = 35%, ||0?|| =
35%, [|o|| = 38%, ||o*|| = 35% and ||o®|| = 40%, and the correlation matrix p = (p;,;)1<i,j<5 is defined
by pi; = 0.4 for i # j. The number of observations is set to N = 50 (roughly weekly monitoring).

In the examples below, we will compare the accuracy of three approaches for the computation of A

with respect the first asset S', for various options:
1. The FD method with a centered difference using a perturbation on the parameter of 1%.

2. The Malliavin calculus weight from Fournié et al. (1999) (so called Classic Malliavin or Classic

M.), for option payoffs depending only on a finite number of dates. In this case the weight for
(U_lel).th

1 _
A" is equal to Ha1 = Sin

3. The Malliavin calculus weight from this paper (so called Localized Malliavin or Local. M.):

— s YY) 11
HAl_Sé(S(fOT\I/(}Q)dtU e).

The number of simulations has been fixed to M = 200000. In the captions of the figures, we give
Monte Carlo estimates with the 95%-confidence symmetric interval (i.e. +£1.96 x SD/vM).

INSERT HERE FIGURE 1
Figure 1: Delta of a BLAC Down & Out option. True value ~ 3.38 x 1073.
FD=3.15x 1073 4+ 3.47 x 10~* , Classic M.=3.53 x 1073 +4.7 x 10™%, Local. M. (e.p.)=3.37 x 1073 +
8.34 x 1075, Local. M. (a.q.i.p.)=3.48 x 1073 £ 3.26 x 10~*.

We first consider a BLAC Down & Out option, whose payoff is [] with a

i#i Lmin St VminS! > L’
sel sel
barrier at L = 76 (we take a = 0.274). On Figure 1, we plot the Monte Carlo estimates w.r.t. the
number of simulations; hence, the range of the fluctuations gives a visual indication of how large is
the variance of the simulations for each method. For the Local. M. method, we use two different dom-
inating processes, the extreme process (e.p. in short) given by (6) and the averaged quadratic
increments process (a.g.i.p in short) defined by (7). It turns out that the weights using Local. M.
methods yield lower variance than for FD or Classic M. methods: the mean error is divided by a
factor 4(= 3.47 x 107*/8.34 x 1079), so reaching a given accuracy requires 16 times less simulations if
we use the Local. M. method. The use of the extreme process as dominating process is more accurate
than a.q.i.p: this can be explained by the fact that the former dominates in a closer way than the
second, performing a better localization. Hence, in the next simulations, we will only use the extreme

process.

10



INSERT HERE FIGURE 2
Figure 2: Delta of a BLAC Down & Out option with N = 200. True value ~ 3.34 x 1073.
FD=3.27x107343.54x107%, Classic M.=3.44x10734+9.09x10™*, Local. M.=3.32x1073+8.53x1075.

Still considering the previous example, we now increase the monitoring frequency, taking N = 200
(almost daily monitoring). The results on Figure 2 indicate that our localized weights keep working
well comparing to FD method (still with a gain of accuracy of a factor 4 ~ 3.54 x 107*/8.53 x 1079),
while the Classic M. performance worsens as the monitoring frequency increases.

INSERT HERE FIGURE 3
Figure 3: Delta of a BLAC Down & Out option. High correlation. True value ~ 3.75 x 1073.
FD=3.55x10"343.69x10%, Classic M.=3.45x10734+1.61x1073, Local. M.=3.96x103£2.52x10~%.

An interesting issue concerns the impact of the non-degeneracy condition on the volatility ¢; indeed,
the inverse of o appears explicitly in the Malliavin calculus weights and this presumably leads to a
loss a accuracy in the algorithm if ¢ is nearly degenerate. To see this, we take highly correlated assets,
by setting p;; = 0.9 for ¢ # j (the monitoring frequency is N = 50). We see on Figure 3 that FD
method still behaves well (the range of the half-confidence interval now equals 3.69 x 10~* instead of
3.47 x 10~ on Figure 1), whereas the two other methods lead to larger standard deviations (increase
of a factor 3 ~ 2.52 x 107%/8.34 x 10~°). In this extreme situation, FD method and Local. M. method
roughly lead to same accuracy.

We now consider an Up & Down barrier option, whose payoff is given by 1151120121, <131 pras s
1,,5<15, where U' =123, L? = 82, L3 = 81, U* = 126 and L® = 79. The correlations are defined by
p1,2 = p2,1 = 0.8, and p; j = 0.4 for other 7 # j. For this example, ap = 0.198 is the largest value of a
which makes the assumption (S) still valid; in the simulations, we have taken a = ag and a = a/10.
In view of Proposition 2.3, the simulations with a = a¢/10 should be close (at least in Ly norm) to
the ones using the Classic M. method. Figure 4 confirms this fact, since the two corresponding Monte
Carlo estimates are very close. Besides, Figure 4 still illustrates a good accuracy of the method taking
a = ag compared to the other ones.

INSERT HERE FIGURE 4
Figure 4: Delta of an Up & Down barrier option. Influence of a. True value ~ 1.15 x 1073.
FD=1.28 x 1073 £ 2.17 x 10~%, Classic M.=1.15 x 1073 £ 1.82 x 107%, Local. M. (a = ap)= 1.12 x
1073 £8.73 x 1072, Local. M. (a = ap/10)=1.17 x 1073 £1.92 x 10~*.

4 Conclusion

In a multidimensional Black-Scholes framework, we have derived, using Malliavin calculus techniques,
an integration by parts formula for functions that depend on the maxima and the minima of the

11



underlying process. We apply this formula to obtain an alternative expression for the Delta and
Gamma, for general barrier and lookback type options. These formulae lead to new unbiased numerical
methods for the calculation of Greeks.

We perform some numerical experiments which show that the method introduced is significantly better
than the FD method and the classical Malliavin calculus technique proposed by Fournié et al. (1999).
In the discrete time case our approach performs better as the monitoring frequency increases. In cases
where the volatility degenerates our method is asymptotically the same as the FD method. When the
support condition (S) is taken to a limit the behavior of our method is comparable to the results in
Fournié et. al. (1999).

A Proof of Theorem 2.1

A.1 Proof for A’

The arguments follow those in Gobet et al. (2001). Up to using a density argument (see Fournié et

al. (1999)), we consider smooth function ®(z!,--- 2% zdtt ... 224 g2+ ... 334) with bounded
derivatives. Thus, since M*, m?, S% are linear with respect to Sé, one clearly has:
) M m? S
A'=E (e—TT (Famlq) + yawd-uq) =+ S—€8w2d+iq)>) (12)
0 0 0

where we have omitted the random arguments of ® to simplify. Besides, the chain rule property (see
Proposition 1.1) combined with Lemma 1.1 yields

d
D@ =3 (M0 01,y +mi0paes 1,y + ShOp0s®) 0. (13)
=1 - -

To apply an integration by parts formula, one needs to remove the sources of non-smoothness (i.e.

terms of type 1, _; and 1,__; ) and this can be performed using the localizing process ¥(Y;). For
='M ='m
this, we prove that for any j € {1,--- ,d} and ¢ € [0,T], one has
aﬁjq)ltﬁﬁg U(Y;) = 0,,P ¥(Vy), (14)
Opd+i <I>1t57¥n U(Y;) = 0,4+5P ¥(Yy). (15)

Consider first equality (14). This reduces to 0 = 0 if M < Sg exp(a), since P satisfies assumption
(S). On the contrary if M7 > S} exp(a) and if ¢ is such that U(Y;) # 0, one has maxser,s<; S7 <
S3 exp(a) < M7: therefore t < 73, and the proof of (14) is completed. Similar arguments apply for
(15). From (14) and (15), it successively follows that

d
tel0,T]: DRUY,) = Y (Mf'awj@ IO ® + SJTQU%H@) ol W(Y)),
Jj=1

T T
/ D (U)o ') dt = (MiOyu® +midysi® + Shdyesi®) / WYy dt,
0 0

/ D@ . _T¢U_leZ dt = — 0,9+ ﬁiazd.u@ + —€am2d+i®.
0 Si [ w(Y;) dt So S S
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Plug this equality into (12), take the expectation and apply the integration by parts formula (Propo-
sition 1.1) to finish the proof of (10).

Actually, the entire justification of this last step essentially requires that ( fo (Y)dt)~! € ﬂp>1 D>
which holds true under the assumption on the L, estimates in Definition 2.1 (see Gobet et al. (2001)
for details). Furthermore, if we focus on the influence of the parameter a, one can even find that for
any p > 1 one has, for some ¢ = ¢(p) > 0,

E (/OT xp(y;)dt) ’ < Ca™t. (16)

A.2 Proof for A%

We start from the expression (10). If j # 4, note that Hx: does not depend on Sg, so the differentiation
with respect to Sg concerns only ®. Hence the same computations as before have to be repeated and
this leads to (11). If j = 4, one additionally has to differentiate the multiplicative factor 1/S§ in the
term Hai, and we are finished.

B Proof of Propositions 2.3 and 2.4

B.1 Proof for Proposition 2.3

We first focus on the Ly-convergence. Using equality (5), one easily gets

5( T(Y) o—lei) _ Jo TV ledw, . S ds O'(Y;) o7, £ W(Y;) DY, dt
fo (V;) dt Jo (V) dt fo (Y;) dt)?

where for the first term of the r.h.s., we have taken into account that (Y})t>0 is an adapted process,

; (17)

while for the second one, we have mterchanged the order of time integrals.
Note now that 0 < t; < fo (Y)dt < T since Y is a piecewise constant process, starting at 0. Besides,

one can prove that E [ fo (U(Y) — 110,4,(2 )) dt] “3%0 for any p > 1, using the dominated conver-

gence theorem combined with Yy, > 0 a.s.. Then it easily follows that limg g fo (Yo~ tet.dW; =
e Wy, and lim, g fo (Y;)dt = t1, the convergence holding in L, for any p > 1.

It remains to prove that B, = fo ds W'(Y,) o~te'. [J ¥(Y;) D;Y, dt converges to 0 in Ly-norm for
p < d. We denote by Y(-1) the generahzed inverse of the increasing process Y. For the dominating
process given by (6) or (7), an easy computation yields supg<, ;<7 [|DtYs|| < C for some constant C,
and it readily follows that -

mi<o [ awm< (ravw ). (18)

Here the value of the floating constant C' has changed from one inequality to another.
A direct application of estimate (19) below leads to the convergence of B, to 0 in L, norm for p < d,
and the L,-convergence result of Proposition 2.3 is proved.
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To show that
P (YH)(a) > tl) < Caf (19)

for some constant C, it is enough to note that P (Y(_l) (a) > t1) =P (Y, <a) <P (||uts + oWy ||loo < a)

—10\d
<P (o7 pts + Wylloo < lo7H|a) < (%) , using the independence of the d Brownian motion
components and an uniform upper bound for the Gaussian density.

The a.s.-convergence can be proved directly from (17). We omit details.

B.2 Proof for Proposition 2.4

Analogous arguments as for the proof of Proposition 2.3 can apply to show that the following conver-
gence holds in L, for any p > 1: lim, o [ U(Yy)o™'e!.dW; = o~ e". Wy and lim,_, o [if (Y;)dt =T
To derive the L,-convergence of B, to 0, we remark that inequality (18) obviously yields |B,| < %T,
which completes the proof. As for a — 0, the a.s.-convergence is easy to check from equality (17).
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