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Abstract

In this note, we analyze the error involved by using an Euler scheme with
a symmetry procedure near the boundary for the simulation of diffusion
processes with an oblique reflection on a smooth boundary. This procedure
is straightforward to implement, and further accurate: indeed, we prove that
it yields a rate of convergence for the weak error of order 1 w.r.t. the time
discretization step. Results were previously announced in a weaker form in [7].
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1. Introduction

The numerical resolution by deterministic methods of second order Partial Differen-
tial Equations (PDEs in short) becomes unefficient in high dimension. An alternative
approach consists in developing Monte Carlo methods from the probabilistic representa-
tions of the solutions as expectations of functionals of diffusion processes X = (X;)>o.
Usually, exact simulations of X are impossible and time discretization procedures are
needed.

A lot of attention has been paid for PDEs in the whole space. In that case, the
processes to simulate is the solution in the whole space of

t t
X, :w+/ b(Xs)ds+/ o(X,)dWs,,
0 0

where W is a standard multidimensional Brownian motion (BM in short). Optimal
convergence rates are now well established. For example, consider the Euler scheme
with time step h =T /N (¢; = ih being the discretization times of [0,T7):

XN =X+ XDh+ o(X) ) Wiy — Wey).
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The weak error E(f(Xr)) — E(f(X%)) can be expanded in terms of powers of h,
provided some regularity conditions on f (see [22]), or some non degeneracy condition
on the process X (i.e. hypo-ellipticity, see [1]).

If the PDE has a Dirichlet condition on the boundary 8D of a domain D, then the
diffusion process X needs to be killed or stopped when it hits D. In that situation,
if one naively kills or stops the Euler scheme, then the weak convergence rate is of
order . However, one can develop an efficient killing [6, 8] or stopping [16] procedure
leading to a convergence rate of order 1.

For PDEs with Neuman boundary condition on D, X needs to be a diffusion
process with reflection on 9D in some oblique direction -, i.e. solution of

t t t
X, =z+ / b(X,)ds + / o(X,)dW, + / ~(X,) ks
0 0 0

where the so-called local time k; is increasing only dD. In this work, we focus in
the evaluation of quantities like E(f(Xr)) for a fixed time T. This issue may be of
interest if one seeks to reconstruct (see [4]) the three dimensional brain activity via
the resolution of some PDE with Neumann boundary conditions. It is also pertinent
in some approximation models for open queuing networks in heavy traffic (see [23] and
references therein). At last, reflected processes have been recently introduced to solve
one-dimensional viscous scalar conservation law in an interval (see [2]).

From the numerical point of view, starting from a regular mesh of the interval [0, 7]
with time step h, one can use an Euler scheme with projection, for which the weak
error is of order 1 as established in [3] for normal reflections v = n (see also [21],
[17]). One can also use a penalty method: the convergence has been studied only in
L,-sense (see e.g. [15], [18], [9]). For a more complete presentation of these methods,
see [8]. More recently, in [8] the second author combined the Lépingle’s procedure
[11, 12] (which is exact when D is a half-space and the coeflicients are constant) and
some local half-space approximation to construct implementable procedures, which are
of order 1 under the condition that v lies in the co-normal direction: ~y(s) is parallel
to oo*(s)n(s) for any s € dD.

Hence, so far, the question of getting an easy implementable procedure providing
a first order convergence is still open for general oblique reflection problems. Our so-
called symmetrized Fuler scheme below solves this issue. Results in this paper have
been presented at the conference Monte Carlo and probabilistic methods for partial
differential equations which held at Monte Carlo (Monaco) in July 2000 and announced
in [7]. This symmetrized scheme has been recently studied in [14] where the convergence
is not analyzed in details.

OUTLINE OF THE PAPER.
In the section 2, we set some preliminary geometry notations, state our assumptions and
define the symmetrized Euler scheme. Then, we state our main result of convergence.
The section 3 is devoted to the proof. In the section 4, a numerical example is
considered, which illustrates the efficiency of our algorithm.

NOTATIONS.
We adopt the following usual convention on the gradients: if ¢y : RP2 — RP! is a
differentiable function, its gradient Vi(z) = (05,¢(z),- -+ ,0s,,%(x)) takes values in
RPt @RP2. In particular, the gradient of a linear function ¢ is a row vector. Its Hessian
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matrix is denoted by HY. Usually, the gradient is computed w.r.t. the space variables
only.

We use the generic notation K(7T') for all finite, non-negative and non-decreasing
functions: they neither depend on z, nor the function f, nor the discretization step h,
but they may depend on the coefficients b, o, v and on the domain D.

A quantity R is equal to Oexp(h) if |R| < K(T') exp(—c/h) for some constants K(T')
and ¢ > 0.

The conditional expectation E(Z|F;,) is denoted by E”* (Z).

2. Assumptions and main result

2.1. Assumptions

In the sequel, we consider a domain D C R, with the following smoothness
property.
(D) The boundary 8D is bounded and of class C°.

The set of points in the e-neighborhood of D is denoted by Vyp(€) = {z : d(z,0D) <
€}. The vector n(s) denotes the unit inward normal vector at s € dD. In addition, the
vector field defining the reflection direction is uniformly non tangent to the boundary.

(C) 7 is a unit vector field of class C* and there exists po > 0 such that y(s).n(s) > po
for all s € 9D.

We remind some classical results concerning the distance to the boundary along ~y
(see Appendix in [8]).

Proposition 1. Assume (D) and (C). There exists a constant R > 0 such that:

i) for any x € Vap(R), there are unique s = 7}, (x) € D and F7(z) € R such
that x = 7} (z) + FV(2)y (73 p ().

i) The projection of x on 8D parallel to vy, that is, the function x — 7} (), is of
class C* on Vap(R).

i11) The algebraic distance of x to 0D parallel to v, that is, the function x
F7(z), is of class C* on Vap(R). One has F' >0 on Vap(R)N D, F* <0 on
Vap(R)ND®, FY =0 on &D: we can extend F7 into a CHRLR) function, with
the conditions F?Y >0 on D and F* <0 on D°.

w) The above extensions for FY and F™ can be performed in a way such that the
functions F7 and F™ are equivalent in the sense that

1
— |F"@)| < |F'(@)| <o [F(@)], Vo eR,
1

for some constant c; > 1.

n*

e (2).

We sometimes use the notation n(z) or y(z) even if z ¢ 0D: for x € Vap(R), we set
n(z) = n(r}p(z)) and y(z) = y(7}p(x)) and, for ¢ Vap(R), arbitrary values are
given.

The coefficients defining (1) below are supposed to satisfy

v) For x € D, one has VF"(x) =
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S) b and ¢ are C#(D,R%) and C}(D,R¢ ® R?) functions.
b b

Given a d-dimensional BM (W;)>¢ defined on a filtered probability space (€2, F, (F¢)¢>0, P)
(satisfying the usual conditions), one knows (see [20], [13]) that under (C), (D) and
(S), there is an unique strong solution to

X, =2+ /Ot b(X,)ds + /Ot o (X,)dW, + /Otv(Xs) dk, (1)

where k; is a process increasing only on dD: k; = f(f 1x.cop dks. The initial value
z € D is fixed in all the sequel.
We also need the following non degeneracy condition.

(E) The matrix oo* is uniformly elliptic: V= € D, o00*(z) > 02 Iragre for some
oo > 0.

2.2. The algorithm

i+

N
ﬂ-gD(Y;i-l-’:)

N,i
(Yt

oD

N
tit1

FIGURE 1: Description of the algorithm when YtNJr’1 is outside D.

We start with X§' = z and assume that we have obtained XY € D.

a) Fort € [ti, tiy1], weset V' i= XN +b(XN)(t—t;) +o(XY) (W, — Wy,). Observe
that Y;J\i’f is simulated by simply drawing d independent Gaussian variables.

b) Then,

i) KV, ¢ D (ie. FY(Y,N0) <0), weset XN | =n], (Vo)) —F1 (Vv (V)

tit1 tit1 tit1 tit1 tig1
. .. . . . N,i o N,i
which coincides with the the symmetric point of Y; |} w.r.t. m35(Y;)]) (see

Figure 1).
ii) If Y, € D (i.e FY(Y,)) > 0), we simply set XY =V,

N,i Nyiy1— N,i
To sum up, we have X{), =Y, + 2[F7(V,.))] v(Y,.\))-
c) It is possible that Y;Afr’f ¢ D U Vyp(R), that is a huge increment has occurred:
this event has a probability exponentially small w.r.t. h (see below) and, in that
case, we suggest to restart the simulation of Ytﬁ:
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This way to proceed using a symmetry is actually very natural: indeed, in dimension
1, we know by the Lévy’s identity (see Section VI.2 in [19]) that the BM reflected on
the positive axis has the same law as the absolute value of the standard BM. In more
general situations, an analoguous procedure is used by Freidlin [5] to prove the existence
of a solution to (1).

2.3. Rate of convergence

We denote by L is the infinitesimal generator of (X¢);>o0, that is,
1
Lu=Vub+ ETr(H“a)

(with a = oo™*).
We suppose
(F) The function f is of class C7 (D, R) and satisfies the compatibility condition on
oD: ¥z € 0D, [V 4)(z) = [V(Lf) 1](2) = 0.
For f € C}(D,R), we set || f||®) = 2 :|a|<5 105 flloo- Our main result is the following
Theorem 1. Under (C), (D), (F), (S), we have
[B(f(X7)) — B(f(Xr)| < K(D)If|Ph

for some constant K(T) uniform in x and f.

The rest of the paper is devoted to its proof.

3. Proofs

We follow the usual trick consisting in decomposing the error in a sum of local
errors using an appropriate partial differential equation (PDE in short). For this, we
set u(t,z) = E [f(Xr_t)|Xo = z], which is a smooth solution of the following PDE (see
[10] Theorem 5.3 p.320), with Neumann boundary condition:

(Opu+ Lu)(t,z) =0 for (t,z) € [0,T] x D,
Vu(t,z)y(z) =0  for (¢t,z) € [0,T] x 0D, (2)
u(T,z) = f(x) for x € D.

Under the assumptions of Theorem 1, the solution u is at least of class C?*([0,T] x D)
with uniformly bounded derivatives (the compatibility conditions in (F') are crucial for
this): namely, for 2p + |a| < 4, one has

¥(t,2)| € [0,T] x D |8f05u(t,z)| < K(T)|£|®. 3)

We extend u in a C24([0,T] x R?)-function (see [10]) which still satisfies the
estimates (3).

We introduce a continuous-time version of the symetrized Euler scheme by setting
XN = YN 4 2l (VY] (YY) for t € [t tiya]. Define 7 = inf{t > 0 : Y, ¢
DU Vsp(R) with t; <t < tir1}. On the event {7 > T}, (XN)o<t<r lives in D. In
addition, one has

Plr < T) = Ocxp (h) (4)

which is a straightforward consequence of the following standard lemma.
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Lemma 1. Consider an Ité process with uniformly bounded coefficients: dU; = b, dt +
ot dWy. There exist some constants ¢ > 0 and K(T') (depending on p > 1) such that,
for any stopping times S and S' (0< S <S' <§<T)and anyn >0,

2

P( sup U, Us| > n) <K(T)exp (- L), (5)
te[s,5']
E[ sup ||U; - Us|l”] <K(T)s"". (6)
te[s,s’]

The first estimate is based on Bernstein’s inequality for martingales (see e.g. Lemma
4.1 in [6]), and the second one follows from the Burkholder-Davis-Gundy inequalities.

Now, set &; = E(u(ti+1 AT, ng_l/\‘r) — ’U,(tz’ AT, Xtiv/\r)) = E(lti<TE]:ti [U(tH_l A

T, X{:’HAT) —u(t;, X)]). In view of (2) and (4), the weak error can be decomposed as
follows

E(f(XD)) - E(f(X7)) = B@(T, X3) —w(T A7, XP,\,) + u(T A7, XP,,) —u(0, X3))
N-1
= I fllocOexp(h) + D &
1=0

We then need the two following crucial results, that we prove later.

Lemma 2. Under (C), (D) and (S), for all ¢ > 0, one has

N-1 2
hE (Z 1y<-exp(— c@)) < K(T)Vh.
=0

Lemma 3. Under (C), (D), (F) and (S), for all x € 8D one has

* *aq HY
C"(z) := (— Vqua% + vy H%y nan _na ,y)(m) =0.

ny)? noy

In view of Tanaka’s formula [19], (XN)o<i<7r defined as in the step b) of the
algorithm, is a continuous semimartingale for ¢ € [t;,¢;41[. Easy computations lead to

dX =y, + (NN AL (F (Y N + [N
x {2V (V) dy " + Te[HY (V) a(X]))dt}

- lnN’iezD{?WmN”')a(Xﬁ )IVEY O] dt + 24V ) VE (V)™

+w(YgN”dTr[HF’(nN"')a<Xzf>]dt} ™

since {F7(Y;"") < 0} = {¥;""" ¢ D}; we have denoted by Tr[H"(Y;"")a(X})] the
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vector with j-th row equal to Tr[H"/ (Y;N’i)a(Xg )]- Thus, Ito’s formula yields
E7% (u(tips AT, X[, p0) —ults, X)) = A} + A7,

tit1 AT .
AL = B ( / Bru(t, XN)dt + Vu(t, XN)av;Ni + %Tr(H“(t, XM)a(X))de),
t;

ti+1/\T .
A? =E7 ( / [Vu(t, X¥)(dX) - dv,N")

t;

4 %Tr(H“(t,Xf’ )(d < XY, XN >, —a(XN)dt))).

The term A} is not a surprise for a reader familiar with the approximation of diffusions
in the whole space (remind that d < Y4 Y Ni >,= o(X{V)dt); it is actually related
to the approximation of (X¢);>¢ inside the domain. The term Af really concerns to
the approximation near the boundary.

e TERM A!l. Using (4), Itd’s formula and simplifications coming from 0;u + Lu = 0
inside [0, T] x D, one easily gets

tita tAT .
Al = E7u (/t dt/t' [B;hldS"‘lYSN,i¢DB;h2dS+Bga3dL2(F’Y(YNJ))])+||f||(5)0exp(h)

where the processes (B%!),, (B%?)s, (B%3)s are continuous, adapted and uniformly
bounded by K (T)||f||® since they can be expressed as a sum of products of spatial
derivatives of u (up the order 4) and of coefficients b and ¢ and their derivatives, each
of them being evaluated at point (s,X7') or (s,X2). Hence, from Tanaka’s formula,
one gets

|45 < KA1 + RE7S LY, o (FY (YY) = LE (Y (YN)] + Oexp(h)]

tit1 AT
< K(DIFI® (R + RETS[|FY YN A = [FY ()] + Oexp (h))

tit1 AT

and thus
N-1 N—-1 ) )
‘E( > 1ti<TA;)\ < K(T)||f||<5>h(1 FE(Y L) - |F7<1@i&:)|))-
i=0 =0

On {r < T}, the above sum is Oexp(h). On {r > T}, |F7(Y;Ji\j_1’)| = |F7(Yt]iv’i+1)|
because of the symmetry procedure, thus the sum is telescoping: this proves that

\E(zéi‘ol 1ti<TA,1) \ < K(T)[ |

e TERM A?. When we plug (7) into A7, the integral w.r.t. the local time vanishes
because of the Neumann condition (2), while the other contributions can be gathered
in a sum A2! involving the terms in factor of [F7(Y;""")]~ and, a sum A?? involving
the terms in factor of ].YtN,igD.

t;

Term A?'. One has A?' = E7 ( [H TR (}’;N’i)]Bf’4dt> where (B{“*); has the

same properties as (Bf’); (j < 3). The Cauchy-Schwarz inequality combined with
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estimates (6) and [F'Y(YZV”')]_ =0, (5) with n = d(YtiV’i,@D) = d(X}Y,8D) leads to

tit1 " y s
|AZ| < K@) £ / | VEZs ([FY (V] - [FY (V)] 12) /PF (VY ¢ D)t

c d*(XY,8D)

< KDIAIOR 2 exp (- 5———)

for some ¢ > 0, and thus, one obtains |E(Zii61 1y, < A2Y)| < K(T)||f]|®h using
Lemma 2.

Term A?2. Tt is equal to A?2 = E7u (fti"“m ].YtN,ieDBu’5(t,Y;iV’i,ng,Y;N’i)dt>
with
Bu’5(t7mi7$7y)

—Vu(t, w){ AV W)al@)[VE ()] — 2y()VE (g)b(zs) — 3(y) Te{H"” (y)a(xm}
n %Tr{H%t, 2)( = 41/(9)VF (g)a(ai) + 4y() VE )a(e) [VF )]+ 1) }

Now, we notice that this function vanishes when z; =z =y € 8D and t < T. Indeed,
in view of the Neumann condition in (2), the second and third terms involved in factor
of Vu vanish. In addition, one has VF7 = % on 0D (see assertion v) in Proposition
1). Thus, for all z € 8D, we have

B%3(t,2,2,2) = — 2Vu(t, z)Vv(z)a(z)% + 2Tr{H“(t, 2)[ - fy(z)#(jzz)a(z)
n*(z) n(z) .
2O i

From easy linear algebra (Tr(AB) = Tr(BA), etc.), it follows that B*5(t,z,2,2) =

2C%(z) = 0 in view of Lemma 3. Our assertion is proved.
Now, set 7; = inf{t > t; : ;"' ¢ D}: on {¥;*' ¢ D}, one has ; < t, YN € 9D

and BYP(t, Y4, Y4 YN4) = 0. Since B“5(t,.) is continuously differentiable with
first derivatives bounded by K (T)||f]|®), we easily deduce that

tit1 AT . . . . 3
221 < REOIAOE ([ g (V2 2 41X =V 4 3 =y 0t
ti

)dt),

< K T (5)E.7:t. bita AT 1 i YN,i _ YN,‘i F’y YN,i — YN,i _ YN,i
=~ ( )“f” * . YtNﬂgD(l i Ti |+[ ( t )] +| t Ti

for a constant K(T') changing from line to line. We now apply arguments already

21 22 5)7,3/2 4*(Xy; ,0D)
used for AZ. It comes |A??| < K(T)||f||®r*?exp ( — §———), and then

E(X,! 1<, A?)| < K(T)||f]®)h. The proof of Theorem 1 is complete.
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Proof of Lemma 2

If we knew that X,f:.’ had a density w.r.t. the Lebesgue measure on D, uniformly

. . 4*(X[},8D)
boundedin N near 0D, we could easily conclude that A; := E (lt ;<7 €XD (—cf')) <

K(T)v/h. But the desired property on the density of X,fy seems difficult to prove, even
by using Malliavin calculus tools (because of the [F?]~ terms).

The idea of our proof is to use the occupation times formula. By iii) and iv) in
Proposition 1, for d(z,0D) < R one has d(z,0D) = |F™(z)| > |F"(z)|/c1, and thus
[P (X

-Ai+1 < E(]‘ti+1<T exp ( —C 2
cih

)) + Oexp(h).-

Set ¢ = ¢/(2¢?) > 0 and g(x) = exp(—2c'z?/h): it is easy to check that |g(z)| +
Vhl|g'(x)| + hl|g"(x)| < K(T)exp(—c'z?/h). Hence, for t € [t;,t;11], Itd’s formula
combined with the decomposition (7) and the estimate (4) yields E(1,,,<-exp ( —

RPNy ¢ k(1) [E NPy 1 e [ (X
20 X)) (1) [B(1y exp (~ BTN L fiiet (1, exp (e ETOE ) ]
Oexp(h); notice that the local time involved in (7) provides no contribution in the
preceding computation because ¢'(0) = 0. Integrate this inequality w.r.t. ¢ over
[ti;ti—f-l] to get

tiga NY12
hAi < K(@) [ E[Loc, exp (— ¢ T s )

5 h )]ds + Oexp(h).

Observe that for |[F7(y)| < R,d < FY(XN), F7(XN) >,= VF"(XN)a(X{)[F"(XN)]*ds >
02/4 ds using (E) and |[VF7(y)| > 1/2 for |F7(y)] < R (we can assume this last
property by decreasing R in Proposition 1 if necessary). It readily follows from the
occupation times formula that

R
hAi1 < K(T) /—R dy exp (_CI%)E[LaH/\T(FW(X.N)) _LZAT(F’Y(X.JV))] +OeXP(h)-

Now,
1
§E[LZ+1/\T(F’Y(XN)) - L%,/\T(F’Y(XN))]
N N tit1 AT
=E[(F" (X, ar) —9)" = (F7 (XA —y)" = /t 1 (x> d(F7 (X))
INT

<E[(F'(X[,,ar) =) = (FY (X)) =) ] + K(T)h

tip1I AT ) .
_E| / 1 (x5 VE (XM )y (YN dLO(F7 (Y V)]
t

ANT

We have used (7) to get the last inequality. The above integral w.r.t. the local time is
non-negative since VF7y =1 on dD.

Therefore Zé\;_ol E[L] A\ (FT(YN9) = LY\, (F(YN?)] < K(T) uniformly in |y| <
R since the sum is telescoping. One then concludes that hZﬁBl A1 < K(T)Vh.

The proof of Lemma 2 is complete.
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Proof of Lemma 3

In the following, ¢t < T is fixed and we omit it. Since the function Vu 7 vanishes
on 9D, one has n[V(Vu v)n] = [V(Vu 7)]*. Taking into account that V(Vu ) =
Y*H" + VuV~, we derive the following identity on the boundary:

H¥%y = n(v*H"n) + n(VuVyn) — (VuVry)*.
We thus have

C*(z) =— Vqua% + ((2*3;;)7* [n(q/*H“n) + n(VuVyn) — (VuV’y)*]
- Ln*a[n('y*H“n) +n(VuVyn) — (VuV’y)*] = —M(VuV'y ¥)*.
n.y (n.7)

The right hand side is equal to 0 on 8D since Vv v = 0 on dD: indeed, it follows from
v(z + Ay(x)) = y(z) for € D and |\| < R (see Proposition 1). We are finished.

4. A numerical example

0.8 ———{ Comparison of rates of convergence |———

—— Projection
Projection (Romberg)
Half-space app. 7
Symmetry

o
~
— T

Monte Carlo estimations

o
o
——
|

P RS R I RS
50 100 150 200

Number of time steps

FIGURE 2: Comparison of the weak error for four schemes.

We consider for X a 3-dimensional Brownian motion normally reflected in the unit
ball D = S3(0,1) and say we are interested in the evaluation of E(||X;||?): the exact
value is unknown as far as we know. To make the experiment more interesting, we
compare the scheme of this paper with two other ones: the usual projected Euler
scheme (see [3]) with order of convergence equal to %, and the reflected Euler scheme
on local half-space approximations (see [8]) with order of convergence equal to 1 in
this example. We also consider the Romberg extrapolation (see [22]) with the projected
scheme, assuming that an expansion of the error at order 1/2 is available: it gives

N N/2
E(ﬂf(xf/){_i(XT )) = E(f(X71)) + o(v/h). The number of simulated paths is M =

10000: it provides a width of the 95%-confidence interval essentially equal to 0.03 for
each scheme (except for the Romberg extrapolition for which it is larger, that is 0.035).

We plot on Figure 2 the Monte-Carlo estimators w.r.t. the number of time steps
N, to get an idea of the efficiency of each procedure. It turns out that procedures
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with symmetry, half-space approximation and Romberg extrapolation behave both
very well. However, the computational time is much smaller for the method presented
here because of the simplicity of the symmetry (in fact as simple as the projection
method): see table 1.

Projected Projected Symmetrized | Reflected scheme
scheme scheme with scheme in local half-space
Romberg extraplolation approximation
CPU time 0.92s 1.37s 0.92s 1.52s

TABLE 1: Computational time for each scheme when N = 50.

5. Conclusion

We have proved that an Euler scheme with a symmetry procedure yields a accu-

rate approximation of obliquely reflected diffusions when one marginal of the law is
evaluated. At last, we give two open issues that we have not been able to handle:

1. how to get an expansion of the error w.r.t. h? it seems that sharper extimates
on the law of X* near the 0D are needed.

2. While with previous approaches ([3], [8]) it is possible to simulate the local time
on 9D (and hence to evaluate expectations of more complex functionals of type
E( fOT g9(X:)dk:)), we do not have good ideas how to adapt our algorithm to
approximate in a satisfactory and accurate way (with first order convergence)
these quantities.
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