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Abstract. We consider a multidimensional diffusion process (X{*)o<+<7T whose dynamics de-
pends on parameters o.. Our first purpose is to give representation formulae of the sensitivity Vo J (a)
for the expected cost J(a) = E(f(X$)) as an expectation: this issue is motivated by stochastic con-
trol problems (where the controller is parameterized and the optimization problem is then reduced to
a parametric optimization one) or by model misspecifications in finance. Known results concerning
the evaluation of Vo J(a) by simulations concern the case of smooth cost functions f or of diffusion
coefficients not depending on « (see Kushner and Yang, SIAM J. Control Optim. 29 (5), pp. 1216-
1249, 1991). Here, we handle the general case removing these two restrictions, deriving three new
type formulae to evaluate Vo J(a): we call them Malliavin calculus approach, adjoint approach and
martingale approach. For this, our basic tools are It6 calculus, Malliavin calculus and martingale
arguments. In the second part of this work, we provide discretization procedures to simulate the
relevant random variables and we analyze the associated weak error: the nature of the results are
new in that context. We prove that the discretization error is essentially linear w.r.t. the time step.
Finally, some numerical experiments deal with some examples in random mechanics and finance: we
compare different methods in terms of variance, complexity, computational time and influence of the
time discretization step.
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1. Introduction. We consider a multidimensional stochastic differential equa-
tion (SDE in short) defined by

t q
X, =2z —|—/ b(s, X,,a) ds + Z/ oj(s, Xs,a) dW?. (1.1)

where « is a parameter (taking values in A C R™) and (Wy)o<¢<7 is a standard
Brownian motion in R? on a filtered probability space (Q, F, (F¢)o<t<T,P), with the
usual assumptions on the filtration (F)o<¢<7-

We are interested in studying how to evaluate the sensitivity w.r.t. «a of the
expected cost

J(a) =E(f(X1)), (1.2)

for a given terminal cost f and for a fixed time T'. The sensitivity of more general
functional including instantaneous costs like E ( fOT g(t, Xy )dt + f (XT)) may follow
by linearity.

This question is raised in many applications. Indeed, this is a classical issue when
we need to analyze the impact of a misspecification of some stochastic model (defined
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2 E. GOBET AND R. MUNOS

by a SDE with coefficients b(t,z) and (5;(t,7))1<j<4) on the expected cost J(a);
it may formalized in setting b(t,z,@) = b(t,z) + > .-, a;$i(t,z) (and analogously
for (o;(t,z,))1<j<q) and the sensitivities are computed at the point o = 0. In
finance, this is the so-called model risk problem (see Cvitanic and Karatzas [CK99])
and misspecifications usually concern the diffusion coeflicients (5 (¢, z))1<j<q-

An other class of problems concerned by the sensitivity analysis are stochas-
tic control problems. If the controlled SDE is defined by dX; = b(t, Xy, us) dt +
;1.:1 7 (t, X¢,u)dW;, we may seek the optimal policy (ut)o<¢<7 (for the maximiza-
tion problem of E(f(Xr)) for instance) in a feedback form using a parametric ap-
proach, that is u; = u(t, Xy, ): in that case, one puts b(t,z,a) = b(t,z,u(t,z,a))
and 0;(t,z,a) = ;(t,z,u(t,z,a)). The policy function u(t,z,a) can be parameter-
ized through a linear approximation (linear combination of basis functions) or in a non
linear way (like neural networks, see Rumelhart and McClelland [RM86] or Haykin
[Hay94] for general references). Thus, a standard parametric optimization procedure
such as stochastic gradient methods or other stochastic approximation algorithms (see
Poljak [Pol87]; Benveniste, Metivier and Priouret [BMP90]; Kushner and Yin [KY97])
may be used and for this, some sensitivity estimations of J(a) w.r.t. a, like V,J(a),
are needed. This gradient is the quantity that we will focus on in this paper.

Since the setting is a priori multidimensional, we privilege a Monte Carlo approach
for the numerical computations. The evaluation of J(a) is standard and has been
widely studied: we refer the reader to Kloeden and Platen [KP95] for instance, for an
introduction to numerical approximations of SDEs. Concerning the computations of
VaJ (@) in our context, there exist three different approaches to our knowledge.

1. We may use the re-simulation method (see Glasserman and Yao [GY92],
L’Ecuyer and Perron [LP94] for instance): it consists in computing differ-
ent values of J(a) for some close values of the parameter «, and then form-
ing some appropriate differences to approximate the derivatives. However,
it turns out to be costly if the dimension of the parameter « is large and
moreover, it provides biased estimators.

2. The path-wise method (proposed in our context by Kushner and Yang [KY91])
consists in putting the gradient inside the expectation, involving Vf and
VaoXr: VoJ(a) is thus expressed as an expectation (see Proposition 1.1
below) and Monte Carlo methods can be used. One limitation of this method
is that the cost function f has to be smooth.

3. An other alternative method is the so-called likelihood method or score method
(introduced by Glynn [Gly86, Gly87], Reiman and Weiss [RW86]; see also
Broadie and Glasserman [BG96] for applications to the computation of Greeks
in finance), where the gradient is rewritten as E(f(Xr)H) for some random
variable H. There is no uniqueness in this representation, since we can add to
H any random variables orthogonal to X7. As for the path-wise method, the
estimator is unbiased, but as a difference, the cost function f needs not to be
smooth. Usually, H is equal to V4 (log(p(a, X1))) where p(a, .) is the density
w.r.t. the Lebesgue measure of the law of X7. It has some strong limitations
in our context since in general, this quantity is unknown. However, Kushner
and Yang [KY91] provide some explicit weights H, under the restriction that
a concerns only b (and not o;) and that the diffusion coefficient is elliptic,
using the Girsanov theorem (see Proposition 2.6).

A first objective of this work is to handle more general situations where both
coefficients defining the SDE (1.1) depend on a. To this issue, we provide three new
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answers to express the sensitivity of J(a) with respect a.

1. The first contribution is rather an extension of the likelihood approach method
to the case of diffusion coefficients depending on a. It uses a direct in-
tegration by part formula of the Malliavin calculus: this kind of idea has
been quite recently used in a financial context in the paper by Fournié et al.
[FLL199], to compute some sensitivities of option prices. These techniques
have also been efficiently used by the first author to derive asymptotic prop-
erties of statistical procedures when we estimate parameters defining a SDE
(see [Gob01b, Gob02]). Actually, our true contribution concerns essentially
a situation where ellipticity is replaced by a weaker (but standard) non de-
generacy condition, which enables to deal with random mechanics problems
or portfolio optimization problems in finance.

2. The second approach is rather different from previous methods. Namely, we
initially focus on the adjoint point of view (see Bensoussan [Ben88] or Peng
[Pen90]), to finally derive new formulae, involving again some integration
by part formula, but written in a simple way (using only It6’s calculus).
In stochastic control problems, adjoint processes are related to Backward
SDEs (see Yong and Zhou [YZ99] e.g.) and their simulations turn out to
be a difficult task. Here, we circumvent this difficulty since we only need to
express them as explicit conditional expectations, which is feasible.

3. The third approach follows from martingale arguments applied to the ex-
pected cost and leads to an original representation, which turns out to be
surprisingly simple.

What helps to compare these new methods together with the previous ones is the
variance of the random variables involved in the resulting formulae for V,J(a): this
is numerically studied in section 5.

An other element of comparison is the influence of time step h, which is used
to approximately simulate the random variables. The analysis of these discretiza-
tion errors is the second significant part of this work. The random variables which
are concerned are essentially written as f(X7)H and simulations are based on Euler
schemes: although H has a complex form, we first explicit an algorithm of approxi-
mation and then analyze the induced error w.r.t. the time step h. This part of the
paper is also original, since to our knowledge, results in the literature only concern
the approximation of E(f(Xr)).

Outline of the paper. In the following, we define the notations and some as-
sumptions which will be used throughout the paper. We also recall the path-wise
approach in Proposition 1.1. In section 2, after giving some standard facts on the
Malliavin calculus, we develop our three approaches to compute the sensitivity of
J(a) w.r.t. a: these are the so-called Malliavin calculus approach (Propositions 2.5
and 2.8), the adjoint approach (Theorem 2.11) and the martingale approach (Theorem
2.12). In section 3, we provide simulation schemes to compute V,J(a) by an usual
Monte-Carlo approach, using the methods developed before: the quantity to adjust
is the time step h used for Euler type schemes and we analyze its influence in each
method. We reserve for these analyzes a significant place in the paper since these
problems have not yet been handled in the literature. The approximation results are
stated in Theorems 3.1, 3.2, 3.4 and 3.5, while their proofs are postponed in section
4. Finally, numerical experiments in section 5 illustrate the methods developed: we
compare the computational time, the complexity, the variance of the estimators on
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examples borrowed to finance and control problems.

Assumptions. In the mentioned applications, the parameter is a priori multidi-
mensional but since in the following we will look at sensitivities w.r.t. a coordinate-
wise, this is not a restriction to assume that A C R (m = 1).

The process defined in (1.1) depends on the parameter «, but we omit this depen-
dence in the notation. Furthermore, the initial condition X = z is fixed throughout
the paper. We denote o; the j-th column vector of o.

To study the sensitivity of J (defined in (1.2)) w.r.t. a, we may assume in the
sequel that coefficients are enough smooth.

Assumption (R): the functions b and ¢ are of class C> w.r.t. the variables t,z, a,
with bounded derivatives.

Note that b and o may be unbounded. At several places, the diffusion coefficient will
be required to be uniformly elliptic, in the following sense.

Assumption (E): ¢ is a squared matrix (¢ = d) such that the matrix oo* satisfies
an uniform ellipticity condition:

Y(t,z) € [0,T] x R%, [o0™|(t, z, @) > pmin 1a

for some real number fi,,;, > 0.

Notation.

e Differentiation. As usual, derivatives w.r.t. a will be simply denoted with a
dot, that is 8,J = J for instance. If no ambiguity is possible, we will omit
to write explicitly the parameter a in b, o; - --. We adopt the following usual
convention on the gradients: if ¢ : RP2 — RP! is a differentiable function, its
gradient V,9(z) = (02,9 (), ,0z,,%(x)) takes values in RP* @ RP2. At
many places, V¢ (x) will be simply denoted ' (x).

o Linear algebra. The r-th column of a matrix A will be denoted by A, (or
A if A is a time dependent matrix) and the r-th element of a vector a will
be denoted by a, (or a,; if a is a time dependent vector). A* stands for the
transpose of A.

For a matrix A, the matrix obtained by keeping only the last r rows (resp.
the last r columns) will be denoted IT°% (A) (resp. I (A)).

For i € {1,---,d}, we set € = (0---0 1 0---0)*, where 1 is the i-th coordi-
nate.

e Constants. We will keep the same notation K (T') for all finite, non-negative
and non-decreasing functions: they do not depend on z, the function f or
further discretization steps h but they may depend on the coefficients b(.)
and o(.). The generic notation K (z,T) stands for any function bounded by
K(T)(1 + |2|%) for some Q > 0.

When a function g(s,z,a) is evaluated at z = X2, we may sometimes use the
short notation g, if no ambiguity is possible. For instance, (1.1) may be written as
Xy =a+ [y buds + Y0, [3 0j.dWi.

Other processes related to (X;)o<¢<7. To the diffusion X under (R), we
can associate its flow, i.e. the Jacobian matrix Y; := V,X;, the inverse of its ﬁqw
Z; =Y, ! and the path-wise derivative of X; with respect to a which we denote X;
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(see Kunita [Kun84]). These processes solve

t q t
y;=1d+/ b’ssts-i-Z/ o}, Yy dW, (1.3)
0 =170
t q q t ]
Z =1, —/ Z,(, = > (0},)%) ds — Z/ Zs0% . dWH, (1.4)
0 =1 =170
. t - . q t . .
X; = / (bs + b, X,) ds + Z/ (65,5 + 0754 Xs) AW, (1.5)
0 =170

Actually, since the process (Xt)ogth satisfies a linear equation, it can also simply
be written using Y; and Z; (apply Theorem 56 p.271 from Protter [Pro90]):

t q q
X, =Y / Zy[(bs = > 0% 405.0)ds + Y 65,.dW]. (1.6)
0 j=1 j=1

If f is continuously differentiable with some appropriate growth condition (enough
to apply the Lebesgue differentiation theorem), one immediately obtains the following
result (see also Kushner and Yang [KY91]): we call it the path-wise approach.

PROPOSITION 1.1. Assume (R). One has J(a) = E(HE) with HE =
['(XT)XT.

Hence, the gradient can be written still as an expectation, which is crucial for a
Monte Carlo evaluation. One purpose of the paper is to extent this result to the case
of non differentiable functions, by essentially writing J(a) = E(f(X7)H) for some
random variable H.

In the sequel, two types of assumption on f will be considered.

Assumption (H): f is a bounded measurable function.

Assumption (H’): f is a bounded measurable function and satisfies the following
continuity estimate for some py > 1

/T I1£(X7) = £(X2)|Leo
0

dt .
T—¢ < 400

This LP-smoothness assumption of f(Xr) — f(X) is obviously satisfied for uni-
formly Holder function with exponent 3, but also for some non smooth function, such
as the indicator function of a domain.

PROPOSITION 1.2. Let D be a domain of R%: suppose that either it has a compact
and smooth boundary (say of class C?, see [GT77]), or it is a convex polyhedron (D =
NI_,D; where (D;)1<i<1 are half-spaces). Assume (E), (R) and bounded coefficients
b and o. Then, the function f = 1p satisfies the assumption (H”) (for any po > 1).

Proof. Since ||f(X7) — f(Xo)|lf, < E1p(Xr) — 1p(Xy)| < P(X7p € D, X; ¢
D)+ P(Xr ¢ D,X; € D), we only need to prove that P(Xr € D, X; ¢ D) <
K(T)(T — t)? for some 3 > 0. Now, recall the standard exponential inequality
P(|| X, —z|| > 9) < K(T) exp(—c%) (with ¢ > 0) available for u €]0,T] and § > 0 (see



6 E. GOBET AND R. MUNOS

e.g. Lemma 4.1 in [Gob00]). Combining this with the Markov property, it follows that

P(Xr € D, X ¢ D) < K(T)E(1x, ¢p exp(—c55=D)) | Then, a direct estimation of
the above expectation using in particular a Gaussian upper bound for the density of
the law of X, (see Friedman [Fri64]) yields easily the required estimate with 8 = %

(see Lemma 2.8 in [Gob01a] for details). a

2. Sensitivity formulae. In this section, we present three different approaches
to evaluate J(«a). Before this, we introduce the Malliavin calculus material necessary
to our computations.

2.1. Some basic results on the Malliavin calculus. The reader may refer
to Nualart [Nua95] (section 2.2 for the case of diffusion processes) for a detailed
exposition of this section.

Put H = L*([0,T],R?): we will consider elements of H written as a row vector.
For h(.) € H, denote by W (h) the Wiener stochastic integral fOT h(t) dWy .

Let S denote the class of random variables of the form F' = f(W (hy),...,W(hn))
where f € C°(RY), (h1,...,hn) € HY and N > 1. For F € S, we define its
derivative DF = (D¢F := (D{F,--- ,D{F));c[o,1] as the H-valued random variable
given by D;F = SN | 8, f(W(hy), ..., W (hn)) hi(t). The operator D is closable as
an operator from L?(Q2) to L?(Q, H), for any p > 1. Its domain is denoted by D'?
w.r.t. the norm ||Fl1, = [E|F|? +E(||DF||%)]1/’7. We can define the iteration of
the operator D, in such a way that for a smooth random variable F', the derivative
DFF is a random variable with values on H®*. As in the case k = 1, the operator
D* is closable from S C LP(Q) into LP(Q; H®*), p > 1. If we define the norm
|1F||k,p = [E|FP + E;“:l E(||D? F||%65)]/?, we denote its domain by DFP.

One has the chain rule property:

PROPOSITION 2.1. Fizp > 1. For f € CL(RY,R) and F = (Fy,--- ,Fy)* a
random vector whose components belong to D'P, f(F) € D' and for t > 0, one has

DsFl
Di(f(F)) = f'(F)D,F, with the notation D;F = : eERIQRY.
Dst

We now introduce 6, the Skorohod integral, defined as the adjoint operator of D:

DEFINITION 2.2. § is a linear operator on L?([0,T] x Q, R?) with values in L2(Q)
such that:

1. the domain of § (denoted by Dom(8)) is the set of processes u € L2([0,T] x
Q,R?) such that [E( fOT DyF -y dt)| < c(u) [|Fllr2 for any F € DY2.

2. if u belongs to Dom(d), then 6(u) is the element of L2(Q) characterized by
the integration by part formula

VF €D"“?,  E(Fd(u)) =E( /T DyF - uy dt). (2.1)

In the following proposition, we sum up few properties of the Skorohod integral.
PrOPOSITION 2.3.
1. The space of weakly differentiable H-valued variables D2 (H) belongs to Dom(d).
2. If u is an adapted process belonging to L2([0,T] x Q,R?), then the Skorohod
integral and the Ito integral coincides: §(u) = fOT uy dW;.
3. If F belongs to D2, then for any u € Dom(d) s.t. E(F? fOT [lue]|? dt) < +o0,



SENSITIVITY ANALYSIS, ITO-MALLIAVIN CALCULUS, MARTINGALES 7

one has
T
5(F u) = F 5(u) — / DiF -, dt, (2.2)
0

whenever the r.h.s. above belongs to L?(12).

Concerning the solution of SDEs, it is well-known that for any ¢ > 0, the random
variables X;, V;, Z; and X, belong to D> under (R). Furthermore, one has the
following estimates: for any k > 1, E (supg<;< [Py, ,rp Uel|P) < K(T, ), for U; =
X, Yy, Zy and X;. Besides, DX, is given by:

Dth = Y;g ZSO'(S,XS) lsst- (23)

At last, we recall some standard results related to the integration by part formulae.
The Malliavin covariance matrix of a smooth random variable F' is defined by

T
7F = / D,F [D,F)* dt. (2.4)
0

PROPOSITION 2.4. Let F be a random variable in D™ such that det(yF) is
a.s. positive and 1/det(v") € Ny>1LP, G belong to D> and g be a smooth function
with polynomial growth. Then, for any multi-index 7, there exists a random variable
H5(F,G) € D such that

E[07 g(F)G] = Elg(F)Hx (F,G)],
|15y (F, G 1allte < CllyT] " 1allf 1R 4, 11G ks s

for some constants C, p1, p2, ko, k3, q1,q2,q3 depending on p and 7. Here, the event A
is arbitrary.

Proof. See Propositions 3.2.1 and 3.2.2 p.160-161 in Nualart [Nua98] when A = Q.
For general events A, see Proposition 2.4 from Bally and Talay [BT96a). 0

The construction of Hs(F,G) is based on equality (2.1) and involves iterated
Skorohod integrals. There are several ways to obtain such a formula: anyhow, we do
not really need to explicit them at this stage.

2.2. First approach: direct Malliavin calculus computations. Here, the
leading idea is to start from Proposition 1.1 and apply results like Proposition 2.4 to
get J(a) = E(f(Xy)H). Nevertheless, there are several ways to do this, depending
on whether the diffusion coefficient is elliptic (see also [FLL*99] in that situation) or
not.

2.2.1. Elliptic case. Consider first that the assumption (E) is fulfilled.
PROPOSITION 2.5. Assume (R), (E) and (H). One has J(a) = E( HMe!-FlL)
with

1

I Mall.EU. _
T T

F(X1)8([o7" Y. Zp X1]*).

Proof. We can consider that f is smooth, the general case being derived by a
density argument. Because of (2.3) and Assumption (E), one remarks that Dy X is
invertible for any ¢ € [0,T]: thus, for such ¢, using the chain rule (Proposition 2.1),
one gets that f'(X7) = Dy(f(X1))o; ' Y: Z7. Integrating in time over [0,7] and
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using Proposition 1.1, one gets that J(a) = %fOT dt BE(Dy(f(X7))o; Vs Zr X7).
An application of the relation (2.1) completes the proof of Proposition 2.5. O

When the parameter is involved only the drift coefficient, the laws of (X;)o<i<7
for two different values of a are equivalent owing the Girsanov theorem. Exploiting
directly this possible change of measure, a simplified expression for J(«) can be found:
this is the likelihood ratio method or score method from Kushner and Yang [KY91].

PROPOSITION 2.6. Assume (R), (E) and (H). Suppose that the parameter of
interest a is not in the diffusion coefficient. Then, one has:

J(a) =E (f(XT)/O [atlbt]*th> )

Proof. We justify it without the Girsanov theorem, rather exploiting the par-
ticular form of X7 given in (1.6). Indeed, f'(Xr)Xr = f/(X7)Yr [, Zibydt =
fOT dt Dy(f(Xr1))[o;  b¢], and the result follows using (2.1). O

2.2.2. General non degenerate case. There are many situations where the
ellipticity Assumption (E) is too stringent and can not be fulfilled. To illustrate these
facts, let us rewrite the SDE in the following way, splitting its structure in two parts:

_ dSt _ bS(t,Xt,Cl) (TS(t,Xt,OL)
dXt N ( dv;ﬁ ) N ( bv(t,Xt,a) dt+ UV(tJXt7a) th (25)

Here, (S¢)¢>0 is (d — r)-dimensional and (V});>o r-dimensional. The cost function of
interest may involve only the value of Vr: J(a) = E(f(Vr)). Note that considering
r = d reduces to the previous situation. We now give two examples which motivate
the statement of Proposition 2.7 below.

a) In Random Mechanics (see Krée and Soize [KS86]), the pair position/velocity
dX; = ( Z‘Zt > = ( vedt ) can not satisfied an ellipticity condition, but

X
weaker assumptions as hypoellipticity are more realistic.

b) In finance, namely in portfolio optimization (for a recent review, see e.g.
Runggaldier [Run02]), r usually equals 1: (S¢)¢>0 describes the dynamic of
the risky assets, while (V;);>o is the wealth process, corresponding to the
value a self-financed portfolio invested in the assets (S;);>¢ with respect the
strategy (& = {&(t,X,) 1 1 < i < d—1})or dVi = Y1 &(t, X,)dSiy
(see e.g. Karatzas and Shreve [KS98]). It is clear that the resulting diffusion

coeflicient for the whole process X; = ( ‘6} ) can not satisfy an ellipticity
t

condition. Nevertheless, requiring that the matrix oy oy (¢, ) satisfies an
ellipticity type condition is not much demanding in that framework.
We set yr for the Malliavin covariance matrix of Vp: v = fOT DV [DiVr]* dt.
This allows to reformulate Assumption (E) in

Assumption (E’): det(yr) is a.s. positive and for any p > 1, one has

[|11/det(yr)||Le < +00.

We now bring together classical results related to Assumption (E’).
PROPOSITION 2.7. Assumption (E’) is fulfilled in the following situations.
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a) Hypoelliptic case (with r = d). The Lie algebm generated by the vector
fields 0y + Ao(t,z) := Oy + Zz_ (b— 5 Z] 10504)i(t, )0z, Aj(t,z) =
E?:l 04,5 (t, )0y, for 1 < j < q spans R at the point (0, Xo):

dim span Lie(@t + Ao,A]‘, 1<5< q)(O,Xo) =d+ 1.
b) Partially elliptic case (with r > 1). For some real number piy,:n > 0, one has
Vz € Rda [UVU?/](TJ:E;O‘) > Hmin Id-

Proof. The statement a) is standard and we refer to Cattiaux and Mesnager
[CMO02] for a recent account on the subject. The statement b) is also classical: see for
instance the arguments in Nualart [Nua98], p.158-159. O

Now, we are in position to give a sensitivity formula under (E’).

PROPOSITION 2.8. Assume (R), (E’) and (H). One has J(a) = (HNO”Deg)
with

Hy ™"P% = f(Vr) 6(Ving D Vr).

Proof. The Assumption (E’) validates (see Nualart [Nua98] Proposition 3.2.1) the
following computations, adapted from the ones used for Proposition 2.5. The chain
rule property yields f'(Vr) fo Dy(f (Vr)[DeVr]* v+ dt, and thus E(f' (Vr)Vr) =

fo Dy(f (V) [DeVr]* 7 Vir dt). Proposition 2.8 now follows from (2.1). 0

Proposition 2.8 is also valid under (E) in the case r = d, but it turns out that

the formula in Proposition 2.5 is a bit simpler to implement.

2.3. A second approach based on the adjoint point of view.

2.3.1. Other representation of the sensitivity of J(a). Set u(t,z) =
E(f(X7)|X: = z): remark that J(a) = u(0,Xp). Under smoothness assumptions
on b and ¢ and non-degeneracy hypothesis on the infinitesimal generator of (X¢)¢>o,
it is well-known (see Cattiaux and Mesnager [CMO02]) that u is the smooth solution
of the partial differential equation (PDE in short)

d

Oyu(t, x) + Zb (t,2)0z;u(t, x) Z [00*];,(t, x)0 w1 o u(t, @) =0 for t <T
i=1 i,j=1

u(T,z) = ().

Our purpose is to give an other expression for J(a) of Proposition 1.1. The
idea is simple: it consists in differentiating formally the PDE above w.r.t. « and
in reinterpreting the derivative as an expectation. This is now stated and justified
rigorously.

LEMMA 2.9. Assume (R), (E) and (H). One has:

T d d

. . 1

J@) = [ (Y bt X0+ 5 D (007102, ult, X))
0 i=1 ij=1

Proof. The technical difficulty in the next computations comes from the possible
explosion of derivatives of u for ¢ close to T', when f is non smooth. For this reason, we



10 E. GOBET AND R. MUNOS

first prove useful uniform estimates, which are standard: for any multi-index ¥, any
smooth random variable G € D>, any smooth function g with bounded derivatives
and any parameters a and o', one has

— al f fo's)
sup [BIG 07u(t, X¢)]| < K(T,2) Ly (2.6
te[0, T Pl

Indeed, for ¢ > T/2, first apply Proposition 2.4: then, use |u(t,z)| < ||f||cc com-
. . . . / K(T, .
bined with some specific estimates for ||Hy (X7 ,G)||Lr < %HGHmp' available

t
under the ellipticity condition (E) (see Theorem 1.20 and Corollary 3.7 in Kusuoka
and Stroock [KS84], or Section 4.1. in [Gob00] for a brief review). For t < T/2,

remark that using Markov property, one has dJu(t,z) = 9JE (u(%,X ?f_t)) =
2
Zl<|'y 1< E (8 u(T+t X?ﬁt)G}’H) with some clear notation; applying again the

K(T,
integration by part formula with the elliptic estimates gives |0Ju(t, z)| < z?ﬂ 1/ ]co

2
and (2.6) follows since T — ¢ > L. Now, for € € R, the difference J(a + e) J(a)
is equal to

E(f(X77) — f(X7)) = E(u(T,X77) — u(0, X5"))

T d
=/ <8tu(t Xa+e) Zb (t Xta+e a+e)8mlu(t Xa+5)
0 =1
1 d
+5..Zl[""*]ivf(taXf’“,a+e)63, oy ult, XF9) | dt
4,)=
T d
- E<Z"’ (X4, 0+ €) = bilt, X, ) Opeu(t, X0°)
0 i=1
1 d
3 30 (00" (6 X 04 ) = 00 (1, X774, 0002, ult, X7 | dt
i,j=1

where we used at the last equality the PDE solved by u to remove the term 0;u. Now,
divide by € and take its limit to 0: the result follows owing the uniform estimates
(26). O

Remark that the formulation of Lemma 2.9 is strongly related to a form of the
stochastic maximum principle (Pontryagin principle) for optimal control problems:
the processes ([0, u(t, X¢)]i)o<t<T and ([6§i,zju(t,Xt)]i,j)OSKT are the so-called ad-
joint processes (see Bensoussan [Ben88] for convex control domains, or more generally
Peng [Pen90]) and solve Backward SDEs. Usually in these problems, the function f
is taken to be smooth: here, since the law of X; has a smooth density w.r.t. the
Lebesgue measure, we can remove the regularity condition on f.

Note also that Lemma 2.9 remains valid under a hypoellipticity hypothesis (con-
dition a) in Proposition 2.7). However, the derivation of tractable formulae below
relies strongly on the ellipticity property.

2.3.2. Transformation using It6-Malliavin integration by part formulae.
The objective of this paragraph is to transform the expression for J(a) in terms of
explicit quantities. To remove the non-explicit terms 0,,u and 6§i,$ju, we may use
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some integration by part formulae, but here, to keep more tractable expressions, we
are going to derive Bismut type formulae, i.e involving only Itd integrals instead
of Skorohod integrals (see Bismut [Bis84]; Elworthy, Le Jan and Li [EJL99] and
references therein), using a martingale argument (see also Thalmaier [Tha97] or more
recently Picard [Pic02]). In the cited references, this approach has been used to
compute some estimates of the gradient of u: here, we extend it to deal with higher
derivatives. The basic tool is given by the following lemma.

LEMMA 2.10. Assume (R), (E) and define My = vu'(t,X:)Y; for t <T. Then
M = (Mi)o<t<r is a R! ® R¢-valued martingale.

Proof. The Markov property ensures that (u(t, X} "))o<t<T is a martingale for
any z € R%. Hence, its derivative w.r.t. = (i.e. (M¢)o<t<r) is also a martingale (see
Arnaudon and Thalmaier [AT98]). a

We now state a theorem which, if it is combined with Lemma 2.9, leads to an
alternative representation for .J(a).

THEOREM 2.11. Assume (R) and (E).

Under (H), one has

d
/ ! E( Y biyBault, X)) dt = B(HEAY), (2.7)

* T
Zi ; / [0, Yi]* dW, belongs to Np>1 L7
] >

0 i=1
. T .
where H;’Ad" = f(XT)/ dt by -
0
Under (H’), one has

T —

T d
/ E( Z [JO—*]i,j,tagi,wju(t5 Xt))dt = ]E(H’;”’Ad]‘)a (28)
0 i,5=1
where
d .
HIAY = Td o Xp) - F (22 1z [ oy *dW,
P = a3 ool O — SO (- (2 o Y]
i,j=1 fua

T4t

2ei * % —1 * 261. * 2 —1 * 7
Xm 3 [Zt [Us Ys] dWS] + ’ {vz [Zt [Us Yt?] dWS]Zte })
T - t t T - t t
belongs to (,,, L?.
Proof. Equality (2.7). First, It6’s formula applied to u(t, X;) gives an explicit
form to the predictable representation theorem

VO<t<7<T u(t, X;) = u(t, Xy) +/ u'(s, X;)osdWs. (2.9)
t

Since (u'(t, X¢)Y:)o<t<T is a martingale (see Lemma 2.10), we obtain that

1
T-1

T T
E(#[ /t w' (s, X,)o,dW;] | /t [0, 1Y, ]*dW, ]| F)

-1
T
B/ (XT)T__ut(t’ 20 /t o5 Y] dWs] | F)

T
o (8, X,)Y; = B / o (s, X,)Y, ds|F)
t

[y

= E( T()i::;) [/ﬁ [0, Y] dW, ]| F), (2.10)
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where we used at the third equality, the equation (2.9) with 7 = T and u(T, X7) =
f(Xr). Now, the proof of (2.7) is straightforward.

Equality (2.8). Remark that a slight modification of the preceding arguments
(namely integrating over [¢, (T + t)/2] instead of [t, T] and applying (2.9) with 7 =
(t + T)/2) leads to 8y, u(t,Xy) = E(u(LH, XT+t) -2 ft [a‘lY] dW]|ft)
Differentiating w.r.t. x on both sides and using (2 10) ylelds

i =

(Basu)'(t, X2)Ya =E(u’(¥,X¥)Y@ Tze - [z / [0 1 Ys]"dW, ]| F)

- t

T+t
T 2 i 2

BT X)) 2 V{2 / o3 Yo dW,] }|7)

2 2 T-—t t
= B([f(X2) - (X0 [/T[wJYFMVFJE— z [ wrvran,)
T t T _¢ % s s s T n ] s s s

T4t

HI ) = F gy V{22 [ o Vi aw] IR

(note that terms with f(X;) has no contribution in expectation). Rearranging this
last expression leads to (2.8).

The LP-estimates can be justified using the generalized Minkowski inequality and
standard estimates from the stochastic calculus:

T T
|| EZSA |, 5/ ”f”°°||b(t X,)- z*/ 0= Y,] AW ||edt < K (T, .7;)/ Ao,
0

0 T-t
g < () [ DTl
0 -

for p < p' < po. 0 ’
REMARK 2.1. The terms f(X;) in Hﬁ}’AdJ' seem to be crucial to ensure its LP
integrability: numerical experiments in Section § illustrate this fact.

2.4. A third approach using martingales. We emphasize the dependence on
o of the expected cost by denoting u(a,t,z) = E(f(X$)| X = x): hence, J(a) =
u(a, 0, Xp). From the estimates proved in Lemma 2.9, this is a differentiable function
w.rt. o and one has [i(a,t,2)| < K(T,2)||fllec, as well [u'(a,t,2)| < ELLE|floc.
The L, estimates in the proof of Theorem 2.11 are more precise under (H’)

t,x \x )
WW@MgK@mlﬂW%ﬁiﬁﬁﬂmd

for p' < po- As a consequence, if we put g(r) = E(u(a,r, X)), we easily obtain
lg(r)| < K(T,z) fT W%w ds and thus, lim,_,7 g(r) = 0 under (H).

For any 0 < r < s_sg T, one has E(u(a,r,X;)) = Eu(a,s,Xs)) =
T - fTT E(u(a, s, Xs)) ds using the Markov property; hence, by differentiation w.r.t.

o, one gets

T
E(u(a,r, X,)) = / ds E(1u(a, s, Xs) +u' (o, 8, X5) X5 — ' (a,7, X,) X)

-Tr

T
_ ! / ds E(i(a, s, X,) +u' (0, 8, X,)[Xs — Yo Z, X))

T-—r
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where we used at the last equality the martingale property of M; = u'(a,t, X;)Y:
between t = s and ¢t = r (see Lemma 2.10).

Now, put h(r) = (u’(a,s,Xs)[Xs - YSZTXT]): one has derived the
following integral equation

1 T
g(t) = —— g(s) ds + h(t). (2.11)
T-1t/,
Before solving it, we express h(r) using only f: for this, we use the predictable
representation (2.9) which immediately gives

T
h(r) = 7 1_ T]E((f(XT) - f(Xr))/ [0 1 (X5 = Y32, X,)]*dWs). (2.12)

Note again that the term with f(X,) has no contribution and is put only to jus-
tify that |h(r)| < K(T,2)[|f(X1) — f(X;)llLro (use the Burkholder-Davis-Gundy in-
equalities and straightforward upper bounds for || X; — Y, Z, X, ||« < K(T,z)\/5 — 1),

from which we deduce that the integral fOT ;(2 dt is convergent thanks to (H’). To

solve the mtegral equation above, remark that [z~ ft s) ds]' = h(t) 7> and thus

T ft ) ds = Cste— [, 7 T ) 2dr. The constant equals 0 since both 1ntegrals in the
previous equahty converge to "0 when ¢ goes to T' (use lim;7 g(t) = 0 and (H’)).
Plug this new equality into (2.11), use (2.12) and take ¢ = 0 (with Xo = 0) to get the
following representation for J(c): this is the main result of this section.

THEOREM 2.12. Assume (R), (E) and (H’). Then, one has J(a) = E(HMort)
with

X
H%Mart. J\AT) / [ 71X

[fXT—(r)]T_l- -\
+/0 ar LoD /T[as (X, — Y, Z,X,)]*dW,. (2.13)

Furthermore, the random variable H¥ 4 belongs to Np<po LF-

Proof. What remains to prove is the L control of H}e"t: this can be easily
obtained combining Minkowski’s inequality, Holder’s inequality, assumption (H”),
and classical stochastic calculus inequalities as before. |

REMARK 2.2. When the parameter is not involved in the diffusion coefficient.
In that case, it is easy to see that the improved estimate | Xs — Y, Z, X, |1, < K(T, )
(s — 1) is available: thus, this enables to remove terms f(X,) in the expression of
HMart- without changing the finiteness of the LP-norm of the new HMo . In other
words, only assumption (H) is needed.

Besides, still when « is only in the drift coefficient, when these terms f(X,.) are
suppressed, it turns out that this representation coincides with that of Theorem 2.11.
Indeed, let us transform P, = fTT[as’l(Xs - Y, Z, X)) *dW, = fTT[as’le]*dWS —

X, ]* frT[”s_lys]*dWs = Py, — P5, where
T . . T
Py, =/ [0 " X, *dW, — [ZTXT]*/ [0 1Y, ]*dW,
0 0

P2,r=/ [a;le]*dWs—[ZTXT]*/ [0, 1 Y,]* dW,.
0 0
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From Z,X, = Iy Z.beds (see (1.6)), one gets dPy, = [Zrbr]*(for[alet]*th)dr,
hence is of bounded variation. P, is also of bounded variation, since Z, X, is. Thus,
one obtains dP, = —BT.Z:(fTT[a{IY}]*th)dr.' furthermore, since Pr = 0, one has
|1Pr||lLe < K(T,2)(T—7)3/2. An integration by parts formula in (2.13) now completes
our assertion:

ot 1 T p. B T dP. \  _ba4i
HMert: — £(X7r) (TPO +/0 mdr) = f(X7) <—/0 (T—r)) _H;Ad )

So, this martingale approach does not provide new elements when the parameter
is not in the diffusion coefficient: on the contrary, if o depends on a, representations
with the adjoint point of view or martingale one are really different (see numerical
experiments). However, we must admit that this martingale approach remains to us
a bit mysterious.

3. Monte-Carlo simulation and analysis of the discretization error. In
this section, we discuss the numerical implementation of the formulae derived in this
paper to compute the sensitivity of J(a) w.r.t. «. These formulae are written as
expectations of some functional of the process (X;)o<;<7 and related ones: a stan-
dard way to proceed consists in drawing independent simulations, approximating the
functional using Euler schemes and averaging independent copies of the resulting
functional to get an estimation of the expectation (see Section 5).

Here, we focus on the impact of the time step h = T/N (N is the number of
times discretization in the regular mesh of the interval [0,T]) in the simulation of the
functional: it is well-known that for the evaluation of E(f(Xr)), the discretization
error using an Euler scheme is of order h (see Bally and Talay [BT96a] for measurable
functions f, or Kohatsu-Higa and Pettersson [KHP02] if f is a distribution and for
more general discretization schemes).

Here, the quantity of interest has a more complex structure, that is essentially
E(f(X7)H) where H is one of the random variable resulting from our computations.
In general, H involves It6 or Skorohod integrals: our first objective is to give some
approximation procedure to simulate these weights using only the increments of the
Brownian motion computed along the regular mesh with time step h.

Our second objective is to analyze the error induced by this discretization pro-
cedure: generally speaking, the error is still at most linear w.r.t. h, as for the case
E(f(Xr)). The proofs are quite intricate and we postpone them to section 4.

Approximation procedure. We consider a regular mesh of the interval [0, 7],
with N discretization times ¢; = ih where h = T/N is the time step. Denote
¢(t) = sup{t; : t; < t}. The processes we need to simulate are essentially (X¢)o<¢<T,

(Yi)o<e<Ts (Zi)o<e<T, (Xt)ogth and we approximate them using a standard Euler
scheme as follows:

—x+/ b(p(s), X (s)) ds+Z/ i ($(5), X)) AWY, (3.1)

N =1+ / b(6(5), Xp(s)) Yol ds+z / 8), X o) Yiloy dWY, (3.2)

q

N _
Zip =1Iqg— /0 A Z X3(s) Z / Z5(5)03(9(5), X3()) AW ,(3.3

Jj=1
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t
XN = /0 (bo(s), X0) +b(6(), X)) XN, ) ds

q 1 . .
+2 [ (030060, X0+ 03006), XN) XBy) W (30
j=1

Note that only the increments (Wj & — Wt’, 1 < j < q)o<i<n—1 of the Brownian

tit1
motion are needed to get values of X%, ZN, YN XN at times (;)o<i<n-

3.1. Path-wise approach. THEOREM 3.1. Assume (R). Then, one has
|[7(@) ~E (£ XF)| < o@,2, i,

under one of the two following assumptions on f and X :
A1) either f is of class Cjp: i that case, one may put
C(Ta z, f) = K(T’ .’E) Zl§|a|§4 ||6af||00
A2) either f is continuously differentiable with a bounded gradient, under the
non degeneracy condition (E’): in that case, C(T,z, f) can be taken equal
to K(T,z)||f'lool|1/det(yr)||is for some positive numbers p and q.
Remark that in the case A1), only 3 additional derivatives of the function g = f’
are required to get the order 1 w.r.t. h: this is a slight improvement compared to
results in Talay and Tubaro [TL90] where four derivatives are needed.

3.2. Malliavin calculus approach.

3.2.1. Elliptic case. One needs to define the approximation for the random
variable H}M-FU- .= §([o=1(,,X.) Y. Zy X7]*) involved in Proposition 2.5. Easy
algebra using the equality (2.2) gives

Mot Bu. _ Z(s([g*l(,,X.) Y1 [Zr XT]z‘)

d . ) T d T .
=Y 1z XT]i/O 0= (s, X,) Y]t dW, — Z/O Dy([Zr Xel)o~ (s, X,) Y]; ds.

The new quantities involved are D;Z; ; r and Dy Xy 7: we now indicate how to sim-

ulate them. The R?*?-valued process forms a new stochastic differential

X )

Xy t>0
equation (see equation (1.5)): we denote the flow of this extended system by ¥; and
its inverse by Z;. As for Y; and Z;, we can define their Euler scheme (as in (3.2) and
(3.3)), which we denote ¥;¥ and Z}. The Malliavin derivative of this system follows
from equation (2.3): hence, one has

D Xr =5 | YrZ, | 75, Xs) EEERE (3.5)

G;(s, Xs) + 0—;' (8, Xs) X
and we naturally approximate it by

Uj(S7X.£V)
& (s, XN) + 0 (s, XN) XN

[D, X7V =1how [ VN ZN (3.6)
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The same approach can be developed for the ¢-th column of the transpose of Zr,

Zt )c

and its inverse ZAtc_enable to derive an simple expression for D;[(Z;").] analogously
o (3.5) and (3.6). As a consequence, one gets that

since ( ( X,f ) forms a new SDE (see equation (1.4)): the associated flow Y;"
>0

Dy((Zr X1li) = Lo<r Y As(i.,1Bp (i) 00 (3.7
J
where the finite sum above involves AB(J 4,7 and Bg(; ), s, Which are given by some ap-

propriate coordinates of the processes YT, (YT )1<C<d on one hand, and Zs, (Zsc)1§c§d,
0j(s,Xs), 05(s,Xs), 03 (s, Xs), X,, Z, on the other hand: for sake of simplicity, we
do not explicit furthermore this expression (we refer to a technical report [GMO02] for
full details). Finally, we propose to approximate HAall-Ell. 1y

d T
YN = S X [ o 600, X)) Vi v
i=1

—Z/ ZAﬁu,z)T D) [0 (8(8), X300)) Yilyli ds,

which can be simulated only using the Brownian increments as before. We now state
that the approximation above converges at order 1 w.r.t. the time step.
THEOREM 3.2. Assume (R), (E) and (H). For some g > 0, one has:

‘j—(a) ]E(f(XT )HMall Ell., N)‘ S K(T,-'IT)'L;.!LOO}I
3.2.2. General non degenerate case. Denote by 04, 4,, the di x d» matrix
with 0 for each element: easy algebra yields that Vv D, Vr equals

Vi TR (Ve Zoo(s, X,)) = (Or,a-0V5) ( ot )YTZ o (s, X,)

Or,dfr ’YT
d
= Fil(Zso(s, X5))*]i
i=1
w [ Od—ra—r Og—r, O0g—r1 1 )
where F; = (YT ( OT;_TT V:FT ) ( VTT i: Zj Un(z',j),T(?’T )B(i,j),'y(i,j)-

the random variables (Uy(; j),r)i,; can be expressed as a product of coordinates of

Yy and Vi; as before, we do not enter into full details to keep simple formulae to
manipulate and we refer to [GMO02].

Hence, the random variable of interest in Proposition 2.8, i.e. ngv onDeg- oquals

6<VT7T1DVT) ZF/ (Zso(s, X)) |EdWs — Z/DF (Zs0 (5, X,))*|sds.

By the chain rule, the Malliavin derivative of F; is related to that of Uy, j)r (that is
coordinates of Y7 and VT) and that of (y;') B(i.j)(i,j)¢ the latest one can be expressed
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in terms of y;' and Dsyr (see Lemma 2.1.6 p.89 in Nualart [Nua95]) and we obtain

T
T A e TR /0 [(Zeo(s, X)) W, (38)
i,J
L T
=S s i) / DUnii gy rl(Zeo (5, X,)) Juds (3.9)
i,
T
+ > Un(i,j),T(’Y;l)B(i,j),k(7;1)l,'y(z',j)/0 Ds(vr,1)[(Z50(s, X5))|ids. (3.10)
i,7,k,l

Analogously to the elliptic case, the integrals above will be discretized. Furthermore,
the random variables U,; j),r may be approximated by U, é\(’L )T defined by the same
product of coordinates of ¥ and ViV that the one defining Uw(ij),7- Its weak deriva-
tive can be computed as in (3.7): indeed, by the same arguments, one can proved that

DsUn(i,j),T = 1< z ﬁn(i,j,k),TUB(i,j,k),s (3.11)
k

where (U’K(Lj,k)’T)i’j’k (resp. (Oﬂ(i’j,k)’s)z"ﬁk) are appropriate linear (resp. vector)
values at time T (resp. at time s) of some extended systems of SDEs. Then, the
natural approximation is

[DsUiigy o™ = Lot D Ui iy w03 sk o (3.12)
k

Actually, the new feature compared to the elliptic case concerns the Malliavin
covariance matrix yr and its weak derivative. Even if vy = fOT NEew(Yr Zeo(s, Xs))
[MEew(YyZ,0(s, X,))]*ds is a.s. invertible with an inverse in any L?, a naive approx-
imation may not enjoy these invertibility properties: for this reason, we add a small
perturbation as follows

T
ow ow * T
A = [ 2o 06, X DI 05 230 (000), X s + oL

(3.13)
This allows the following result.
LeEMMA 3.3. Assume (R) and (E’). Then, for any p > 1, one has for some
positive numbers p1 and ¢1: ||1/det(vY)||. < K(T,z)||1/det(y7)||f, -
Proof. Tt is easy to check that ||[vY —yr||t» < K(T,2)vh (use Lemma 4.2 below).
Moreover, the eigenvalues of 7YY are all greater than h, hence det(vd) > A", and one
deduces

E(det (WIJY) —p) =E (det(’)’]]y)_pldet('yg)g%det('yq-)) +E (det(rh]y)_pldet('yTN)>%det('yT))

_ N
det(’)’glt(v‘ie)thT ) > %) + 2PE(det (yr) P)

< B2 [det(vr) — det(y7 )|l [|det(yr) ~?flure + 27E(det (vr) ")

<nre

where p; and p, are conjugate numbers. Take ¢ = 2rp to get the result. O
To deal with the weak derivative of 7, one needs to rewrite

T
Ve, T = ZAe(k,l,i’),T/ Biyk,t,ir),udu,
i/ 0
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where Ak i), (resp. Byx,i),u) are products of coordinates of Y7 (resp. Z, and
o(u, Xy)). As for (3.7), the Malliavin derivative of A, ), and By ,i1),. can be
expressed as

DAy = Vo<t Y Ce(ioit ) 1 De(ht,ir i),
jl

DBkt = La<u D Bnktsir ) Fntk,ti i),
jl

Hence, for s < T, one has

T
DS’yk,l,T = Z CG(k,l,i’,j’),T (/ Bn(kalvi’)iudu> De(kalai’ajl)ys
0

ir i1
]

T
+ZAe(k,l,i'),TFn(k,l,i',j'),s/ B ir 1) s (3.14)
i' j/ 8

which can be approximated by

T
[Dsvearl™ =D Clipir e (/0 Bﬁk,l,i')@(u)d“) Dk, .41).s

i1 Al
LY

T
N N N
+ Ak Fn(k,l,i',j'),s/s Eyk,ig),odu-  (315)

)
]

We now turn to the global approximation of the weight Hp “*P¢":

T
Hy 0o = UN; 5 2l 08) a5 4069) /0 [(Z35)0 (&(5), X §(s))) 717 A5 (3.16)

(¥
T
= SO st / Do) Ui V(20,5 (8(5), X2,))lids (3.17)
i,

+ 3 UN 2l sy k8 i)
i,7,k,l

T
/0 [Do(s) Ve, )N [(Z 5100 (9(5), X ) 5)) *Jids. (3.18)

We are now in position to state the following approximation result.
THEOREM 3.4. Assume (R), (E’) and (H). For some positive numbers p and g,
one has:

| J(a) = E(f (V&) Hy P ™) | < K(T, )| flloolIL/det(yr) I, h-

In the hypoelliptic case (Case a) in Proposition 2.7), note that the weak approx-
imation result above holds true under a non degeneracy condition stated only at the
initial point (0, Xo) and not in the whole space as in [BT96a]: which is a significant
improvement.
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3.3. Adjoint approach. To approximate H%Adj' and H%’Adj' from Theorem
2.11, we propose the following natural estimates:

N-1 N* T
. 7 Z
Hp 0N = f(XE)h Y7 bl X0 - 724 /t [0 (#(5), Xi(s)) Yoo)]™ AW, (3.19)
k=0 *
N-1 d
o,Adj., o
AN Y Y [l XK — SO
k=0 1i,j=1
2¢d

T
N* —1 N N 1%
Mgy (A [y 7 OOV ]

% 26. . [ZN* /¢(T-;“0)[0_1(¢(s) XN )YN ]*dW :|
T —t4, ) 1A 6(s5) )% ¢(s) s
2¢? " $(5%) B . ‘
YT, V.12 /t [0 (8(5), X)) Y I"aWs] Z] el }).  (3.20)

Derivatives VJEY(;\(S) and V,Z]) are obtained by a direct differentiation in (3.2) and
(3.3): we do not explicit the equations, which coincide with those of the Euler proce-
dure applied to V,Y; and V,Z; defined in (1.3) and (1.4).
_ These approximations also induce a discretization error in the computation of
J(a) of order 1 w.r.t. h.

THEOREM 3.5. Assume (R), (E) and (H). For some p > 0, one has:

: b, Adj.,N Adj.,N A1l
‘J(a) —E (N ¢ gAY )‘ < K(T,2) = h.
The proof is postponed to section 4.4.

3.3.1. Martingale approach. The natural approximation of HMart defined in
Theorem 2.12 may be given by

FXP) = F(X )]
(T = ¢(r))?

T
—1 N >N N N N .
* /¢(T) [o77(8(5)s X55)) (Xs(s) = Yoi) Zr) X)) "W

Mart.,N f(XTJy) ' -1 o (o] ' [
Hplert :T/O [0 (8(5), X)) X (s)] dW”/o o

Unfortunately, we have not been able to analyze under the fairly general assumption
(H’), the approximation error J(a) — ]E(HTA,'I art>Ny Indeed, an immediate issue to

[f(X7)—f(Xn)]
(T—r)?

frT [0t (Xs —YSZTXT)]*dWS) by its Riemann sum, which seems to be far from obvious
under (H’).

handle would be to quantify the quality of the approximation of fOT dr ]E(

4. Proof of the results on the discretization error analysis. This section
is devoted to the proof of Theorems from Section 3 analyzing the discretization error.
The trick to prove these estimates for E(f(Xr)) relies usually on the Markov
property: one decomposes the error using the PDE solved by the function (¢,z) +
E(f(X%_,)) (see Bally and Talay [BT96a]), but this is meaningless in our situation.
An other way to do consists in using cleverly the duality relationship (2.1) with some
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stochastic expansion to get the right order (see Kohatsu-Higa [KHO1]). Here, we are
going to mix and adapt the two mentioned approaches to get the expected results.

The first proof concerns the general non degenerate case: it is clearly the most
intricate to obtain, other cases will be simpler to handle. Before this, we need to
define some particular forms of stochastic expansions.

4.1. Preliminary results about some stochastic expansions. By conven-
tion, we set dW? = ds.

DEFINITION 4.1. The real random variable Ur (which may depend on N ) satisfies
Property (P) if it can be written as

q T ¢
Ur = Z cl[{;o(T)‘/O cg;l(t)(/q&(t) ’.7 ( )dW@)dWJ

4,5=0

q T t s
+ cg;.?k(T)/O cgﬁk(t)[/o cg;."j'k(s)(/¢() U3 (u)dW;)dW3]dW,

1,5,k=0

for some adapted processes {(c; Uria (t),cgﬁ ()iz0:0<14,5,k<q0<1i; <2,0<i <
3} (possibly depending on N ). Moreo'uer, the previous processes evaluated ot a fixed

time t € [0,T] belong to D> and their Sobolev norms satisfy

SUP ' SUD4e[o,T] (IICU“( M p + lle 5 (¢ )Ilk',p) < oo for any k',p > 1.

We now give a simple but crucial lemma, which states that the error comparing
a Brownian SDE to its Euler approximation fulfills Property (P) . For more general
driven semimartingales, see Jacod and Protter [JP98].

LEMMA 4.2. Consider a general d’—démensional SDE (Xt)tzo defined by C'*
coefficients with bounded derivatives, and (X}¥ )t>0 its Euler approzimation:

¢ g
thx—l—/ B(s, X.) ds+z/ o;(s,X,) Wi,
0 o

Then, for each t, each component of X; — X} satisfies (P). Namely, for 1 <k < d',
one has

t 8 _ ) )
Xy — Xy = Z c; ’J, /0 cfj”lk(.s:)(/(ZS cfj’i(u)dWé)de

1,7=0

for some adapted processes {( X-’il(t))tzg :0<4,j<q,1<k<d,0<i; <2}

z],k
satisfying sup y sup;cjo,7y llci i (Dl p < 00 for any k',p > 1.
Proof. One has X;— X} = [ ¥/(s)(X,—XD) ) ds+327 fo V(X =XN) dWi+
PR
fo [b(s,X;V) — b(¢(s), ¢(s))] ds + Z 1f0 [35(s, X)) — UJ((ZS( ) ¢(s))] dW] with
a'( folv a(s, XN + A(Xs — XN))d\ for a = b or a = ;. Now, consider the

unique solution of the linear equation & =I5 + fo V'(s)Es ds + > fo 5 (s)Es AW,
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From Theorem 56 p.271 in Protter [Pro90], one deduces that
¢
X - X =& / &7 H{[b(s, X5) — b(g(s), X5l

— Z a;(s)[a;(s XN = 5;(e(s), Xﬁs))]} ds

g / £, [03(5, XN) = 5(6(5), XX,)] dW;
j=1

then, once applied It6’s formula between ¢(s) and s, we can easily complete the proof
of Lemma 4.2. O

4.2. Proof of Theorem 3.4 (general non degenerate case). To analyze the
discretization error, for technical reasons, we may use a regularized function f and
regularized random variables Vr and V. Let us briefly formalize this step.

We put Vi = Vi + eWy and VQ{V’G = VN + eWr, where (Wr)i>o is an extra
independent r-dimensional Brownian motion and we define Vr}‘ e — V:,Jy “C+AVE -
Vf«v ‘) for A € [0,1]. In the following computations, the Malliavin calculus will be

made w.r.t. the (¢ + r)-dimensional Brownian motion ( by ) .
0<t<T

Wi
Denote by /i the measure defined by [, g(x)n(dz) = (g(VTo’_N’_O)) +E(g(Vp ™))
+ fo V2 N%))d and consider (f,)m>1 a sequence of continuous functions with

compact support, which converges to f in L2(jz). Thus, one easily gets that

lim lim 2202 = lim (A0 e = 1202 e < ISR @)

for A\=0o0r 1, and

! AN ! AN
ity ([ 107 o) = i ([ 102 o
1 1
< lim \/ / lE(f?n(V?’N))dAZ\/ / E(f2 (Ve M) dA < [|flloo- (4:2)
mtoo 0 0

Then, the error to analyze is equal to J(a) — E(f(VN)Hyp PN
limmToo,eLO [51 (m, 6) + &5 (m, 6)] with

& (m7 6) —E (fm(V;)H:[JYonDeg fm( AL E)HNonDeg ) :
Ea(m,e) = (fm(VTJ,V E) [ NonDegy. fm(Vq{V e) g NonDeg., N)

In view of (4.1) and (4.2), it is enough to prove the following estimates, with some
constants K (7', z), p and g uniform in m and € < 1:

[Ex(m, ) < K(T,2) (1l fm (V™ e + 1 fim (V™) e
+ / 1fon (V™ lle2d) [1/det(rr) I 2, (43)

(E2(m, )| < K(T,0) (Ilfm (V2 leo + 1 fmn(VEY 2 ) 11/det(rr) [0k (4.4)
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Let ¢ € C3°(R,R) be a cutting function verifying 1j1 o <% <11

Nye infyeo,1] det( vt )
= :
det(y"7)

put

1ooo*

4.2.1. Error & (m,¢). Using a Taylor’s formula, one can write & (m,e) =
E1,1(m, €) + &1 2(m, €) with

&1,1(m,€) = E([fm(Vi) = fn (V2 (L = w0V HY P20 (4.5)

1
E12(m,€) = / ONE (£, (N = VW Y ) L (46)
0

The first term can be easily bounded by K (T,x) ”f”(VTO’N’S)”LZTth’"(VTLN&)”LQ h? for

any p > 1: indeed, the neglecting contribution comes from the term 1 — 1/) ¢ which

det(y"T)—inf5 0,1y det(’Yv%’N’e)
det(y"7)

niques of Lemma 3.3 and noting that v'7 = V7 + €21, it is easy to show that this

event has a probability of order h? for any p > 1.

is different from 0, on the event { > 1}. But using tech-

Now, to deal with the term &; »(m, €), note that the difference Vi — V¢ = Vi —
V.Y can be expressed componentwise using Lemma 4.2 and it follows that &1 2(m,€)
can be split in a sum of terms

51 ,2,1,7,k (m € / dAIE kafm( ’\ N, €) N GHNonDeg C‘j]?k(T)
T Vi ¢ V.2 . .
/0 cw’k(t)[(/d) ci,j,k(s)dWsz)de]), (4.7)

for 0 <i,j < q. If i and j are different from 0, apply twice the duality relation (2.1)
combined with Fubini’s theorem to obtain that &£ 2. j,k(m, €) equals

1 T _ t
/0 dA /0 AtE(D} [Ba, (V™Yo HY P20 Y 0 (T)] el 21 (1) ( /¢ o ¢ 7% (8)dWd))
! r ¢ i j AN, N, NonD V,0 v, V,2
= [ 3 )] e [ PP O b PN 0} )
1 T t
=Z/ d)\/ dt/ ds E(0]Y fr (VPN )GUYY)
o o Jow

where the length of the differentiation index (I) is less than 3. If i and/or j equals
0, an analogous formula holds with |y(I)| < 2. The random variable Gls’,i‘:ITV does not
depend on €, belongs to D*° with Sobolev norms uniformly bounded w.r.t. A, N, s,t:
furthermore, it is equal to 0 when ¢¥ * = 0, because of the local property of the

derivative operator (see Proposition 1.3.7 p.44 in Nualart [Nua95]).
Since det(y¥?""°) > €2, one can apply Proposition 2.4, which yields
]E(@;U)fm(Vq’s\’N’e)Gé’;‘,’év) = ]E(fm(Vf"N’é)H,y(l)(Vf"N’e,Gls”)t‘,’qj\f)) for some iterated
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Skorohod integral H., (V>‘ Nye Gls;‘ ITV ). Due to the local property of the Skorohod in-

tegral (see Proposition 1.3.6 p.43 in Nualart [Nua95]), one has HW)(V’\ Vye Gls)t‘ g)
H,q (V)‘ o Gi ’: TJY)].wN,e¢O and applying the estimate from Proposition 2.4, one gets:
T

,\N I N ANye, AN,
(P28 (l)( ‘ Gs t, T)”L2 < C”[’YVT ] 11¢N e;r&O“Lm ||V E||192,pz|| t T ||k3,ps=
for some integers p1, P2, P3, q1, 2, k2, k3. Tt is easy to upper bound ||V}‘ N “Ilks,p. and
| i”}g”kmm, uniformly in A, N, s, and € < 1. The estimation of ||[y"7 ]_lle,e?éO”Lm

is straightforward to derive since on {¢N' # 0}, det(y"7 N’e) > +det(y¥7) which has
an inverse in any L? (Lemma 3.3). One has proved that

1
|€1,2,i,51(m; €)] < K (T, z) (/0 IIfm(VTA’N’e)Ilmd/\) 11/ det(yr)lILs h;

this completes the estimation (4.3).
4.2.2. Error & (m,e€). As before, this error can be split in two parts E2(m, ¢)
= &31(m, €) + E22(m, €) with
E21(m,€) = E( f (V) (1 — o) (Hy 00 — Hy P20 )),
52,2(m, e) = ]E(fm(v ) JJY G(HNonDeg Hq]YonDeg.,N)) )

As before, the contribution &£ 1(m,€) can be neglected since one can easily upper

bound it by K (T, z) (|| fm (V2™ )l + 1 (Ve V) llz2) [11/det(yr) [ , b7 for any p' >
1. To show that &, 2(m, €) has the right order let us assume for a moment that

q T t
HTJYonDeg. _ H’}VonDeg.,N —h UT + Z C{:Z’O(T)/O' Cf‘;l(t)(/d)(t) ’] ( )dWZ)dWJ

,j=0

q T t s
+ > cigu(T / i () /0 i (9)( /¢ " cflS (u)dWi) dw i dW, (4.8)

%,5,k=0

with coefficients satisfying conditions from Property (P) (namely supy ||Ur||Ls +

H,i H, k’,
supy supyepo 1 (15 ()l + e (B)llwp) < K (T, @)||1/det(yr)|125F), for any
k'.p > 1). Then, one gets that

Ea2(m,€) = RE( fru (Vi )opUr) (4.9)
. N N,e H,0 T H.1 ¢ .
S€ ,€ R s j
+i§::0E(fm(VT Jope; (T) /0 i (0)( /¢ o L2 (s)dWi)dwi)  (4.10)
q
+ 37 E(fn VY <el5 (1)
i,j=0

T t s
/ Cﬁlj,lk(t)[/ Cf;,zk(s)(/ o8 (w)dW)dW3)dWE).  (4.11)
0 0 5(5)

The r.h.s. of (4.9) clearly satisfies the estimate given by the r.h.s. of (4.4). Terms
(4.10) and (4.11) can be estimated using exactly the same techniques as for (4.7).
Hence, if (4.8) holds, the inequality (4.4) follows and Theorem 3.4 is proved.
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4.2.3. Proof of the decomposition (4.8). The derivation of this representa-
tion relies heavily on Lemma 4.2: indeed, most of the approximated quantities result
from an Euler scheme applied to some appropriate SDE. Thus, it is enough to sepa-
rately look at each factor in HF}V onDeg. and Hy NonDeg..N 1,y proving that essentially,

they are of the form cy’.O(T) OT UL <f¢(t) )dW’) dwi  or

1,7 ‘LJ

T Jo et ®) [fo i) (S bt sz) dwi| dW§, while the other fac-
tors just belong to D*° with uniformly bounded Sobolev norms. The origin of the
term h Ur in (4.8) is the additional term used in the perturbation (3.13) of the
matrix yr.

a) The difference Uy ; jy 7 —UXN (i) T (involved in (3.8), (3.10), (3.16) and (3.18))

satisfies (P) , since Uy, j),r is the product of coordinates of Y7 and Vi, 50
that we can conclude by a direct application of Lemma, 4.2.

b) Using the expressions of yr and 7%, one gets ’Yk,l,T—’Yﬁl,T = =0k h+E 1,00+
53’271971 with

T
Ea1pi = / [T (Y Zyor (5, X)) IR (Vi Zyor (5, X)), ds
; ,

T
- / [MRew (v ZN g (s, X)) MR (VN ZNo(s, X)), | ds
0 9

T
53,2,k,l =/ [Hﬁow(y’{’vzga(&X;V))[Hfow(YTNZ;VU(SJX;V))]*]k’l ds
0

T
- [ [0 2 e, X O (0 2 0(0(6). XY, s

Using Lemma 4.2 and the relation a(s, X5) —a(s, XN) = a'(s)(X;— XV) with
a'(s) = fol Vaa(s, XN +A(Xs—XN))d available for smooth functions a, it is
straightforward to see that &3 1,1, can be written as a sum of terms satisfying
(P) . The same conclusion holds for &3 2 1 if we apply It6’s formula between
#(s) and s.

Finally, using that 1/det(yr) and 1/det(y2) belongs to any L? (p > 1) owing
Lemma 3.3, it follows that the difference [v;' ] — [(YY) "]k (involved in
(3.8), (3.9), (3.10), (3.16), (3.17) and (3.18)) can be expressed as the r.h.s. of

(4.8).
c) Concerning (3.8) and (3.16), the difference fo [(Zso(s, Xs))*]FdW,
fo ¢(s)a(¢ s), X ))*];des is equal to a sum of two terms:

fo [(Zso(s, X )) I dW fo [(ZNo(s, XN))*]:dW, and fOT[(Zj\Ia(s,X;V))*];f‘dWs
fo [(ZN 550 (0(5), X é\zs)))*]des. It is straightforward to check that the first
contribution satisfies Property (P) using Lemma 4.2, while for the second

one, it follows from It6’s formula.
d) The approximation error between terms (3.9) and (3.17) also comes from

. T « T
the dlfference Jo DsUs(ij),r[(Zs0(s, X)) lids — [, [D¢(s)Un(i,j),T]N[(Zﬁs)
o(é(s), X ¢(s ) lids = Ea1,i5 + €42, where

T T
Ea1ij =/0 DsUx(i,j),r[(Zs0 (s, X)) |ids —/0 [DsUsi,jy e [(ZN o (s, X)) ]sds
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T
N N N
Eanij = / D Uiy ¥ (2 o (5, X)) s
0

T
= [ DoVt a2 o (040), X)L

The error induced by the approximation between Zso (s, Xs), ZNo(s, XN)
and Z¢(S)a(¢(s),Xﬁs)) can be handled as before using Lemma 4.2 and Itd’s
formula. To deal with DsUg(i,5),T> [DSUH(L]')’T]N and [D¢(3)Un(i,j),T]N; we
may remind their particular forms given by equations (3.11) and (3.12): it
implies that Lemma 4.2 can be applied once again to the extended systems
which help in defining DsU,; j),r and provides a contribution error equal to
a sum of terms satisfying Property (P) .

e) The difference [ Dy(viur)[(Zso(s, X)) lids  — [ [Dosy (iar)]Y
[(Z 3o (6(s), X)) i ds coming from (3.10) and (3.18) can be analyzed
with the same arguments as before, if we take into account the specific form
of the derivative D, (k1) and its approximation given by (3.14) and (3.15).

The proof of (4.8) is complete.

REMARK 4.1. As mentioned before, the idea of using a Malliavin integration
by part formula to directly prove a weak approximation result is due to Kohatsu-Higa
[KHO01] (see also [KHP02]). However, we need to take additional warnings compared
to the example of one-dimensional diffusion given in [KHPO02], in particular because of

the possible degeneracy of ,yv; N The question may be put as “is a convex combina-
tion of two positive matrices still a positive matriz?”: in dimension 1, this is obviously
true, and this is in general false in higher dimension, except if the two initial matrices

a71'$ close to each other. This explains why we need to introduce the additional factor
AR

4.3. Proof of Theorems 3.1 (path-wise approach) and 3.2 (elliptic case).

4.3.1. Theorem 3.1 case Al). We give a simplified proof regarding the tech-
niques developed for Theorem 3.4. Set X = XN + A\(X7 — X¥) and let us write

E(f'(X7)Xr — f'(X})XE)
d 1 d

= K / dA(Oa 1) (XN (X — X Xir) + Y B(02, f(X) (Xiw — X1Y))

i=1 0 i=1

d 1 T t )
=S > [afaf as@ogmes)
0 o(t) "

=1 1:1<|y(1)|<a” O

d
+> / dt ¢()ds]E (070 F(XP)GYLT) (4.12)
t

i= 111<|~/(1)|<3

where we have combined Fubini’s theorem, equality (2.1) and Lemma 4.2 as we have
done for & 5 j x(m,€) in (4.7). It is straightforward to check that the random vari-
ables G ’ﬁ and G’Sltﬁ,{ belong to D>, with [|.||x,,-norms bounded by K (T, z): use in
partlcular their L? estimates to complete the proof of the statement Al).

4.3.2. Theorem 3.1 case A2). Essentially, we proceed as for the previous case
A1), except once obtained (4.12), we integrate by part to get back error estimates
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depending only on || f'||eo- This is not possible to do directly like this, since det(fyX%’N)
may not have an inverse in LP. Hence, as for Theorem 3.4, we have to add a small
perturbation to the initial processes (i.e. Xf = X;+¢W; and so on) and then introduce
in the expectation to compute, the localizing factor ¢¥ ¢ which discards the degeneracy
event. Other arguments remain unchanged and we omit further details.

4.3.3. Theorem 3.2. Apply the arguments given in the proof of Theorem 3.4,
to finally obtain |J(a) — E(f(X)Hp PNy < K@) 7)) |1 /det(vr) || h, for
some positive numbers p and ¢; we omit the computation details. The estimate given
in Theorem 3.2 immediately follows using the well-known upper bound

K(T,x
I/det(rrl, < 2

(see Theorem 3.5 in Kusuoka and Stroock [KS84]).

(4.13)

4.4. Theorem 3.5 (adjoint approach). The first approximation easy to jus-
tify is the time discretization of the integral involved in Lemma 2.9. For this, we
remark that the function

d
t»—nEZb (t, X;) 0y, u(t, Xy) +
i=1

wlt—l

d
Z t Xf 62 5 (tJXt))

is of class C}([0,T],R): indeed, it is a smooth function especially because u is, and
the uniform controls of derivatives follow from estimates (2.6). Hence, it remains to
prove the following upper bounds, uniformly in i, j:

T
IB(F(X)b(ts, X0,) - 21, / o™ (5, X,) YaJ* dW, — F(X)b(te, X1Y) - 2N

tr
! (), X ) Yl I* dW,)| < K(T )%(T—t)h (4.14)
x/tk[" $(8), Xo(s)) Yo()]" dWs)| < K(T, 2) =, Kb, :

T

[B(lo0*), (b, X ) F(X)e? - (2" [, o (5, XY W

T+t
3
T4ty

x e -[Z,”" / [0 (5, X5) Ys]*dW,] — [U‘}*]i,j(tkankv)f(X:l]Y)
. * T
SRV /¢ (TM)[a—l(qs(s),X;V(s))y(;(vs,]*dws]

(T - tk)2h‘7
(4.15)

SRV / o™ (8(6), X Y2 aw])| < k() VI

[E([oo*]; (tk,th)f(XT)ei'{Vw[Ztk*/tT[U_l(sts)Ys]*dWs]Ztkej}
. , ve PO [ y
—[o0*]; ;(tr, X[ F(XT )" - {V.[Z]] /t [0 ((s), X)) Yoy ["dW,] Z[ e })|

< K(T, @”{}#(T — t3)h. (4.16)
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Note that terms with f(Xy,) and f(X}) have been removed since they do not con-
tribute in the expectation. The three errors above can be analyzed with the same
techniques; hence, we only give details for (4.15) which appears to be slightly more
difficult to deal with. We may point out that the main additional effort compared
to Theorem 3.4 consists in proving that the estimates above include factors (7" — tx)
or (T — t;)?. For convenience in the following proof, we make a slight simplifica-
tion, assuming that the number of discretization times N is even, so that we have
the equality qﬁ(%) = % Otherwise, the additional approximation error can be
easily estimated directly from the derivation of formulae of Theorem 2.11.

Before performing the analysis of terms above, we give an other version of esti-
mates (2.6) applied to the Euler scheme:

sup [BIG 87u(t, X)) < K(T,o) =gy (4.17)
tefo,1] T=

The proof is unchanged. Moreover, when Lemma 3.3 or Proposition 2.4 is used in this
section, we will systematically take into account the elliptic estimate stated in (4.13).

We introduce appropriate notations for what is playing the role of the infinitesimal
generator of the Euler scheme:

d d
Ly zyu(s,z) = Z bi(s',2)0z,u(s, z) + % Z [UU*(S',z)]i,jé)gi,wju(s,m).

i=1 ij=1

The infinitesimal generator of the SDE is thus defined by Lu(s,z) = L5 2)u(s, ).

Let us denote by A the difference to estimate in (4.15). An application of It6’s
formula to f(.) = u(T,.) between times T5 and T to both terms in A leads to, after
some simplifications using the PDE solved by u, A = A; — A, with

T
Al = E( /I‘+tk u'(s,Xs)sts a; — /T-l—J
2

2

T
u'(s, X)) Y5l ds af)

T+t

ay = [o0*]; ;(te, Xy, (€' - [ztk*/ [0 (s, X,)Ys]*dW,]) Zy, €’
tr
T+t

o = [oo*]; ;(te, XN (e - (2 / o= (p(s), X2, YN, " dW,]) Z1Ved

th

(Lig(s),x2, )~ Lu)(s, X Y)ds]

] T
Ay = Blfoo*],, (e, X))

T+t

2

T
xed (2" [, o 606), X Y W]

2

SRV / [0~ (B(5), X2, YR T*dW,)).

th

4.4.1. Term A;. Let us write A; = A1 + A2 + A3, with

T
Ay = /+ E ([u'(s, Xs)Ys — ' (s, XN)YV]a) ds
Ttty

2

T
o= [, B (6 XYY — (s, XY lad) ds
tk

T+
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T—1t T+t
A13=( 5 k)E<u'( 5 k,X%)Yﬂ%(al—aiv))

where we have applied Fubini’s theorem in A;;, A;> and taken into account in A;s

that (u'(s, X;)Y;)o<s<r is a martingale (see Lemma 2.10).

Term All- One has All = Alll + A112, where A111 = $+t2 ([1,6’(5,)(5)}/:s —

u' (8, XN)YN]alV)ds and Ay;9 = fT—h3 ([w'(s, X4)Y, —u (s,X;V)Y;N]a{V) ds. The
second term Aj;o is immediately bounded, using (4.17), by K(Tq;’w) h < K(T:’;””) (T -
tk)2h.

We now handle A111. For the technical reasons related to the integration by part
formula as in the proof of Theorem 3.4, we modify X; in X{ = X; + eW; and XtN in
XtN “ = XN + W, for an extra independent Brownian motion W: however, at the
end, we take the limit € | 0, owing the uniformity of the estimates below w.r.t. €. Let

. . .. N,e
us also introduce again the locahzmg factor sz’ .

One writes A§;, = T+t,c ([1 — N (s, XE)Y, — u!' (5, XN )Y NN ) ds
+ T+t,c E(wa\fﬁ[u (5, XY, — u' (5, XN )Y N]al¥ ) ds. Using a direct upper bound
for |u (s,z)| < % < % (s < T — h®) and the fact that ]P)('LAIJY’6 # 1) is ne-

glectible w.r.t. any power in h (see term (4.5)), the first contribution in A$,; is clearly
bounded by (T — t3)K(T,z)h? < (T — t;)>K(T,z)h?~! for any p > 1. The second
term can be treated with the same techniques than for (4.6): furthermore, to trans-
form the stochastic integral a?¥ into a Lebesgue integral (in order to get an additional
factor (T — T})), we use once again the duality relation (2.1). Note also that the
factor 1/s? which usually appears in the upper bound estimate is well controlled since
s > T/2: hence, one gets |4$;;| < K(Tw)

that |A;;] < “)(T Ty)2h.

(T — Tt)?h uniformly w.r.t. €. This proves

Term Ajs. Apply Itd’s formula to obtain that Ao is a sum of terms of the form
S ’IT-ZJ ds f;(s) dtE (al¥ 07u(t, X}N)g}") for some smooth random variables g/ such that
Supy Supsepo, 7 |l N |lk,p < K(T,z). To transform the expression with a?¥ (as for A ,),
apply duality relation (2.1) and estimates (4.17) to obtain |A2| < w(T —Tk)?h
(here, we do not need to add a perturbation to X}V since 'thN has already the required
invertibility property under (E)).

Term A;3. An application of Lemma 4.2 ensures that we can decompose A;3 in a
sum of terms of the form

T4ty
T—1t T+t —
( - k)]E(u’( + k,XT‘*'J)(/ clU,3(t)thl)
2 t
U0 t: U.1 t
i) [T o[ d@araw),
and
T-t T+t
( 5 k)E( ( 5 k,XT+tk )cifJOl(T)

t s
U1 U,2 i j .
<[ oL e[ dimaravar),
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Apply techniques used for (4.7) (i.e. several times equality (2.1) combined with Fu-
bini’s theorem and ﬁnally estimates (4.17)) to conclude that |413] < w (T —Tk)*h.
The proof of |A4;]| < Tz) (T — Ty)%h is complete.

4.4.2. Term A,. It6’s formula gives (£ 4(s), X, )U— Lu)(s, XN f;(s) [Au].dr
+ [Aul.dW, with [Au], = (O + L(s),2) [Lo(s),-u(t, a:) Lu(t, )|,
[Aul, = Vo [Lg(s),-u(t, z) — Lu(t, z)]] ,—x~

#(s)’
split in two parts Ay = Ay + Agp with

X¢(s),t raoe=XN and

t= T,:c:X,{VO'((ZS( )7 ¢(s)) ThuS, A2 can be

A =E(g- ([, 107100, XYV aw) [ ds [ [Aular),

T+t T+t
— = & ¢>(S)

T
Am:E(gk-[/ o (¢<>X¢(s>>Y¢(s]dW/ ds [ [Au].dw,),

T+t
2 k #(s)
T+t

gk = [00°]; ;(tr, X[))e' - [Ztk*/lt [0 (6(5), X3(a) Yo()] W) Ze, !
k

Term Ay;. Applying twice Fubini’s theorem and duality relationship (2.1), one ob-

tains that As; = 3.5 5 fTT+tk ds f;( )dr ﬂ;tk dt E(0Tu(r,XN)G],Y,), for some

smooth random variables Gt” with ||Gt”||k,p < K(T,z) uniformly in N,t,r,s.

Thus, estimates (4.17) are sufficient to conclude that |As| < K (T,a:)”fT#
(T — tg)%h.

Term A,;. We first apply Fubini’s theorem and the isometry property to get

T s T
= A -1 N N \x*
Ay = /T%ds /¢(s) dT]E(gk'/T;ik ([Aulro ™ (D(8), X g(5)) Yis)) dr),

and thus, by estimates (4.17), one obtains |Az| < K(T,z) |’;l|q°° (T — t1)2%h.

One has proved |4;| < K(T, a:)”fT#(T — t1,)%h.

REMARK 4.2. The powers of T involved in the upper bounds stated in Theorems
3.1, 3.2 and 3.5 have not been explicited. A more careful proof of estimates given
in Proposition 2.4 adapted to the elliptic case (in the spirit of Kusuoka and Stroock
[KS84]) would show that the exponent of T equals % As a consequence, the analysis
of the weak error for a terminal cost would extend to the instantaneous costs problems
since fOT % < 0.

5. Numerical experiments.

5.1. Analysis of computational complexity. In this paragraph we indicate
the first order approximation of the number of elementary operations (multiplications)
needed for computing the different estimators, w.r.t. the quantities m (number of
parameters), d (dimension of the space), ¢ (dimension of the Brownian motion) and
N (number of time discretizations).

In previous sections we derived estimators of the gradient of the performance
measure J(a) w.r.t. «a when J is defined by a terminal cost (see (1.2)). How-
ever, these results may be extended to functionals with instantaneous costs such

as J(a) = 1E( fOTg(t, Xy)dt + f (XT)) for which an estimator of the gradient may
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be TSN HN(g) + HY (f) where HY (g) (respectively HY(f)) is an approximated
estimator of the gradient of E(g(#;, Xy,)) (resp. E(f(X7))). This case is illustrated in
the first numerical experiment considered below.

The computational complexity of the different estimators depends on whether
the payoff has instantaneous costs (in which case an estimator H}\ (g) for all i €
{1,--- N} is needed) or if it has only a terminal cost (for which only HY(f) is
needed). In the path-wise and Malliavin calculus methods, the cost of computing
HY(g) for all i € {1,---,N} is the same as just computing HJ (f), whereas in the
adjoint and martingale methods, there is an additional computational burden.

e Complexity of the path-wise method: d?gmN operations for computing the

path-wise estimator Htl:“th"N(g) (see Proposition 1.1) for all 4 € {1,--- ,N}
(required for computing XtN ,for alli € {1,--- , N} and all m parameters).

e Complexity of the Malliavin calculus method, in the elliptic case (¢ = d):
3d*(d + m)N operations, for computing the Malliavin calculus estimator
Hga”'E”"N(g) (see Proposition 2.5) for all ¢ € {1,---,N}. Indeed, the
complexity of computing the Malliavin derivative of each column ¢ (among
d) of Z},, is 3d*N, and computing the Malliavin derivative of X/ for all m
parameters takes 3d°mN operations.

o Complexity of the adjoint method: d*N? + d?>mN? /2 operations are needed
to compute the adjoint estimator Ht‘jdj"N(g) = HZ’Adj"N(g) + %HZ’Adj"N(g)
(see Lemma 2.9 and Theorem 2.11) for all ¢ € {1,---,N}. Our implemen-
tation memorizes Z{y (and other data) along the trajectory and computes
HZ’Adj"N(g) and HZ’Adj"N(g) for all ¢ € {1,---,N}, afterwards. Such an
implementation allows to treat problems with instantaneous costs. If we
consider a problem with a terminal cost only, the complexity is reduced to
4d*N + 3d*mN.

e Complexity of the martingale method: d?N?/2 + dmN?/2 + d*mN for com-
puting the martingale estimator Hg[””"N(g) (see Theorem 2.12) for all i €
{1,---, N}. For problems with terminal cost only the complexity of comput-
ing HM "N (f) is d®mN.

These results are summarized in Table 5.1. Note that they are strongly related to the
way we have implemented the methods and they are not guaranteed to be optimal.

TABLE 5.1
Comgplezity (in terms of number of elementary operations) of the different estimators for payoff
with instantaneous costs or with terminal cost only.

Path-wise Malliavin Adjoint Martingale
Instantaneous costs d*mN 3d*(d+m)N | d*N? + dZmNTz d(d + m) NTZ +d*mN
Terminal cost same same 4d*N + 3d>mN d’N +d*mN

5.2. Stochastic linear quadratic optimal control. We consider a simple
one-dimensional Stochastic Linear Quadratic (SLQ) control problems (see [CY01] and
[YZ99] for an extensive study on SLQ problems) for which the control u(-) appears
in particular in the diffusion term: dX; = u(t)dt + du(t)dW;. The cost functional to
be minimized is J(u(-)) = E[ fol X7dt]. This problem admits an optimal control (see
references above) given by the state feedback u*(t) = —%5#.

We consider a class of feedback controllers u(t, z, @) linearly parameterized by a 3-
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dimensional vector a with basis functions 1, z and ¢ (i.e. u(t,z,0) = a1 + asz + ast)
and we write J(a) for J(u(-, X.,a)). In that case, the optimal control u* belongs
to the class of parameterized feedback controllers and corresponds to the parameter
a* =(0,-1/6%,0).

As explained before, since the payoff involves instantaneous costs, we evaluate
VaJ(a) using a quantity of type % Zfil H}Y(2?). We check that the different esti-
mators (Path-wise, Malliavin calculus, adjoint, martingale) return a zero gradient for
the value a* of the parameter and compare their variance and time for computation.
Table 5.2 shows the empirical variance of the different estimators obtained for 1000
trajectories, with h = 0.05, 6 = 1. These simulations have been performed on a
Pentium III, 700Mhz processor.

TABLE 5.2
Variance of the estimators HPath-  gMall.Ell. - g Adj. and HMart. of 7, J(a) at the optimal
setting of the parameter: a1 =0, as = —1, ag = 0.

Var(H) Path-wise | Malliavin | Adjoint | Martingale

aq 0.1346 0.3754 0.6669 0.1653

Qs 0.0525 0.1188 0.1707 0.0480

Qas 0.0136 0.0446 0.0612 0.0148

CPU Time 0.44s 1.95s 2.89s 0.89s

Notice that the estimator used in the adjoint approach includes the term f(X7)—
f(X}) in the computation of H%’Adj ". Table 5.3 shows similar results for a sub-optimal
setting of the parameter (here ay, as, and as are chosen randomly within the range
[-0.1,0.1]). The columns Adjoint2 and Martingale2 describe simulations of the ad-
joint and martingale methods when the term f(X;) is omitted from the computation
of the estimators H%’Adj' and HMert:. We notice that the variance of these estima-
tors are significantly larger than when the term f(X;) is included, which corroborates
Remark 2.1.

TABLE 5.3

Variance of the different estimators of Vo J(a) for a1

—0.0789, a2 = 0.0156, a3z = 0.0648.

Var(H) Path-wise | Malliavin | Adjoint | Adjoint2 | Mart. | Mart.2
o1 0.2005 4.0347 | 1.0287 9.5535 | 1.5085 | 4.6029

Qs 0.0252 0.6597 | 0.1433 1.6781 | 0.2360 | 0.7894

as 0.0174 0.3869 | 0.1051 2.2337 | 0.1407 | 1.0185
CPU Time 0.44s 1.97s 2.94s 2.94s | 0.90s 0.90s

For this problem with smooth cost functions, the path-wise approach provides
the best performance in terms of variance of the estimator. This good behavior for
smooth costs compared to other methods has been previously observed in [FLL*99].

5.2.1. Stochastic approximation algorithm. The computation of an esti-
mator H of V,J(a) may be used by a Stochastic Approximation algorithm (see e.g.
[KY97] or [BMP90]) to search a locally optimal parameterization of the controller.
The algorithm begins with an initial setting of the parameter a®. Then, if a* denotes
the value of the parameter at iteration k, the algorithm proceeds by computing an

estimator Vo.J(a*) of V,.J(a¥) and then by performing a stochastic gradient ascent

—

"t = o 4V, J(ak) (5.1)
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where the learning steps 7, satisfy a decreasing condition (for example )", n, = oo and
> LMi < 00, see [Pol87]). Assuming smoothness conditions on J(a) and a bounded

variance for V,J(a*), one proves that if a* converges, then the limit is a point of
local minimum for J(a) (see references above for several sets of hypothesis for which
the convergence is guaranteed).

0.2 T T T T T T T T T

Parameters value

1 . . 1 . 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration number of Stochastic Approximation algorithm

FIGURE 5.1. Stochastic approzimation of the control parameters. The gradient Vo J(ay) is
estimated using the path-wise method.

Figure 5.1 illustrates this algorithm on the SLQ problem described previously,
where the initial parameter is chosen randomly (same value as in Table 5.3). At
iteration k, one tr/a,je\ctory is simulated using the controller parameterized by a* and
an estimation V,J(ak) of VJ(ay) (using the path-wise method) is obtained. The
parameter is updated according to (5.1) with a learning step 7 = KLM (with K =
200). We notice that the parameter converges to a* = (0,—1,0).

The speed of convergence for such algorithms is closely related of the variance
of the gradient estimator, which motivates our variance analysis for the different
estimators.

Discretization Error
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FIGURE 5.2. Discretization error as a function of the number of time discretizations.
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5.2.2. Discretization error. Here, we report the impact of the number of time
discretizations in the regular mesh of the interval [0,7], in the computation of the
gradient V,J (). Figure 5.2 reports the sensitivity of J(a) (for & = a@*) w.r.t. the
parameter a1, computed by different estimators, with NV = 8,16, 32,64 and 128 time
discretizations. Recall that, for this setting of the parameter, the true gradient is
zero. To get relevant results, we have run 107 simulations: this ensures that the
width of the confidence interval is less than 1072 for all methods. We can empirically
check that the convergence holds at rate 1/N (as previously proved), except for the
martingale method, for which the rate of convergence is not clear because of the sign
change (more discretization times would be needed).

5.3. Sensitivity analysis in a financial market. We consider two risky assets
with price process evolving according to the following SDE under the so-called risk
neutral probability:

st

S
2

Cfgizt =rdt+0(S;, ) (Pthl + 1 —p? thQ)
¢

=rdt+o(S;,\) dW}

with constant interest rate r and volatility functions o(z,A) = 0.25(1 + 1+€+)‘2) The
parameters of this dynamics are A;, Ay, and the correlation coefficient p. Suppose
that the true model is given by some set of parameters and that we are interested
by the impact of the inaccuracy on these parameters (due to a previous statistical
procedure) over option prices. For instance, we may consider digital options with
payoff x(S% — S%) (where x(z) = 1,>0) whose prices are given by J(A1, A2, p) =
E[x(S% — S2)] up to the discount factor.

TABLE 5.4 Adi
Variance of the estimators HMall-Bll. HTdJ', HMart.| H;’P“th'.

Var(H) or | Malliavin | Adjoint | Martingale | Path-wise | Path-wise | Path-wise
Var(H?) e=10"2| e=10"%| e=10"*
A1 0.0011 | 0.0022 0.0012 0.0053 0.0378 3.8951

A2 0.0048 | 0.0030 0.0018 0.0042 0.0296 4.9427

p 1.5788 | 2.0829 1.4323 1.6523 14.923 100.86

CPU Time 20.8s 18.6s 7.31s 2.97s 2.97s 2.97s
We estimate the sensitivity of J with respect to the parameters )\1,)\21& and p.
Table 5.4 reports the empirical variance of the estimators (HMe-Pl- A4 and

HMoart:) of the sensitivity of J w.r.t. the parameters for the Malliavin calculus,
adjoint and martingale methods. Since the payoff function is not differentiable, we
cannot directly apply the path-wise method; instead, we use x¢, a e—regularization
of x defined by x°(z) = 1if z > ¢, 0if £ < —e and (z + £)/(2¢) otherwise. Note
that this induces a bias on the true value of gradient, bias which vanishes when € goes
to 0. The path-wise estimator that we obtain with this regularization is denoted by
H&Path- and Table 5.4 reports also its associated variance for different values of .

For this experiment, we ran 1000 trajectories with initial values S§ = SZ = 1,
r=0.04, T =1, h =0.01 and parameters setting \y = 2, Ay =2, and p = 0.6.

We notice that the variance obtained by the path-wise methods is significantly
larger than those obtained by the other methods (especially when € is small), which
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motivates the use of the Malliavin calculus, adjoint or martingale estimators for non-
smooth cost functions. For piece-wise smooth cost functions, we could also combine
two methods as suggested in [FLLT99] to reduce further the variance: the path-wise
method where the cost function is smooth and one of the other ones where it is not.

5.4. Neuro-control for a stochastic target problem. We consider a two-
dimensional stochastic target (for example that models the displacement of a fly)
moving according to a Brownian motion. We control a squared fly-swatter with a
2-dimensional bounded force (b(u1),b(us)) (where u = (u1,us) is the control), and
our goal is to hit the fly at time T. Let X = (X, X5) be the relative coordinates
of the fly with respect to the fly-swatter, and V = (V1,V2) be the velocity of the
fly-swatter. A simple model of the dynamics is

dX1, = V1,dt + o1, dW}
dXoy = Vadt + o1,dW}
dVi ¢ = b(uy,¢)dt + Oswar(1 + |Jue||)dW2
dVa,y = b(uz,4)dt + 0 swat (1 + |Jug||)dW;

where b(z) = [1 — e *]/[1 + e *]. The coefficient (1 + ||u||) (where |ju|| = /u? + u3)
adds uncertainty on highly forced movements. The goal is to reach the fly with
the fly-swatter at time T: hence, J(u(-);Xo,V) = E[l(x, ;. x,r)ca] where A =
[—a, a] x [—a,a] is the squared fly-swatter.

Output§ Feedback
layer i Control

FIGURE 5.3. The architecture of the network

We implement the feedback controller using a one-hidden-layer neural network
(see [Hay94] or [RM86] for general references on neural networks) whose architecture
is given in Figure 5.3. The input layer (z;)1<5 is connected to the state and time
variables: 1 = Xy 4, 22 = Xo4, 23 = Viy, 24 = Vo4, and 25 = t. There is one
hidden layer with n neurons, and the output layer (yx)i<k<2 returns the feedback
control y1 = u1(t), y2 = ua(t). The network is defined by 2 matrices of weights (the
parameters): the input weights {w;y} and the output weights {wg?};t}. The output of

the network is given by yr = 3°7_, wifto (Z?:o wg‘wz) (for 1 < k < 2), where the

w?’s are the bias weights (and we set zo = 1) and o(s) = 1/(1 4 e™*) is the sigmoid
function.
In this experiment, we have used a hidden layer with 4 neurons (thus there are

6 x 4+ 4 x 2 = 32 control parameters); we have run 1000 trajectories with initial
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values of the weights chosen randomly within the range [-0.1,0.1]. Here, T = 1,
h = 0.05, of1y = 0swat = 0.1 and @ = 0.1. Each trajectory is started from a initial
state chosen randomly within the range Q = [—0.5,0.5]%. Thus, we actually compute
VuB[J (-3 X0, Vo) | (Xo, Vo) ~ ﬁlg(d&))], for each weight w.

TABLE 5.5
Variance of the estimators of the gradient of E[J(-; Xo, V0)|(Xo, Vo) ~ ﬁlg(dw)] w.r.t. the

weights. The values provided are the averaged variances over all 32 parameters.

Var(H) or Malliavin | Adjoint | Martingale | Path-wise | Path-wise
Var(HEath-) e=10"%| e=10"*
Average over 0.1917 | 0.2550 0.1701 3.364 187.48

all parameters

CPU Time 70.44s | 22.04s 5.73s 2.88s 2.88s

Table 5.5 reports the empirical variance of the estimators (HMae-Fll. | [rAdj- - and

HMart:y of the gradient of J w.r.t. the parameters (the set of input and output
weights). Here again, the function to be maximized is not differentiable and to apply
the path-wise method, we use a e—regularization of the indicator function of A (i.e.
Je (o) = E[(x* (X1,7+a)—x*(X1,7—a))(x* (X2, 7+a)—x* (X2,7—a))]). The associated
path-wise estimator is denoted H;’Path "t its variance for some values of ¢ is also given
in Table 5.5. The resulting large variance makes the path-wise approach inappropriate
in this situation, even if the computational time is the lowest one. Besides, the
martingale method is the most attractive.

Stochastic Approximation of an optimal controller. We run a stochastic
approximation algorithm (5.1) with a learning rate n;, = KL_HE (with K = 1000) using
a neural network with 4 hidden neurons. At each iteration, the SA algorithm uses
an estimator of the gradient of J w.r.t. the weights which averages 50 samples of the
martingale estimator.

On Figures 5.4, we plot the parameter and performance evolutions w.r.t. the iter-
ation number: we obtain a set of weights that provides a locally optimal performance,
but here, there is no guarantee of global optimality of the controller.

Weights
Performance

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Iteration number Iteration number

FIGURE 5.4. Stochastic approzimation of the parameters (the weights of the neural network)
and performance of the parameterized controller. The gradient is estimated using the martingale
method.

This stochastic gradient algorithm in the space of parameterized policies is often
denoted as policy search (for which an abundant literature exists in the discrete-
time case, see e.g. [BBO1]), in contrast to value search for which some approximate
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dynamic programming algorithm is performed on a parameterized value function (see
e.g. [BT96b]). One may also combine these approaches and learn an approximate
value function to perform a policy search (the so-called Actor-Critic algorithms, see
e.g. [KB99)).

6. Conclusion. In this work, we have derived three new type formulae to com-
pute V. E(f(X$)) or VaIE(fOT g(t, Xp)dt + f(X%)) by Monte Carlo methods. Our
computations rely on It6-Malliavin calculus and martingale techniques: the represen-
tations derived are simple to implement using Euler type schemes and the associate
weak error is most of cases linear w.r.t. the time step. We have assumed that f is
bounded, but all results remain valid if it satisfies some polynomial growth.

The numerical experiments enable to set the following conclusions on the use of
one or an other method.

1) Path-wise approach. It can be used only if the instantaneous and terminal
costs are differentiable. Otherwise, some regularization procedures lead to
high variances. It gives the smallest computational time. Note also that no
condition on the non degeneracy of the diffusion coefficient is required. For
the implementation, only the first derivatives of the coefficient are needed.

2) Malliavin calculus approach. It handles the case of non smooth costs but
the computational time is quite large. A non degeneracy assumption has to
be satisfied but it may be not stringent (hypoellipticity e.g.). Note that the
simulation procedures require the computations of the second derivatives of
the coefficients w.r.t. z,z and z, a.

3) Adjoint approach. It can be applied in the elliptic case and becomes efficient
(for the computational time) when the number of parameters is large. How-
ever, it is quite slow, especially when there are instantaneous costs (because
of double time integrals and a possible large number of discretization times).
The second derivatives required for the simulations concern the ones w.r.t.
x, .

4) Martingale approach. The diffusion coefficient has to be elliptic. As for the
adjoint approach, it handles situations with non-smooth costs. It turns out
to be very fast (almost as fast as the path-wise approach), but it is slower for
instantaneous costs problems (same reason than for the adjoint approach).
Remark also that only the first derivatives of the coeflicient are needed.

In further researches, we will be interested in the analysis of the weak error for the
martingale method and performing numerical optimizations in the case of the general
non degenerate case (such as portfolio optimization problems in finance).
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