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Abstract

We are interested in approximating a multidimensional Ito process (X;);>o killed
when it leaves a smooth domain D: when the exit time is discretized along a regular
mesh with time step h, we prove under a non characteristic boundary condition, that
the discretization error is bounded from above by C;v/h, extending a previous result
[Gob00] obtained in the Markovian case under uniform ellipticity assumptions.

In the case of hypoelliptic diffusion processes and when a discrete Euler scheme is
additionally used as an approximation of X, we prove that the upper bound for the
weak error is still valid and that a lower bound with the same rate v/A holds true,
thus proving that the order of convergence is exactly %

This provides a theoretical explanation of the well-known bias that we can nu-
merically observe in that kind of procedure.
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1 Statement of the problem

Let (X;)o<t<r be a d-dimensional Ité process, whose dynamics is given by
i t
Xy=z+ [ bds+ [ oW, (1)
0 0

with a fixed initial data z and a fixed terminal time 7. Here, W is a d'-
dimensional standard Brownian motion (BM in short) defined on a filtered
probability space (€2, F, (F;)o<i<r, P), with the usual assumptions on the fil-
tration (F;)o<i<r. The progressively measurable coefficients (by)s>0 and (05)s>0
are bounded. In this work, we are more specifically interested in the law of
this Itd process, killed when it exits from some fixed domain D. Namely, for
a measurable function f, we consider the quantity

E[f(XT)1T>T] (2)

with 7 := inf{t > 0 : X; ¢ D}, and we may focus on the impact of a
discretization of the exit time in the above expectation: this is a pertinent
question if we try to evaluate it by Monte Carlo simulations (which may be
an especially appropriate approach if the dimension d is large). Actually, the
numerical computation of this type of expectation is a well-known issue in
finance since it is related to the pricing of barrier options (see [Gob00] for
some references on the subject).

For this, consider a regular mesh of the interval [0,7] with N time steps
(t; = ih)o<i<n (h = T/N being the step size) and then, simply put 7™ :=
inf{¢; > 0: X;, ¢ D}. The associated weak error is then defined by

Err, (T, b, f, ) := E[f (X7)1,~s7] — ELf(X7)Losr].

The first main result of this work (Theorem 2) states that this error is at least
of order % w.r.t. h, provided that f satisfies a support condition and that for X
on the boundary 0D, o is uniformly non degenerate in the normal direction
at X, (this is a so-called non characteristic boundary condition (C)). Note
that this result holds true under a very weak non degeneracy condition and
without any Markovian structure on the process (X;);>¢ (analogous previous
results were proved in [Gob00] in the diffusion case under ellipticity condition).
Remark also that (C) is somehow a minimal condition to ensure a convergent
approximation. Indeed, it easy to imagine a deterministic path which hits 0D
only at time 7 = xT where Y is an irrational number in ]0, 1[: for this, 7% > T
for any N > 1 and Erry (7, h, f,z) = f(X7r) is constant. On the other hand,
we prove that as soon as (C) is satisfied, the rate of convergence is at least
1/2.

To be able to say more about the exact rate of convergence, we may re-



strict to the Markovian structure of stochastic differential equations (SDE in
short), with coefficients bs = b(X;) and o, = 0(Xj). To authorize a fully im-
plementable simulation procedure, we consider also its Euler approximation
defined by

t t
XN =+ /0 b(XY,))ds + /0 o (X)W, 3)
where ¢(t) := sup{t; : t; < t < t;11}. Note that the values (X} )o<i<n are

straightforward to obtain using the simulations of the Brownian increments
along the mesh. The so-called discrete Euler scheme corresponds to the killing
time 7V := inf{t; > 0 : X;\' ¢ D}: thus, the random variable to simulate is
simply given by f(X&)1,~., which can directly be derived from the realiza-
tions of (X/Y)o<i<n. The discretization error is now given by

EI‘I‘Q(T, ha fa 37) = ESC [f(X’lly)lTN>T] - ]ESC [f(XT)]-T>T]

(compared to Erri (T, h, f,z), an additional error is considered, corresponding
to replacing (Xti)OSiSN by (XtZY)OSZSN)

The unpleasant feature of this procedure is that it likely overestimates the
quantity of interest when f is non negative (Erry(T, A, f,z) > 0): this fact
is clear if X" = X (as for the previous case of Itd processes, or as in the
case of constant coefficients) since one has 7 < 7% with probability 1. In the
more general case where XV # X it is not so obvious but nevertheless, this
has been observed numerically in many situations (see Rubinstein and Reiner
[RRI1]; Boyle and Lau [BL94|; Baldi [Bal95]). One of the purposes of this
work is to prove that this bias is a systematic feature of this discrete killing
procedure and to provide a deeper analysis of this phenomena.

Of course, many improvements of the above procedure are now available: the
leading idea of these methods consists in performing additional simulations of
the exit of some appropriately scaled Brownian bridge on each discretization
interval. This has been introduced by Lerche and Siegmund [LS89] in the case
of BM in two-dimensional smooth domains, and later generalized in arbitrary
dimensions by Baldi [Bal95|. Some numerical studies with financial applica-
tions have been developed by Andersen and Brotherton-Ratcliffe [ABR96],
Beaglehole, Dybvig and Zhou [BDZ97|, Baldi, Caramellino and Iovino [BCI99]
among others. The global error w.r.t. the time step h has been analyzed by
the first author in [Gob00| (see also [Gob01]| for a simplified and accurate
procedure using half-space approximations): it essentially yields an order of
convergence equal to 1. Hence, we recover the usual rate of convergence which
is obtained without boundary conditions (see Bally and Talay [BT96a] and
references therein).

We now go back to the analysis of the error Erro(T), h, f, z) associated to the
discrete Euler scheme, and in the sequel, we restrict to the case of non-negative
functions f, in order to obtain a positive bias. We will consider rather weak



assumptions on the SDE (assuming Hypoellipticity type conditions (H)), the
case of smooth domain D (with a non Characteristic boundary assumption
(C)) and the Function f will be taken to be only measurable with a support
condition (see assumption (F)). Under these hypotheses, we prove in Theorem
9 that the weak error Erro(T), h, f, z) is bounded from above by Co\/h recov-
ering in some sense the case of general Itd processes. Moreover, this Theorem
states, and this will be our second main contribution to the problem, that the
weak error is also bounded from below by C;v/h (with C; > 0): this proves
that the order of convergence is exactly % This original estimate justifies the
well-known overestimation which has been observed in numerical experiments.

In the error analysis below, an essential feature which comes up is that the
main part of this error can be expressed as a suitable average with positive
weights of the overshoot of the discretely killed process above the boundary
(the overshoot being defined as the distance to the boundary of the process
when it exits the domain). Hence, it provides a clear explanation of the main
origin of the error: roughly speaking, the increments are of order 1/2, and hence
(but this is not so straightforward as it will be seen), the same estimate holds
for the overshoot. The central role played by the overshoot in this problem
has been identified in [RR91]|, [BL94| and analyzed in the context of lattice
approximations for barrier options in [Gob99|.

The derivation of an expansion of the Erro(T, h, f,z) at the order % would
require the computation of the asymptotic law of this overshoot: this is a
classical issue which is usually analyzed with the renewal theory for Markov
chains. Unfortunately, in a multidimensional setting, the available results only
hold under ergodicity type conditions (see Alsmeyer [Als94|, Fuh and Lai
|[FLO1] and references therein), which are never satisfied on the relevant process
(i.e. the time-rescaled Euler scheme). Hence, we have been able to expand the

error only in some simple situations, derived from the case of scalar random
walks (see Siegmund and Yuh [SY82]| and Siegmund [Sie79)).

Note also that in the one-dimensional case with constants coefficients (where
the expansion at order 1/2 holds true), a nice improvement of the procedure
(the so-called barrier correction) is available (see Broadie, Glasserman and
Kou [BGK99]): it simply consists in doing the simulations with the discrete
Euler scheme, but with a shifted boundary from the quantity Cvh (for some
appropriate explicit constant C). We will see that this boundary correction
can be extended to a multidimensional setting.

Outline of the paper. General notation used throughout the paper will be
defined at the end of this section. In Section 2, we consider the case of general
It6 processes and prove that the discretization of the exit time induces an error
of order % w.r.t. h. For this, we will overcome two major difficulties. First, the



process is not Markovian and we can not rely on an appropriate PDE solved
by the expectation of interest to decompose the weak error (see [Gob00]): new
ingredients are needed and this is a first attempt for the weak approximation in
non Markovian situations. Second, a non-degeneracy condition is stated only
on the boundary and this will force us to introduce localization techniques
that are of interest for themselves. Some technical results, that will also be
used in the Markovian case, will be also proved in this part. In section 3,
we consider SDEs and their approximations using the discrete Euler scheme
(to which the rest of the paper is devoted): we then give specific notations,
define some assumptions and state the main results concerning the upper and
lower bounds of the error Erry(T, h, f, ). Then, we give their proofs, using
some complementary technical results whose justifications are postponed to
section 4. Section 4 puts together all the estimates related to the behavior
of the discrete Euler scheme near the boundary: this is the technical core
of the paper and justifies the origin of the order of convergence equal to %
Furthermore, some more or less standard Malliavin calculus computations are
given and complete the proofs of technical results. Finally, in section 5, we
give an expansion result in the case of drifted BM with constant diffusion
coefficient, in the case of a half-space domain, and we improve the original
procedure by a boundary correction technique: numerical experiments confirm

its accuracy. In section 6, we conclude giving some easy extensions.
Notations

For smooth functions g(¢,z), we denote by 0%¢(t, x) the derivative of g w.r.t.
x according to the multi-index «, whereas time derivatives of g are denoted
by 0,9(t,x),0%g(t, x),. ... The notation Vg(t, z) stands for the usual gradient
w.r.t. x and g—g(t, z) = Vg(t,z).n(z) is the normal derivative on the boundary.
The Hessian matrix of g is denoted by H,.

As usual, the index z in E, and P, refers to the initial value of a given process
for which we compute the expectation or the probability: this will be clear
from the context.

The distribution function of the standard normal law is denoted by ®.

We will keep the same notation C (or C") for all finite, non-negative constants
which will appear in our computations: they may depend on D, on 7T, on the
coefficients which define the process X or on the function f, but they will not
depend on the number of time steps /N and the initial value x. We reserve the
notation ¢ and ¢ for constants also independent of xz, T" and f.

In the following, we consider a domain D C R¢, i.e. an open connected set,
which satisfies the following smoothness hypothesis (see [GT77]).



(D) The boundary 0D is bounded and of class C*°.
For some x € 0D, denote by n(z) the unit inward normal vector at z.

For r > 0, set Vap(r) := {z € R? : d(2,0D) < r} and D(r) := {z € R? :
d(z, D) < r}. B(z,r) stands for the closed ball with center z and radius 7.

We now recall standard facts on the distance to the boundary and the projec-
tion on D (see |GT77| pp. 381-384, |Gob01]).

Proposition 1 Assume (D). There is a constant R > 0 such that:

i) for any x € Vap(R), there are unique s = mop(z) € 0D and F(x) € R

such that x = map(x) + F(z)n(map(x)).

it) The function x — map(x) is the normal projection of x on 0D: this is
a C*®-function on Vyp(R).

iit) The function x — F(z) is the signed normal distance of x to 0D: this
is a C*™-function on Vap(R), which can be extended to a C™ function on
R? with bounded derivatives. This extension satisfies F(z) > d(z,0D)AR
on D, F(z) < —[d(x,0D) AR] on D¢ and F =0 on 0D.

i) For x € Vyp(R), one has VF(z) = n(mgp(x)).

In the paper, the function f involved in the expectation of interest satisfy the
following condition.

(F) f is a non-negative bounded measurable function with support strictly in-
cluded in D: d(Supp(f),0D) > 2¢ > 0.

We may assume that 2¢ < R and that f is not identically equal to 0.

2 General Ito6 processes

In this section, we consider (X;);>o solving (1) with bounded coeflicients (bs)o<s<r
and (0,)o<s<r: define the two stopping times 7 := inf{t > 0 : X; ¢ D} and
™ = inf{t; > 0: X;, ¢ D}.

For s € [0,T], define oy = VF(Xj).0,0:VF(X;). Remind that for X, €
Vop(R), VF(X;) = n(map(Xs)). We now state an appropriate non character-
istic boundary condition.

(C) There is some constant ag > 0 such that almost surely, for s € [0,7] with
X, € Vap(R) !, one has a, > ay.

! w.lo.g., we can assume that the constant R is the same as the one defining the



This is of course weaker than uniform ellipticity, and ensures somehow that
the paths of X are a.s. non tangent to dD. Some mild smoothness property
on o (some continuity in probability) will be also needed: the condition stated
below is not restrictive at all and is fulfilled for instance as soon as (05)o<s<r
satisfies a Holder property in Ly-norm.

(S) For any 6 > 0, there is some function 7 with lim, o+ 75(h) = 0 such
that a.s., for s €]t;, t;y1[ with X, € 0D, one has P(| [+ (o, — 05)dW,,| >

Oy/Tiv1 — 5| Fs) < ns(h).

The main result of this section states that the approximation error consisting
in replacing 7 by 7% in E(f(XT)lT>T) yields an error at least of order % w.r.t.

h, under the non characteristic boundary condition (C).

Theorem 2 Assume (C), (D), (F) and (S). For some constant C, one has

0 <E[f(X7)Llvsg] — E[f (Xr)1sq] < C%\/ﬁ'

The error is non negative since a.s., one has 7V > 7. Note that a similar result
was proved by the first author in [Gob00| under much stronger assumptions,
namely in the Markovian setting and under a uniform ellipticity condition.
One may wonder if a lower bound is available with the same rate: the answer is
NO if no extra conditions are imposed. Indeed, even under (C), it is possible
that P(r < T) = 0 and the error equals 0. It is also possible that the support
of f does not intersect that of the law of X7. So, we leave this issue of a lower
bound in the non-Markovian setting and will handle it in the diffusion case
(Section 3).

PROOF. Since 7™ > 7, one has E[f(X7)l,~nsr] — E[f(X7)l,57] =
Ellr<,E[f(Xr)1,~v57 | F:]] and thus, it is enough to derive

£ = E[f (Xp)1,nop] < 0”f||°°f (4)

for an initial point x € 0D, for a shifted time mesh defined by {¢; : 0 < i < N'}
with tg =0, 0 < t; < h, tz+1 =t;+h (i > 1), for a new terminal time 7" = ¢
and a modified exit time 7V = inf{t; > #; : X, ¢ D}. The constant C in (4)

has to be uniform in 7” in a compact set, in N’ and in z. For convenience, we
still denote N for N' and T for T".

We recall some basic estimates, which will be useful in this section but also in
the next sections: they only exploit the boundedness of the coefficients.

signed distance to the boundary in Proposition 1.



Lemma 3 (Bernstein’s type inequality) Consider two stopping times S, S’
upper bounded by T with 0 < S'"—S < A <T. Then for anyp > 1 and ¢ > 0,
there are some constants ¢ > 0 and C, such that for any n > 0, one has a.s.:

2
PLsup 1%, — Xl 2 1| ] <Cexp (—c”—),

€[s,s"] A
E[ sup ||X; — Xg||” | Fs] <CAP"2,
te[Ss,s']
Xg,0D 2(Xg,0D
Elexp (—c'%) Fs] <Cexp (—c%) .

We omit the proof of the first inequality which is standard and refer the reader
to Lemma 4.1 in [Gob00] for instance. The two other ones easily follow from
the first one, see also Lemma 4.1 in [BT96b] for the last one.

The next lemma is crucial in our analysis: its rather technical proof is post-
poned to the end of this section.

Lemma 4 Assume (C), (D) and (S). There are some positive constants C
and Ny such that for N > Ny, for anyi € {0,--- , N—1}, one has for X;, € D

P33t € [ti,tiy1]) : Xe ¢ D | F,) < CP Xy, € D| Fl.

We now turn to the proof of (4) when z € 0D and for this, we introduce an
auxiliary non negative process defined by

Vi= ]E(]-T<th(XT) | E)? (5)

with 7, = inf{s > t : X; ¢ D}. This definition has some similarities with
v(t, X;) later defined in section 3 in the Markovian case (v solving some PDE),
except that under the sole non characteristic boundary condition, there is no
guarantee that v is smooth (and in general, it is not).

First, note that V; = 0 if X; ¢ D, hence V, = 0 (z € 0D). Since 70 > T, one
has clearly Vi = f(X7r) for X € D. Hence, the error to analyze can be easily
decomposed as follows:

N-1
g :]E(]'T<TN VT) = Z ]E(‘/;i.H/\TN - ‘/ti/\TN)
1=0

N-1

]E ltl <TN %14-1 ‘/;i+1/\7'ti) + (%i+1/\7ti - Vél)]) (6)

=0

First, it is easy to check that 1, ..~ (Vi,, — Viian,) = Ly o <t Vi, -
Second, we assert that E(1;, .~ (Vti fiAT V;i) |F:,) = 0. Indeed, by definition



of Vi, Ar; > One gets
]E(]-tq; <rN V;fi+1/\7'ti |‘Ez) = E(lti <N 1T<Tti+1/\7'ti f(XT) |~¢t1) (7)

On the event {7, < t;11}, one has t;y1 ATy, = 7, = Toopnn, < tiyn < T
hence, 17<s, , ., = 0. On the complementary event {tix1 < m,}, one has
{t’H-l < Tti} n {T < Tti+1/\’7'ti} = {ti+1 < Tti} n {T < Tt¢+1} = {T < Tti} USing
the definition of 7. We have proved that the r.h.s. of (7) equals E(1;, ..~ V}, | F,)
and this completes our assertion.

Plugging previous equalities into (6) leads to

2

&= ]E(]'ti<TN 1Tti<ti+1 ‘/ti+1)' (8)

i

Il
<)

To complete the analysis, we need the following lemma that will be proved
later.

Lemma 5 Assume (C), (D), (F) and (S). There is some constant C' such
that for any t € [0,T], one has a.s.

[/l

Vv, < onll®
1ANe

[F(Xe)]+- 9)

Thus, it follows that

[[f1loo
E(ltl <rN ]'Tti<ti+1 Wi-}—l) Scm\/}_ﬂE(lti<TN ]'Tti<ti+1)
”f”oo N,
SCW\/EP(Q <7 Xy, ¢ D)

:C%\/}_ﬂp(tH_l = TN)

where we used at the first line, Ly estimates on the increments [F'(Xy,,,)]+ =
[F(Xy,,,) — F(X5,)]+ (see Lemma 3), and Lemma 4 at the second line. Com-

bining the previous estimate with (8) yields £ < C ”li/“\;ﬁ\/ﬁlf"(TN < T) and
thus, completes the proof of (4).

PROOF of Lemma 4 We adapt some ideas from [Gob00|: in the cited
paper, a uniform ellipticity condition was assumed, and this enabled to use
a Gaussian type lower bound for the conditional density of X, , w.r.t. the
Lebesgue measure, together with some computations related to a cone exterior
to D. Here, under (C), the conditional law of Xy, , may be degenerate and our
proof rather exploits the scaling invariance of the cone and of the Brownian
increments.



It is enough to prove that a.s on {t; < 7, < t;11}, one has

1
IED(*Xti+1 ¢ D ‘ '7:”1) 2 5 (10)
Indeed, it follows that P(Xy,,, ¢ D | F,) = E(1,, <4, P(X4,y, € D | Fr,) | Fi)

P, <t; Ft. 1
Plr<titn | 74) and Lemma 4 is proved.

To get (10), write X, ,, = X, +0r, (Wi, —W,, )+ R; where R; = 77':;:—1 by du+
Ji+ (o — 0r,,)dW,. The domain D is of class C?, and thus satisfies a uniform
exterior sphere condition with radius R/2 (R defined in Proposition 1): for
any z € 0D, B(z — £n(z), &) C D¢ In particular, if we define for 6 €]0, 7/2]
the cone K(0,2) = {y € R? : (y — 2).[-n(2)] > ||y — 2|| cos(#)}, then one has
K(6,z) N B(z,R(#)) C B(z — Zn(z), &) C D* for some appropriate choice of
the strictly positive function R(.). Then, it follows that

P(Xti+1 ¢ D | thi) > ]P(Xti+1 € K(O’ X’fti) N B(XTtivR(e)) ‘ F’Fti)
> P(Xti+1 € K:(@,Xni) ‘ f‘rti) o P(Xti+1 ¢ B(XT%,R(H)) | thi)

>

> P((Xti+1 o XTti)'(_n(XTti)) > \/O“/Tt,- (ti+1 o Tti) > ||Xti+1 - XTt,- ” COS(H) | ‘7:’&1)

- P(Xti+1 ¢ B(XT%,R(G)) | ’7:’Tti) > A - AQ(H) - A3(9)7 (11)

where A; = ]P((Xt¢+1 - XTti)'(_n(XTti)) > \/a'rti (ti—}—l - Tt,-) | Fni)a

AQ(H) = P(\/ani (ti+1 - Tti) < ||Xti+1 - XTt,-” COS(Q) | ‘FTt,-)’
A3(0) = P(Xy,p, ¢ B(Xr,,, R(0)) | ).

2\/“‘% (ti—i—l - Tti) | thi) - P(‘n(XTt,—)'Ri‘ > \/Othi (ti+1 - Tti) | thi) = All -
Aip. The random variable (—n(X, )).0r, (Wi, — W5,) is conditionally to
Fr, a centered Gaussian variable with variance o, (tit1 — 7,), and thus
A = ®(-2) > 0. Owing to the condition (S) and since a,, > ag a.s, it
is easy to see that the contribution A;9 converges uniformly to 0 when A goes
to 0, and thus for h = T'/N enough small, one has A; > % > 0.

— 2 cos? _
Term Ay(f). From Markov’s inequality, Ay(f) < ]E(”Xt”lajziﬂl_n'gg) ;)
C cos*(#) using (C) and estimates of Lemma 3. In particuiar, taking 6 close

to 7/2 ensures that A5(f) < 41
Term Aj(f). Using Lemma 3, one readily gets A3(0) < Cexp (—c@) < %
for h small enough (R(6) > 0).

Term A;. Clearly, one has A, > P((-n(Xy,)).0n, (Wi, — Wr) >

<

Putting together estimates for A;, A5(f) and A3(f) into (11) give P(X,,,, ¢
D|F,)> AL This proves (10).

PROOF of Lemma 5. Since V; = 0 for X; ¢ D, it is enough to prove the

10



estimate for X; € DN Vyp(R A e/2) for which 0 < F(X;) < R A e/2. Denote
7 =inf{s > t: F(X;) < R} and split V into two parts V; = V! + V;? with
V! =E(lrenlpopf(Xr) | F) and V72 = B(Lyer g0 f(X2) | 7).

Before estimating separately each contribution, we set some standard nota-
tions related to time-changed Brownian martingales. Define the increasing
continuous process A; = [’ a,du (from [t,+o00[ into R") and its increasing
right-continuous inverse C; = inf{u > ¢ : A, > s} (from R* into [t, +00[) (see
section V.1 in Revuz-Yor [RY94|) and put M, = [[* VF(X,).0,dW,, Z, =
F(Xc,). From the Dambis-Dubins-Schwarz theorem, M coincides with a stan-
dard BM S (defined on a possibly enlarged probability space) for s < [ a,du
and it is easy to check that § is independent of F; (see the arguments in the
proof of Theorem 1.7 in [RY94]).

Owing to the assumption (C), A and C are strictly increasing on [t, 7] and

[0, fﬁ% aydu). Thus, for s € [0, ftTtR aydu|, one easily obtains
Zy= P(X)+ B+ [ Ao
0

where \, = {[VF(X,).b, + %Tr(HF(Xu)auaZ)Hu:cv}% is bounded by ||A||co-
Define

7= F(Xy) + Bs + || Moos > Zs. (12)
Finally, put 77 = inf{s > 0 : Z, < 0}, 74 = inf{s > 0 : Z, > R} and
analogously 77, 7§ for Z'.

Estimation of V. Let us first prove that for any stopping time S € [¢, T], one
has

E(f(Xr) | Fs) <I|flloeP(F(Xr) > 2¢ | Fs)

_ 2
<Cllfllwexp (— E Sy

(13)

The first inequality simply results from the support of f included in D\Vjp(2¢)
(assumption (F)). To justify the second one, note that {F(Xr) > 2} C
{IF(Xy) — F(Xs)| > 22 — F(Xg)} C {|[F(Xy) — F(Xg)| > (2¢ — F(Xs)),}
and the proof of (13) is complete using Lemma 3 applied to the Ito6 process
(F(X5))s>o0 with bounded coefficients.

We now turn to the evaluation of V;'. On {T < 7/}, using the notation with
the time change above, one has T = Cy4, > Coor—) and T — Coyr—yy <
L(Ar —ao(T - 1)) < %(T —t). Thus, one obtains

ag

1
‘/t S ]E(lcaO(Tft)<Tt lcao(T—t)<TtR1T_ca0(T—t)SHoéll)oo (T—t)]E<f(XT) | Fcao(T*f)) | Ft)
(2e = F(Xe, rn))i
< C||f||oolE(lca0(T7t)<Tt]'CaO(Tft)<7—tR exp ( - T ;;(T t) ) | ]_—t)
(26 = Zyr—0)
< C||f||°°E(1ao(T—t)<ToZ’ Le,goruy<rft €XP ( ik T - ¢ ) | }—t)

11



where one has applied at the second line the estimate (13) with S = Cyyr—y)
(here ¢ = cw‘f—), at the third one {Coyr—ty < 7} = {Vs € [t,Copr—p)] :
F(Xy) > 0} ={Vu € [0,a0(T — t)] : Z, > 0} = {ao(T ) <1} C{ao(T —
t) < 7'} and (2 — F(Xe, roy))+ = (26 = Zugr—0)+ > (26 = Zyyry))+-
Reminding the law of 3, one finally gets that V;! < C|| f||eo®1(ao(T—1), F(X}))

. 2e—z—Br—||A oorz
with (I>1(’I‘, Z) = E(1Vu6[0,7‘]:z+,3u+||)\||oou>0 exp ( - a()C / b o —IAl )) With
clear notations involving the smooth transition density of the killed drifted
BM (see Sections 3 and 5) and Gaussian type estimates of its gradient (see
|[LSU68| Theorem 16.3), one has ®(r,2) = [~ ¢-(2,v) exp( agC ﬂ)dy
and

o0 1 _ 2 2 _ 9
‘6z¢1(r, Z)| S C/ — eXp(—cu) exp ( _ aoclw)dy.
0o T r r

We now justify that |0,®1(r, z)| < 75z for 0 < z < ¢/2 and for this, we may
split the domain of integration into two parts. Fory < e, (26— y) > £2 and the

corresponding contribution for the integral is bounded by [5° f exp(—ct= y)2)
[% exp ( — aoc’ﬁ)]dy <& Fory>cand 0<z2<¢/2, (z—y)? > 52/4 and
the integral is bounded by [g° Z= exp(—§ (Z;y)z)% exp(—£5)dy < &

Since ®4(r,0) = 0, one gets ¥, (r z) < £z for z € [0,6/2] and this proves
that V! < Cll=p(x,).

Estimation of V2. Clearly, one has V? < ||f]|ooP (TtR <7 .7-',:). Note that
{tR < 7} = {7f < ¢} c {rZ < 77’} because of (12). Hence, one has
V2 < || fllo®2(2) where ®2(z) = P((2 + By + || Al sot)uso hits R before 0). It is
well-known that ®,(z) = % < Cz (see Section 5.5 in [KS91]| e.g.)
and this proves that V2 < C||f|looF(X3).

Combining estimates for V' and V2 gives the result of Lemma 5.

3 Diffusion processes

In this section we consider (X;);>¢ solving the SDE:
dXt = b(Xt)dt + O'(Xt)th, X() =T € D. (14)

When needed, we will use the usual notation X** for the solution starting
from z at time ;. We approximate this diffusion by its Euler scheme (X}¥);>0
defined as in (3).

Additional notations and assumptions. In the following O,y (h) (resp.

12



O(h)) stands for every quantity R(h) such that Vn € N, for some C' > 0, one
has |R(h)| < Ch™ (resp. |R(h)| < Ch) (uniformly in z).

The notation L stands for the infinitesimal generator of the diffusion, Lg(z) =

1
b(z).Vg(z) + §Tr(00*(x)Hg(:c)). We additionally define for all z € R? the

1
operator L, by L,g(z) = b(2).Vg(z) + §Tr(aa*(z)Hg(a:)), which can locally
be interpreted as the generator of the Euler approximation.

We introduce:
(S?) b and o of class C§° (bounded with bounded derivatives).

We also require the coefficients to satisfy the strong Héormander assumption
(see Remark 6). Identifying the coefficients (0;)1<i<¢# with the vector fields
which they define, we denote by Lj/(z) the set of the Lie brackets of length
lower or equal to M of these vector fields taken at point x.

(H) 3M e N,3C >0,Vz € R4, Vz e RY, > (Y,2)* > C|z|%

YLy (2)
We now define the analogue to (C) by setting a(x) := VF(z).00*(z)VF(z).
(C?) Jag > 0,Vz € Vyp(R), alz) > ap.

For (t,z) € [0,T] x R we set v(t,z) := Ey[lrsr_of (Xr_4)]. It is known,
see [Cat91], that under (C’), (D), (H), (S’) for every bounded measurable

function f, v(t,z) = / gr—i(z,y) f(y)dy where gr_; denotes the transition
D

density of the killed process at time 7' —¢. The function ¢ is C*((0,T] x D X
D, R), satisfies Kolmogorov’s equations and for any multi-index « there exist
constants ¢ > 0, > 0 and C s.t.

= —ylI”

_ C
V(s,2,y) € (0,T] x D x D, [0%s(x, y)| < — exp(—c——

(15)
These estimates easily follow from Proposition 3.44 in [Cat91]| and the argu-

ments used in the proof of Proposition 1.12 in [Cat90]. Thus, v belongs to
C*([0,T) x D,R) and satisfies the mixed Cauchy-Dirichlet parabolic PDE

0w+ Lv=0o0n[0,T] x D, v(t,z) =0 on [0,T] x D°, v(T,z) = f(z) on D,
with the estimates sup,p |0%0(t,z)| < C||flloo/(T — t)¢, for some constants
depending on «. If we additionally assume (F), as a consequence of (15), v and

its derivatives near 0D are uniformly bounded and exponentially decreasing
when t — T': for all multi-index « there exist constants ¢ > 0, > 0 and C

13



such that

o [[f1loo e?
V(t,z) € [0,T) x Vapl(e), |05v(t,z)| < C’m eXp(—cT —

)- (16)

Since the function f is non-negative and not identically equal to 0, we have
the following property, which will be used for the lower bound:

(P) Under (C’), (D), (F), (H), (S?), we have v(t,z) > 0 on [0,T) x D.

PROOF. We are reduced to check the strict positivity of ¢;(z,y) on (0, 7] x
D x D. But this property follows from the arguments used for Lemma 5.37 in
|Cat92], that can be adapted to our case. Under a uniform ellipticity condition,
see [Fri64] Theorem 11 p 44. For SDEs in the whole space under (H), see
[BL91| and references therein.

Remark 6 The strong Hormander condition (H) is needed only for the lower
bound in Theorem 9. In particular, Theorem 8 and the upper bound in Theorem
9 are valid under the weak Hormander condition (H?) (see [Nua95] p.111 for a
precise definition). We would like to thank P. Cattiauz [Cat03] for having sug-
gested us the following example of a linear SDE which never hits the boundary
of the domain D =|—m,2n[. Set Xy = 7/2, b(x) = cos(x), o(z) = sin(x): (H’)
holds true, (H) does not, and (X;);>o is living in [0, 71]. Thus, the killing bound-
ary has no effect in that case and one could prove that Erro(T, h, f, ) = O(h)
(see [BT96a]), avoiding a possible lower bound with rate \/h.

Before stating our main results, we mention that Assumption (C?) is sufficient
to guarantee the convergence to 0 of the error.

Proposition 7 (Weak error convergence). Under (C*), if D is of class C?
with a compact boundary and the coefficients in (14) are Lipschitz continuous,
for every bounded continuous function f we have:

hlglo Erro (T, h, f,x) = 0.

PROOF. According to Proposition 1.1 in |[Gob00| it suffices to satisfy the
condition P,[3t € [0,T] : X; & D; Vt € [0,T], X; € D] = P,[M = 0] = 0,
where M := inf,cpo ) F/(X). For this, we verify the Nualart-Vives criterion for
the local absolute continuity of the law of M around 0 (see Proposition 2.1.3, to
check M € D2 and Corollary 2.1.1 in [Nua95|): namely, it is enough to prove
that || DF(X)||r2q0,ry > 0 a.s. fort € My :={s €[0,T], F(X,) = M} C|0,T]
on the event | M| < %(‘”). But for t € M7 and |[M| < R/2, X; € Vap(R) and
thus || DiF(X})|)?> = a(X;) > ag > 0: by continuity of s € [0,t] — D F(X;), it
easily follows || DF(X3)||r2(o,27) > 0 a.s..

14



3.1 Main results

Theorem 8 Under (C’), (D), (F), (H), (S’), we have:
Erry(T, b, f, ) = %]Em [ /0 ' g—Z(s, XML, ~(F(X™)]+ O(h).

Theorem 9 Under (C’), (D), (F), (H), (S?), for h small enough (depending
on d(z,0D) > 0), we have

Cl\/’_l S Eer(Ta h7 f’ x) S CZ\/E
for two constants C1y > 0 and Cy > 0.
Proposition 10 Under (C’), (D), (S’), for some ¢y > 0 one has:

sup B, [exp(colh™/?F~(X[,x)]7)] < oc.
N,s€[0,T]

Hence, the sequence of random variables (h’l/zF’(XSA/f\TN))Nzl is uniformly

tight on [0,T].

The first theorem exhibits the relevant term of the error, i.e. the one that
has to be developed in order to give an expansion of the error. The second
one states that the leading term is really of order % Moreover, the main
term can be interpreted in terms of Tanaka’s formula as a suitable average of
the overshoot. Indeed, we show, see Lemma 13, that {E,[L%, ~(F(XY))] =

sATN

E.[F~ (XY _x)] + O(h). Therefore, the last proposition is somehow the first

sATN
step for a future expansion of the error.

3.2 Proof of the main results

We first state several technical lemmas whose proofs are postponed to section
4. Since f is non negative, v is non negative and since v vanishes on 0D, clearly
g—fl(t, x) > 0: actually, the inequality is strict (thanks to Property (P)).

Lemma 11 (Positivity of the inner normal derivative). Under (C’),
(D), (F), (H), (S°), for any (t,z) € [0,T[x0D, we have g—v(t, z) > 0.

n
Lemma 12 (Bounds for the expectation of the local time on the
boundary). Under (C?), (D), (H), (S?), for h small enough (depending on
d(z,0D) > 0), we have

Cl\/ﬁ S ]Esv [L(i)“/Q/\TN (F(XN))] S ]E:c [L(J)“/\TN (F(XN))] S C'2\/5:
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with Cy > Cy > 0.

Lemma 13 (A sharp control for the integral of the exit probability).
Under (C), (D), (S°), we have [} P,[t <7V, XN ¢ D]dt < Ch.

A key step of the proof of Theorem 8 and Theorem 9 consists in controlling
the derivatives of the function v. Equation (16) gives a point-wise estimate
on these derivatives close to the boundary. Lemma 14 below gives controls of
the expectations of these derivatives far from the boundary. From now on we
denote by ¢ a cutting function near D such that: ¢ € Cp°(R%, R), 1y, ,(/2) <

Cla . :
1= < 1y, and ||0%Y]|o < T' for all multi-index . In the following
Ea
two lemmas we introduce 75 = inf{t > 0: X}¥ ¢ D(R)}.

Lemma 14 (Expectation of the derivatives “far” from the boundary).
Under (C?), (D), (F), (H), (S?), for all multi-indices o, o/, all function
g € C°(RY,R), there exist constants € and C such that Vi € [0, N — 1],t €
[ti’ T — h] :

By [1ycrm iy g(X[)02 (00 ) (1, X}V)]| < C|1|]:\”;’

[|.f lloo
1Ae€

E; [Licrmnryg(XD)05 00" ) (1, X)) < O7%

Lemma 15 (Control of the last time step). Under (C’), (D), (F), (H),
(S?), there exist C, B such that:

N C

(T—- )/\TN/\TIJ%,):H < 1 /\E’Bh‘

E, [o(TATN AT, XX v((T=h)ATN ATR, X T,

/\’TN/\’T )

We are now in position to prove our main results.

PROOF of Theorem 9. As a consequence of Theorem 8, the lower bound
follows from Lemmas 11 and 12, while the upper bound is derived from equa-
tion (16) and Lemma 12.

PROOF of Theorem 8. Let us first write: Eer(T h, f,z) := E1(h)+E2(h)+
E3 where E(h) := Ey[u(tY" AT AN(T —h), X TN/\TN/\(T )] —v(0,z), E2(h) =
B, [v(TY ATR AT, XﬁVATNAT)]_Ew[U(TN/\TR (T'—h), XTN/\TN/\T h) )l Es =

]Ez[ng<T<TNf(X7]Y)]. Lemma 3 gives E3 = O,y(h) and Lemma 15 states that
E5(h) = O(h). Concerning E;(h), we use the semi-martingale decomposition
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of v(t ATR, X N) as in [Gob00] Corollary 3.1. This term writes:

Ei(h) =E, l 0 Ly epdo(t, X[Y)dt + 5 =

1
+1xnep (Vv(t, XM).dx) + §Tr(Hv(t, XN )d(XN)t))

(T—h)ATN /\7'}12V
/ -9 4, X)Ly (P(X))

+ Lgvgn (Volt,man (X)) aXF P 4 STe(Hy (1, mop (X)) (X 7),) )]

where (XtN ’6D)t20 is an It6 process with bounded coefficients, see Proposition
3.1 in [Gob00] for a complete description.

Estimates (16) and Lemma 13 directly yield that the contribution with X} ¢
D is bounded by Ch. Terms with X» € D can be treated as in [Gob00] using
estimates (16) and Lemma 14: they are also bounded by C'h. We mention that
the controls obtained therein for the terms outside the domain were not sharp
enough to derive our current main results.

At last, the difference between the integrals w.r.t. the local time stopped in
(T —h) ATV ATH and T A7V is a Opy(h): this is easy to prove using (16),
Lemma 3 and the local L, boundedness of the local time, we omit details.

PROOF of Proposition 10. We only have to prove that there exist con-
stants ¢ > 0 and C s.t: VA > 0,supy P,[F~ (XY _~) > Ah'Y/?] < Cexp(—cA?)
for t € [0, T], then any choice of ¢g < ¢ is valid. We write:

o(t)/h
P[P (X[ ) > AR = Y Eollovs Ly o PIF(XY) > AR2|Fy ]
=1

+ P, [F(XN) > An'? 7N > ] := A, + B,

where we define 7Y = inf{t > t;_; : X}V ¢ D}. B, is directly estimated
applying Lemma 3. This Lemma also enables to develop A; as follows:

o 2h
At < z IE [1 N>t 117'N <theXp< t7N>]

=1 N Tti*l
<C exp(—cA®)h / dtP [T > §(1), d(t) + h > Typ)]

d2 Nt ’a
S0 D)>]_

<C exp(—cAZ)h_l/ dtEy [1-7 5 () €XP <—c b
0

In the proof of Lemma 13, we show that the last integral is bounded by Ch,
which completes the proof.
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4 Proof of technical lemmas
This section is dedicated to the proofs of Lemmas 11 to 15.
4.1 Hopf boundary point lemma

Lemma 11 is a direct consequence of the following Lemma applied to the
function v: indeed, the martingale property for U* below easily follows from
the one for (v(t AT, Xinr) = E(f(X71)1:57|F))o<i<r (Markov property); since
v(to, xg) = 0 for (tg,z9) € [0,T[x0D, Property (P) provides the required
strict lower bound for v; at last, since v is smooth, the liminf below equals
the normal derivative of v.

Actually, the type of result stated in Lemma 16 is known in the PDE theory
as the Hopf boundary point lemma: in the uniformly parabolic case, see |Fri64];
for partially degenerate elliptic operators see [Lie85]. We give here a variant
of this result, using a probabilistic proof under the sole assumption (C’) and
without smoothness properties on u, which seems to be new.

Lemma 16 Assume (C’), (D) and (S). Consider (to,zo) € Rt x 0D and
the time-space set D = [ty,to + 0] X (DN Vyp(R)) (with § > 0 and R defined
as in Proposition 1). If u is a bounded continuous function defined on D such
that U = (U® = u(s A 7p, Xe%5 ))ssto (with Tp = inf{s > t; : (s, X?) ¢
D} <ty+0) defines a super-martingale and u(t,z) > u(ty, zo) for (t,x) € D,
then one has

i inf u(to, To + An(zo)) — u(to, o)

N \ > 0.

PROOF. The main idea is to consider a closed subset A C D containing the
points ((to, o + An(29))o<a<r, (Ao > 0 small enough) and a Cg°(D) function
w with the four following requirements: i) w(to, zo) = 0 ii) dw + Lw > 0 on
A; iii) 22(tg, zo) > 0; iv) u > u(to, 2) + gow on OA for some g > 0.

Then for such A and w, if we set 74 for the exit time of (s, X[%)>s, from
A (for (tg,) in A), we easily deduce by ii) that (Z, := u(s A 74, X&) —
u(to, To) — gow(s A TA,Xﬁ‘}\’fA))szo is a super-martingale, and thus using iv)
and i) 0 < E[Z,,| < Zy, = u(to, z) — u(to, xo) — eo(w(to, x) — w(to, xo)). Take
(to, ) = (to, o + An(zg)) € A with A | 0 to get the result considering iii).
Now, we turn to the construction of A, w and gy. Assumption (C’) is here
crucial. Up to modifying u for ¢t < t3, we can assume that D is of the form
D =ty —6,tg+ 6] x (DN Vsp(R)). Under (D), z, satisfies an interior sphere
condition in D that permits to construct a time-space ball B := B(P*,R) C
D (wlog R < dAR/2), P* = (to,z*) s.t. * — x9 = Rn(zy) and BN
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Figure 1. Space representation of A at ¢ = 1g.

0D = {(to, o)} (see Figure 1). Now, introduce the time cylindrical half-space
Pt o= [ty — 6,to + 8] x {z € R? : (z* — 2).n(xg) > pR} for p € (0,1) and
denote A := B NPTt the expected set. For a« > 0, we define wq(t,z) =
exp (—ar?) — exp (—aR?) where 7% ;= ||z — z*||? + (¢t — tp)%: easily, we get
[0 + Llwy(t, z) > exp(—ar?) (2{(co*(z)(z — 2*),z — 2*)a? — Ca) for (t,z) €
A. Since by continuity lim, . (co*(z)(z — z*),z — z*) > agR? under (C’),
it is clear that we can choose the cutting-level p close enough to 1 to ensure
[0; + Llw, > exp(—ar?)(agR?*a? — Ca) > 0 on A for a big enough: for such
a, w = w, satisfies iii). Statements i) and ii) are straightforward to check. It
remains to exhibit g > 0 in iv): since w = 0 on B, we may consider only
(t,z) € 0A\OB. But on this compact set, u > u(ty, o) and thus, iv) holds
true for £y small enough.

4.2 Boundary estimates

We prove in this section various boundary estimates under mild assumptions,
namely (C’), (D) , (S’). This significantly improves the previous results
[Gob00] obtained in the uniformly elliptic case.

We first state a preliminary bound for the integral of the exit probability.

Lemma 17 Under (C’), (D), (S°), we have [j P,[XN ¢ D,7V > t]dt <
CvVh.

PROOF. Applying twice Lemma 3 first with S’ = ¢, S = ¢(¢) and second
with S' = ¢(t) + h, S = t, we easily get:

T Nl 2 (XY,0D
/ P[t <7V, XN ¢ Dldt <ChY_E, llﬂui exp (—c¥>]
0 i

=0
T 2 XN D

SC/ E, llTN>t exp (—c%)] dt + Ch.
0

We now wish to apply the occupation times formula and use for this a local-
ization argument. Namely, under (C?), it is clear that for some 7o > 0 (w.l.o.g.
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To S R/Q)
Vz € Vap(R/2), Yy € B(z, 7o), (00™(2)VE(y), VE(y)) > ao/2. (17)

Thus, for XJj,) € Vap(R/2) and X}V € B(X[;,70), we have X}V € Vop(R),
d*(X})N,0D) = F?(X}) and thus d < F(X") >,= ||0(X$Et))*VF(XtN)||2dt >
ao/2dt. The occupation times formula gives:

/TP [t <7, XN ¢ Dldt

d2(XN, 8D)
< C/ [ TN >t Xﬁ’(t)EV(gD(R/LL),XNEB(Xg(t),ro) €xp (—CtT dt+ Ch

<20 [ dyexpl—c B, L (XY + O (1)

where the discarded events in the second inequality are neglected using Lemma
3. Note that E,[LY.,, »(F(X™"))] < C uniformly in y € [-R/4, R/4]: the proof
is complete.

The preliminary bound from Lemma 17 helps now to prove the upper bound
stated in Lemma 12.

Lemma 18 Under (C?), (D), (S°), we have E,[LY., ~(F(XM))] < CVh.

PROOF. As a consequence of Tanaka’s formula and after taking the expec-
tation, we have:

E, (5 Lo (F(X™)) = F~ (X)) ‘ <c| "B XY ¢ DV s ddt. (19)

Hence using Lemma 17 it remains to control the expectation of the overshoot:

By [F~ (X ]—ZE [F~ (X)L~ ] ZE [Lonsr Exy [F7(XG)]

i=1 =1

N
= Eu[lvsy, , Lxy evop(r/2)Exy [F=(X)]] + Opar(h). (20)
=1

On the set {X/} € Vap(R/2)} we have to upper-bound: ]Eth;r_l [F~(XM)] =
]EXg_l[thz;z_lstiE[F_ (XY | .7:%1:_1]] with 7Y = inf{t > ¢, : XYV ¢ D}.
Remind that F'~ is Lipschitz so Exy [F~(X))] < C\/EPXg_l [T < ti]. We
conclude the proof using Lemma 19 and summing over 1.
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Lemma 19 Under (C?), (D), (S?), for h small enough, we have for x €
Vbl)(}{/Q)f
P,y < h] < OP.[X} & D]+ Opa(h).

PROOF. We restrict to X, € B(x,ro), noting thanks to Lemma 3 that
0

]P’w[X%]V & B(z,70)] = Opa(h). The rest of the proof is similar to the one of
Lemma 4.

The control of order 1 stated in Lemma 13 is then a direct consequence of (18)
and Lemma 20 below.

Lemma 20 Under (C’), (D), (S’), we have for y € [-R/4, R/4]

E, [LY

TATN

(F(XM)] < Oyl + n'72).

PROOF. Tanaka’s formula gives:
Eo[Lipw (F(X™Y))] =2E; [(F(Xpv) —y)” = (F(2) —y)7]

TATN
T
+ 2B, Lrxpya Lovsd( PO (21)

Using Lemmas 18, 17 and estimates (19), we obtain that the first term of the
r.h.s. above is upper bounded by 2(E,[F~ (XN, _4)] + |y|) < Ch'/? 4+ 2|y|. For

T
the other term it is enough to prove that w(y) := E, [/ Lp(xmy<ylovsdt] <
0 <

C(Vh + |y|). Since w is increasing, for y < 0 one has w(y) < w(0) < Cvh by
Lemma 17. For y > 0, it is enough to upper bound w(y) —w(0) by C(y +v/h):

T
write w(y) — w(0) = K, [/0 10<F(XtN)§y1TN>t1X£’(t)€V3D(R/2)dt] + Opa(h) using
Lemma 3 (with |y| < R/4). The localization technique of Lemma 17 associated
to the occupation times formula gives:

T y
Eul [ Lok lovsidt] < C [ QB (L, v (POX)] + Opalh). (22
The expected local time in the above integral is uniformly bounded in u €

[0, R/4], and this gives w(y) — w(0) < Cy + Opu(h).

It remains to prove the lower bound from Lemma 12.

Lemma 21 Under (C’), (D), (H), (S’), we have for h small enough (de-
pending on d(x,0D) > 0)

E, (L3 (F(X™))] > OV
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with C > 0.

PROOF. For sake of simplicity, we prove the result for the local time at time
T instead of T/2. Set LY = E,[LY%, v (F(X?"))]; starting from (19), (20) and
using Lemma 13, one has:

TATN

N
LN 2 Zng[1TN>t¢_1,Xg71EV@D(Cohl/z)EXtJ;ll [Fi(Xt]:])]] —Ch (23)
where ¢o denotes a constant to be fixed later on. If we write F(X}Y) =
FX) )+ VFX]Y ).o(X) )W, =Wy, )+RY, then]Ethy [|[RN|] < Ch and
thus By [F~(X2)] > Bxy [(VEQXY )0 (X,)(We~ W )+ F(X,) ]~

Ch. A direct computation gives:

Exv [F7(XM)] > a(X) A2 LGV Ch (24)
X5, t; /1 = ti 9 Ov’(Xt];],l)hl/Q
b _exp(—%) : . : , .
where g(z) := anr —2®(—z) is a positive decreasing function on R*. Note

that for h small enough (coh!/? < R), one has a(z) > ay for x € Vap(coh'/?)
(Assumption (C?)); thus, plugging (24) into (23) it comes:

N 2% FXi)
L™ > 2a0h ZEx 17'N>ti—11F(Xg71)6(0,coh1/2]g ag h1/2 _S(h)

i=1

N

with S(h) = Ch)_P, [TN >t 1, (X[ )€ (O,COhl/Q]]. Assume for a while
i=1

that S(h) < Ch%* and consider the other contribution. Use that Vi € [1, N], t €

[tic1, i), 1oy < 1ieon < 1, ,~, and that g does not vanish on the com-

pact sets of RT, to obtain:

F(X{)
Ew 1TN>ti1F(Xt]Z)€(0,Cohl/2] h1/2

F(XN)
> CllEx llTN>t1F(XtN)G[coh1/2/4,3coh1/2/4]g (aoTlt/2> P I:F(thlv) € (0, Coh1/2]|ft]] .

where C; > 0. On {F(X}Y) € [coh'/?/4,3coh'/? 4]}, we easily conclude by
Lemma 3: P[F(X}) & (0, coh'/?]|F] < Cexp(—cc}/16), so that P[F(X}) €
(0, coh'/?]|F;] > 1/2 for ¢, large enough. We have obtained:
_ r F(X,
LY > aoCih 1/2/0 ]Ew[1TN>t1F(XtN)E(coh1/2/4,3coh1/2/4 ( (hl/Q))]dt Ch**
agC1h—1/2 3cohl/? /4 y
B ||0*||§o||VF||§o/00h1/2/4 (a ht/?

) E, (LY, ~(F(XN))]dy — Ch**
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where the occupation times formula is once again the key tool for the last
inequality (we do not need here the rather tedious localization procedure of
Lemmas 17 and 13, and only use o’s boundedness). Lemma 22 below and equa-
tion (21) then yield: By [LY.  » (F(X™))] = 2(E [(F (X hv) —y) 7| — (F(z) —
y)")—Ch =2E,[(F(XZ}, ~)—y)~]—Ch for y small enough (namely y < F(z)).

If we put Cy = % > 0, it follows that

3cohl/2 /4
LY 2Coh 2 [ D (L B (PO ) — y) Jdy — OB

cohl/2 /4 a0h1/2
>Cf2/3c0/4g (i) E,[(zh'/? — F(XN v )1 p1/0epxn ]dz — Ch3/*
= co/4 ao AT z >F( T/\-,—N)

3co/4
EC’th/Q(/ /0 zg(z/ao)dz)]P’z[TN < T]— Ch¥*

co/4

noting that (zh'/2—F (X, ~))1 /25 p(xn 02 2 0= 2h' 1?1 5 .
TAT - TAT -

To conclude the proof, note that P,[r < T] > P,[X¥ ¢ D] which converges

uniformly (see [BT96al) in z € D to P,[X7 ¢ D] > inf,cp P, [Xr ¢ D]: under

(H), this last quantity is strictly positive (see [BLI1]).

It remains to estimate S(h): for this, remark that P, [TN > t;, F(X]Y) € (0, cohl/Q]] <

Py [V > t, F(X[) € (—coh®®, coh®]| + Opa(h) for ti_y <t < t; and this pro-

vides the way to transform the sum over 7 in an integral over ¢: we conclude

using Lemma 22.

Lemma 22 Under (C?), (D), (S’), we have for y < R/4

T
/ P[F(XN) <y, 7 > t]dt < C(h+y?).
0

PROOF. The contribution associated to y < 0 is already controlled by
T

Lemma 13. For y € (0, R/4], by (22), write / P [F(X)Y) < y, 7V > t]dt <
0

C’/Oydu]Ew (L%, v (F(XM)] + Ch < C(h+ yVh + y?) using Lemma 20.

4.8  Proof of Lemmas 14 and 15

One would prove Lemma 14 using the same techniques as in Lemma 15 which
is the trickiest and the only one to be developed. The main ideas involved
in the proof come from [Cat91], for the conditional Malliavin calculus, and
[BT96a| for the localization techniques that allow the integrations by part in
order to get rid of the derivatives of v: nevertheless, the proof of Lemma 4.3
in [BT96a| seems to be incomplete. We provide extra arguments that justify
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the result. For Malliavin calculus computations, we used standard notations
from Nualart [Nua95|.

We denote ¥v(.,z) := (x)v(.,z) and recall 1 — p(z) # 0 = z € Vyp(e). As
a consequence of (F), (16) and Lemma 3 the last term writes:

E.[o(T AT AR, X%V/\TN/\T},Y) —o((T—h) AT AR, X(I'}C—h)/\TN/\TIJ{V)]

:]Ex[]-TN>T—h(’¢]U(T7 X’IZY) - 1/JU(T - h7 XYJY—h))] + OPOI(h)
= - ]Ew[lngTthEq-N ,XiVN (dJU(T’ XIZY) - ’(ﬁU(T - h’ X’Izy—h))]

+ Eo[o(T, X7) — $o(T — h, X3 ,)] + Opar(h) := —A; + Ay + Opa(h).

The choice of T'—2h in the last equation will be justified later on. We detail the
control of A; that is the less usual term, we would treat A, in the same way.
For sake of simplicity, denote E. = E XN, - In order to use classical expansion

techniques for smooth functions, we write E.[v)v(T, XN ) —ov(T —h, X¥ )] =
Az(m) + Ry, with

A3 (m) = E' [wvm (T’ XTZY) - wvm(T - h’ XTJY—h)] (25)

where we put v, (t,z) = By [fm(X7_t) 1,574 for f, € C(RY) and R, :=
E.[(Vf =t fo) (XN +E.[(Yv, —0v) (T —h, XX, )]. By a density argument, we
can choose (fm)m>o0 s.t. for all m > 0, || filleo < 2] flloo, d(supp(fm), 0D) >

1¢, N

3/2¢ and fr %) £, where p (dy) 1= By (g4 (X}, y)]dy+Po(XP () (dy).
Hence, for m large enough E,[|R,,;|] < Ch. It is enough to prove |A3(m)| < Ch
uniformly in m, 7V and X’ € Vap(R).

Since vy, is smooth, one would like to develop Az(m) with It6’s formula and
then use standard Malliavin integrations by parts; this last step can not be
so direct because the variables of interest may be degenerate in the Malliavin
sense. To circumvent this difficulty, we introduce a family of perturbed pro-
cesses (XN e 1y 1= (XN + AW —W,w))seprn (A € [0,1]) starting from
X ﬁv at time 7V, where W is a standard d-dimensional BM independent from
W. We also consider the diffusion (X;)s>ry starting at 7 from X\ : in the
following, estimates will be uniform in 7% < T — 2h and X, € Vyp(R) and
we omit from now on to indicate this dependence.

The next Malliavin calculus computations will be performed w.r.t. the (d' +
d)—dimensional BM (W, W) after time 7V: ||Z||1,, and ||Z||p.»,, stand for the
associated L, and Sobolev norms of Z. We denote v, the Malliavin covariance
matrix of X and 9, := det(7;) its determinant. The same notations indexed
by N(resp. N, )) stand for XN (resp. XN*). We recall some classical controls
(see [BT96a]); under the above assumptions, one has for any p > 1 and j > 1

. C
XM iw, <€, sl < (

oo X=X, < Cvh, (26)

for some constants, uniform in A € [0,1], 7V < s <T and X\ € Vyp(R).
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At last, we state an integration by parts result derived from Propositions
4.3 and 4.4 in [BT96b| that turns out to be crucial in the rest of the proof.
For G € D®, F € (D®)¢ satisfying the partial non degeneracy condition

[E[0* o (F)G]| < Cllo(F)lle, 196 Lazoll L 1 F 1151 o0 |G llpizes - (27)

for some universal constants (depending in «) and for any smooth function ¢
with polynomial growth. From (25), A3(m) is equal to

E.[¢pvy (T, XX) — thpv (T, X0'H)] + E[tpvy (T, X0 — (T — by X4
+ E[¢pvy, (T — hy Xp'h ) = thv(T — by XY )] == (As + A5 + Ag) ().

For A4(m), A¢(m) we have to check that the difference between the Euler
scheme and the perturbed process is negligible. For As(m), since X! sat-
isfies the non degeneracy condition we can use Itd’s formula associated with
integrations by parts techniques.

Control of Ay(m), Ag(m). We only detail A4(m), the other term can be handled
in the same way thanks to the restriction to 7% < T — 2h. Let 77T be a D>
[0, 1]-valued random variable, satisfying (C1): P [nr # 1] < Ca—my N)g and

(C2): np # 0= VA e [0, 1] A > 4p /4. Tt follows from (C2) and (26) that
AL I I a—<ae for X € [0,1]. A Taylor expansion yields:
N #0 (| L, (T )<

As(m) =E[(Yon (T, X7 ) = v (T, X7) (1 = 12)]
— h~/0 ]E[vam (T, XYJY’)‘).(WT — WTN)UT]d)\ = (A41 + A42)(m)

From the support property of fm, Lemma 3 and (C1) we easily deduce
|Ag(m)| < Cexp(—cz= TN)IE [1 — nr]*/? < C1E;. Taking additionally into
account (27) and (C2) yields |Asp(m)| < C2e.

We now turn to the construction of 7. To satisfy (C2) we will choose nr
as a mollified indicator function of the sets where Vva * is close enough to vyr
uniformly in A € [0,1]. Remark that A(\) := v2™ = yN + XNh*(T — 7)1,
is a.s. invertible for A > 0. The function a(\) := det(A(\)) is differentiable
in A and its derivative is given by (see Theorem A.98 from [RT99|) a'()\) =
Tr(Cof (A(X)A' (X)) = 2X\h2(T — V) Tr(Cof (o )). Simple computations yield

7
' (M)]? < Ch4(/N{||DtX§V||2 + h2}dt)2 := Ry so that |32 —4¥[2 < Ry for
A€ 0,1]. Introduce now an even function n € C(R) s.t. 1jp,1/4(x) < n(z) <

L o) for s 2 0, and pt g = (33830, 7. = (8 [P we s
Ny = NEnz. Indeed (C2) is fulfilled: nin2 # 0 = 4N > 47/2, Ry < [47]%/16
and thus p* > q/T/4 for A € [0,1]. To check (C1), write: E.[1 — nin7] <
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P.[nt. # 1] + P.[n% # 1]. Using Markov’s inequality and (26), one readily gets

q/4
Rirh # 1] < VEBY 3l VEGT] < Oty (28)

for any g. An analogous estimate is available for P.[n7 # 1].

Control of As(m). Using Itd’s formula As(m) writes as a finite sum of terms
T !

/ E.[0 (05 4) vm] (5, X7 gaor (X, X723 ]ds where o] < 2, |a] + o] < 2
T—h

and g, is a bounded function that only depends on b,0 in (14). Combin-

ing (27) With estimates (16) (written for f,,) and Lemma 3 give |[A5(m)| <
olil=
1 Ne2)r— ho

sert that [|(§;"!)" 1||L,,, < ||(AN1) ovass, ol + 1) s L, <

ﬁ. Indeed, the first term readily satisfies the required upper bound if we

apply (26). For the second, note that since 4V > ((s — 7V)h?)?, it is enough

to get that P [ < 4,/2] < C, 7,\,)(1] for p large enough This last estimate

)||(AN1) 1||%p,_ds. To complete the proof, we as-

can be proved as (28). We omit further details.

5 Expansion result: an example

The aim of this section is to present an expansion result for d-dimensional
processes of the form X, := z + us + oW, (W is a standard d-dimensional
BM) when the domain D = {z € R? : a.xz < b} (a # 0) is a half space; we
assume oo™ to be positive definite.

We first state that the error is related to the one with ¢ = I; with a new bound-
ary, orthogonal to the first axis. Indeed, using a clear change of probability
measure and a rotation of coordinates using an orthogonal matrix U (with a
first row equal to the transpose o ”Z ZH) preserving the Wiener measure, one
easily obtains

EI‘I‘1 (T7 h7 f’ I) = EI‘I‘Q (T7 h7 f’ I) = ]EU [fO(WT)]'TlJ)V0>T - fO(WT)]'TDO >T] (29)

exp(Uo~ .y — gllo " ullPT) f(z + oU*y), Dy = {y € R? 1 y1 <
lovai > 0 (since z € D), 7p, = inf{t > 0 : W; ¢ Do} and ™ =
inf{t; > 0 : Wi, ¢ Dy}. This transformation illustrates that the problem is
essentially one-dimensional.
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5.1 Preliminary one-dimensional results

To keep going with this connection, we introduce some notations related to
one dimensional random walk techniques (see Siegmund [Sie79]), which will
be used in the sequel. Let us define sq := 0,Vn > 1,5, := ¥ ; G, where the
G" are i.i.d. standard centered normal variables. We introduce the stopping
times 7, := inf{n > 0 : s, > a} for a > 0, 71 := 7y and define H(z) :=
(Eo[s,+])~" i dyPols, > y).

Lemma 23 (Asymptotic independence of the overshoot and the dis-
crete exit time - Equivalence of the expectation of the local time.) Let
W be a standard linear BM. Put x > 0 and consider the domain D :=]—o0, z.
We have for any y > 0

Jim Po[r? < ¢, (Wyx —2) < yVh] = Po[r < t|H(y) (30)
1 T _ ]EO[S?H'] . 0
o B [Linen (W] = \/ﬁro [ST+]1P’0[ <]+ o(Vh). (31)

Both limits are uniform in t € [0,T].

. E0[53+] _
One knows from [Sie79] that ———— = 0.5823. ..
2K, [ST+]

PROOF. Equality (30) is a direct consequence of Lemma 3 in [Sie79] for a
fixed t. We derive the uniformity on [0,7] using Dini-like arguments noting
that the L.h.s. of (30) defines a sequence of (discontinuous) increasing functions
and that the simple limit is continuous (see e.g. problem 7.2.3 in [Die71]).
To prove (31), use Tanaka’s formula and Lemma 13 to get

LB [y (W)] = VRE[h2(W,y — 2) L] + Eo[(W; — ) 1,5 + O(h)

uniformly in ¢ € [0,7]. The second term in the r.h.s. above can be easily
estimated as Eo[(W; — 2)T1,nvyy] < Cﬂ&(exp(—cw)) < Ch where
we finally used a uniform upper bound (w.r.t. ¢(t)) for the density of Wy
around x # 0. To deal with the first term, put Wy (y,t) = Po[h~V2(W,v —2) >
y, ™ < t]: it converges owing to (30) to W(y,t) := Py[r < ¢](1 — H(y)) uni-
formly on [0, T]. Proposition (10) guarantees that the sequence (Uny(.,%))n is
uniformly integrable, uniformly in ¢ € [0, T]. Thus, the dominated convergence

2
_ s
theorem gives /R_l_\I’N(yat)dy ~ /RJF\I’(Z/’t)dy - %

and using again Dini-like arguments, uniformly on [0, T].

Po[r < t] for each ¢,
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5.2 Ezxpansion result in the multidimensional case

We now state the expansion result, using the previous notation with vy, Dy - - -:
the constant C; below could also be expressed with quantities related to the
original problem, but the current formulation will be more useful in the fol-
lowing.

Theorem 24 (Error expansion for the Brownian motion in a half-
space). Let X; = x+pus+oWs for s > 0 where W is a standard d-dimensional
BM, oc* is positive and € R?. For D :={z € R : z.a < b},b € R, a # 0,
assume (F), the error writes

Erry (T, b, f,z) = C1Vh + o(Vh)

o [s2+]

with C, = 2y [5,+]

IE0 []-TDOST(_am Vo (TDO’ WTDO ))]

PROOF. Thanks to the equality (29), we are reduced to the analysis of the
error with W in Dy: the careful reader could object that 0D, is not compact
and fp is not bounded, but however, Theorem 8 is still valid in this case (see ex-

tensions in Section 6) and it gives Err( (T, h, f,z) = K, (/ Y dLb (Wl)) +

O(h), with Yy = =0y, vo(s, (by, W2,--- ,W2)). Note that dY; = ysds—i—Brownian martingale
and that Y (and (y;),) is independent of W' (and hence of 7p, and 7j,). Ex-

ploiting these independence properties and using twice the integration by parts

combined with equality (31), one obtains

( / Y.L 1)) ~ K (YTLZS’A N (Wl)) ) ( / L’S"j\TDO(Wl)ysds>

EO[ST+] B . . . )
= Vh o] (P‘J[TDO < T]E (¥r) /0 Po[ro, < s]Eo(ys)d ) +o(Vh)
EO[ST"‘]
\/_E0[$T+]

and the result follows.

(K'DO ]'TDO ST) + O(\/i_l)

5.8  The shifting boundary correction

We present a multidimensional extension of the Broadie-Glasserman-Kou cor-
rection [BGK99| which aims at improving the accuracy of the numerical pro-
cedure by removing the term of order % in the error.

For this, the simulation of (Xj)o<i<ny is performed in a modified domain,
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o [s7+]
2 [s,+]
(resp. Tpr) the discrete (resp. continuous) exit time from this domain D"*. The

following result states that the rate of convergence is now greater than %

namely D" = {z € R? : z.a < b — |lo*a|[v/h} and we denote T3,

Theorem 25 With the notations and assumptions of Theorem 24, we have

Erry(T, b, f,2) := Bo[f(X7) 1,3, 7] = B [f(X1)Lrs1] = o(V'h)

PROOF. We use again the transformation from the beginning of this section
to get Erry (T b, f,x) = Eo[fo(Wr)1, i >T] Eo[fo(Wr)1 TD0>T] Errs (T, b, f,2)+

Errso (T, h, f,x) where DI = {y € R? : y; < by— EO[FT+]]\/_} Errs; (T, h, f,z) =

Eo[fo(Wr)1,w, 5] —Eo[fo(Wr)1, h>T] and Errg, (T' h, f, z) = Eo[fo(Wr)1 ng>T]—

Eo[fo(Wr)1 rD0>T]

The first contribution can be analyzed applying Theorem 24, except that the
domain D} depends on h: however, an easy (but long) verification shows
that the estimates are locally uniform in by, we omit the details. Hence,

Errs; (T: h, f, ) 211;4‘[300[<[ST+]] \/_EO[]-TDO <T( aylvo (TDO’ TDO))] + (\/}_L)

To conclude the proof with the estimation of Errsy (7T, h, f, x), note that it is
enough to get Bbovo(O, 0) = abOEo [fO(WT)lTD0>T] = EO [17—D0 ST(—Gyl Vo (TDO, WTDO))]'
To justify this equality, we exploit the explicit form of the killed transition
densities for the linear BM (see [KS91| p.97-98). To simplify, put W/ =

(W2, W), define g,(z) = /%" and a(bo,t) = ®g,(bo) = —gi(bo) the

density at time ¢ of 7p,. Clearly, by independence of W' and W', one has

volt, y) = J2% (gr—i(z—11) —gr—i(24y1—2b0) ) E(fo (2, Wi) W2 = g, - - - , W4 =
Ya)dz, from which it is easy to derive

—0y, vo(t, (bo, W})) = /bo 2a(by — 2, T — )E(fo (2, W) |W))dz
Bpv0(0, 0) = 2/ a(2by — 2, T)Eo (folz, Wh))dz,
B[, 1 (~ 0y, v0(r0n, W, D = [ (b, 08 (~y w0, (b, 1))l

— 2/ (folz, W) )(/OT albo, )by — 2, T — t)dt) dz.

The convolution integral w.r.t. ¢ simply reduces to a(2by — z,7) (Markov
property on the hitting times, see [KS91] p.197) and this proves our assertion.
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5.4  Numerical experiment

We now provide a numerical example taken from financial applications. Con-

sider a two-dimensional risky asset following the Black-Scholes-Merton dy-

namic, S} = S§ exp(o1 W} + (r — 5-)t), S7 = S¢ exp(o2pWi + 02v/1 — PPWE +
(r — 02—5)15), where W = (W' W?) is a standard two dimensional BM. For a
fixed final time 7', given level B and strike K, put D := {s € R? : s; > B}, we
are interested in computing ]E[e_’"TlT>T1(5% AS2)> x] related to the price of a
digital barrier option. Let us remark that assumption (F) is satisfied as soon as
K >B.Forr=.04,00=0y=.3,p=.5,8,=52=K=100,B=90,T =1
we compute the standard Monte-Carlo approximation, the Romberg extrap-
olation (see [TL90|) and the previously described correction with 106 paths:
the width of the 95%-confidence interval is essentially equal to 1.5 1073. The
reference value has been computed with the usual Brownian bridge techniques
(see references in the introduction) for 10® paths.

Note (see Figure 2) the positive bias for the standard procedure as proved be-
fore. What appears is that the shifting boundary correction is more accurate
than the Romberg extrapolation: it is promising since the computational time
is also lower. It is not hopeless to extend this simple correction to less specific
domains and this will concern further investigations.

0.23 | T | | |

0922 |- Standard estimation — |
: Reference value <

0921 Corrected estimation — |
: Romberg approximation - - - -
0.2 _

0.19 - _

0.18 | |

0-17 i_\-{-\ ...... AT POERREr A s e e O |

| | | | | | |

20 40 60 80 100 120 140 160 180

Figure 2. Convergence results w.r.t. the number of steps N.

6 Conclusion

We conclude giving some easy extensions of our previous results. For all
our results, the compactness assumption on 0D may be removed in the half
space case, where the boundedness assumption on f can also be relaxed into
f(z) < Cexp(c|z|) since the coefficients in (14) are bounded. Concerning the
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smoothness property of D, results from section 2 concerning general It6 pro-
cesses hold true if D is of class C?, as well as the boundary results of section
4. In the uniformly elliptic case, we can under smoothness assumptions on
b,0, D, see Theorem 5.2 in [LSUG68|, weaken the support condition on f pro-
vided that it is smooth. One possible framework may be that f € H!(D),l > 3
(see |LSUG68| pp 7,8 for the definitions of those functional spaces), f satis-
fies the compatibility conditions flop = Lf|op = 0, D is of class H' and
b,0 € H=%(D). Unfortunately, it seems difficult to get rid of the support as-
sumption in (F) in the general case, because we are not able to deal with
exploding derivatives of v near 9D.
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