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Abstract

For a multidimensional Itô process (Xt)t≥0 driven by a Brownian motion, we are interested in approx-
imating the law of ψ

(
(Xs)s∈[0,T ]

)
, T > 0 deterministic, for a given functional ψ using a discrete sample of

the process X. For various functionals (related to the maximum, to the integral of the process, or to the
killed/stopped path) we extend to the non Markovian framework of Itô processes the results available in
the di�usion case. We thus prove that the order of convergence is more speci�cally linked to the Brownian
driver and not to the Markov property of SDEs.

1 Introduction: statement of the problem

Let (Xt)t∈[0,T ] be a d-dimensional Itô process, whose dynamics is given by

Xt = x+
∫ t

0

bsds+
∫ t

0

σsdWs (1.1)

with a �xed initial data x and a �xed terminal time T . Here, W is a d′-dimensional standard Brownian motion
(BM in short) de�ned on a �ltered probability space (Ω,F , (Ft)t∈[0,T ],P) where (Ft)t∈[0,T ] is the natural
completed �ltration of W . The progressively measurable coe�cients (bs)s≥0 and (σs)s≥0 are bounded. In this
work, we are mainly interested in approximating the law of ψ

(
(Xs)s∈[0,T ]

)
, where ψ is a real valued functional

de�ned on the space of càdlàg functions, using a discrete sample of the process X. For this latter, we use the
stepwise constant counterpart of X de�ned by (Xφ(s))s∈[0,T ] where φ(s) = ti if ti := ih ≤ s < ti+1 (h = T/N

being the step size). The main problem consists in controlling the di�erence

Err(T, h, ψ, x) := E[ψ
(
(Xs)s∈[0,T ]

)
]− E[ψ

(
(Xφ(s))s∈[0,T ]

)
] (1.2)

for a certain class of functionals ψ w.r.t. the time step h. This kind of problem has been widely studied in
the Markovian setting (i.e. when X is a solution of a SDE) for a large class of functionals ψ, see the short
list and references below. What we want to emphasize in this paper is that the rates of convergence obtained
in the Markovian case, through proofs relying on an associated PDE, are still valid in the non Markovian
framework of Itô processes. Hence, it is not the Markov property that gives the order of convergence, but
actually the Brownian stochastic integral. Here are some controls of Err(T, h, ψ, x) in the Markovian setting
for some speci�c functionals ψ.

1. Integral of the process.
This case corresponds to ψ1(y) := ϕ(

∫ T

0

y(s)ds), where ϕ is a Lipschitz continuous function from Rd into R.
We know from Temam [Tem01] that Err(T, h, ψ1, x) = O(h).
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2. Maximum of the drifted BM when d = 1.
This case corresponds to ψ2(y) := maxs∈[0,T ] y(s). For Xs = x + µs + σWs, we derive from Lemma 6 in
Asmussen et al. [AGP95] that there exists a constant C > 0 s.t. 0 ≤ Err(T, h, ψ2, x) ≤ Ch1/2.
3. Killed/stopped processes.
For the killed case, the functional writes ψ3(y) := f(y(T ))I∀s∈[0,T ], y(s)∈D where f is a measurable function
and D a given open set of Rd. In the Markovian setting of uniformly elliptic di�usion processes, the �rst
author showed in [Gob00], Theorem 2.4, that for a smooth domain D and bounded f satisfying a support
condition w.r.t. D,

∃C > 0, |E[f(XT )IτN >T ]− E[f(XT )Iτ>T ]| ≤ C
√
h. (1.3)

Let us mention that the above result remains valid if we additionally replace the discretely killed di�usion
by its discretely killed Euler scheme, see [Gob00] and [GM04] for an extension to a hypoelliptic framework.
Anyhow, equation (1.3) emphasizes that, for killed processes, the order 1/2 is intrinsic to the discrete time
killing.

In this work, we show that under suitable assumptions, the previous bounds still hold when X follows the
dynamics (1.1).

In terms of �nancial applications, the above results concerning the discretely sampled integral and max-
imum, can respectively be seen as preliminary controls to deal with the impact of a time discretization for
Asian and look-back options. The estimate associated to the killed path gives an upper bound for the error
associated to a discrete time observation for barrier options.

We �rst detail how standard stochastic analysis arguments provide the necessary tools to control (1.2) in
the case of a discretely sampled integral or maximum (cases 1. and 2. of the former list).

Proposition 1.1 Let X be an Itô process following the dynamics of equation (1.1). Assume the coe�cients b
and σ are bounded and that ϕ is a Lipschitz continuous function from Rd into R. For p ≥ 1 one has

ϕ(
∫ T

0

Xsds)− ϕ(
∫ T

0

Xφ(s)ds) =
Lp(P)

O(h).

Note that a direct use of ‖Xs −Xφ(s)‖Lp
= O(

√
h) leads to a sub-optimal rate of convergence.

Proof. Because ϕ is Lipschitz continuous, it is enough to prove that ∆I :=
∫ T

0

Xsds−
∫ T

0

Xφ(s)ds =
Lp

O(h).
Using Fubini's theorem for stochastic integrals, see [RY99] Chapter IV.5, we get

∆I =
∫ T

0

(∫ T

0

It∈[φ(s),s]dXt

)
ds =

∫ T

0

(φ(t) + h− t)dXt.

We complete the proof using standard BDG inequalities combined with |φ(t) + h− t| ≤ h. �

Concerning the discretely sampled maximum we state the following

Proposition 1.2 Assume (Xs)s∈[0,T ] follows the dynamics of equation (1.1), where (bu)u≥0 is a bounded
progressively measurable coe�cient and σs = σ(Xs) where σ is bounded in C1(R) and s.t. ∃σ0 > 0, ∀y ∈
R, σ(y) ≥ σ0. There exists a constant C > 0 s.t.

0 ≤ Err(T, h, ψ2, x) ≤ C
√
h.

Proof. De�ne ∆M := ψ2

(
(Xs)s∈[0,T ]

)
− ψ2

(
(Xφ(s))s∈[0,T ]

)
= maxs∈[0,T ]Xs −maxs∈[0,T ]Xφ(s). If X is a

BM, as a consequence of Lemma 6 in [AGP95], we have E[∆M2]1/2 = O(
√
h). This estimate is still valid if X

is solution of the one dimensional SDE Xt = x+
∫ t

0

1
2
(σσ′)(Xs)ds+

∫ t

0

σ(Xs)dWs with the above assumptions

on σ. Indeed, introducing the Lamperti transform (Yt)t≥0 = (ϕ(Xt))t≥0 , ∀y ∈ R, ϕ(y) =
∫ y

0

dz

σ(z)
, we derive

that Y is a standard one dimensional BM with starting point ϕ(x). By construction, the inverse of ϕ is
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uniformly Lipschitz continuous. This gives the result. To obtain the statement of the proposition, we �nally
apply a Girsanov transformation, exploiting that the associated Radon-Nikodym density belongs to any Lp

because of the drift's boundedness, and the previous result. �

The limiting factor in our approach is the use of Lamperti's transformation that imposes to have a Marko-
vian di�usion term.

Propositions 1.1 and 1.2 extend the results stated for ψ1 and ψ2 in our initial list to a wider non-Markovian
framework without major di�culties. Hence, in the sequel we consider the more di�cult cases of discretely
killed or stopped processes for which the corresponding functionals are not Lipschitz continuous anymore. We
denote the discretization error associated to the killed case by

Err(T, h, f, x) = E[ψ3

(
(Xs)s∈[0,T ]

)
]− E[ψ3

(
(Xφ(s))s∈[0,T ]

)
] = E[f(XT )Iτ>T ]− E[f(XT )IτN >T ] (1.4)

where, from now on, τ := inf{t ≥ 0 : Xt 6∈ D}, τN := inf{ti ≥ 0 : Xti 6∈ D}. For the stopped case, and a
smooth domain D, for a given real valued bounded function g de�ned on [0, T )× ∂D ∪ {T}× D̄, we introduce

Err(T, h, g, x) := E[g(T ∧ τN , πD̄(XT∧τN ))]− E[g(T ∧ τ,XT∧τ )]. (1.5)

The careful reader can object that without further assumptions on the domain (like convexity for instance)
the projection on D̄ is only locally uniquely de�ned. By convention, for y ∈ Rd s.t. πD̄(y) is not unique, we
arbitrarily set πD̄(y) = x0 ∈ ∂D. This can seem awkward. Anyhow, we should always keep in mind that,
because of the boundedness of the coe�cients in (1.1), for h small enough, the events for which the process
exits the domain where πD̄ is uniquely de�ned, before being discretely stopped are of exponentially small
probability. For such events, we derive from the boundedness of g that the de�nition of the projection has no
relevant impact on the convergence analysis. We refer to Section 3.2 for details.

In this work, we extend the result of Theorem 2.4 in [Gob00] to a possibly degenerate non-Markovian
framework and to a more general class of functions. For the reader familiar with error decomposition techniques,
we guess it is interesting to present below an analogy between standard PDE methods employed in the
Markovian setting [TL90] and ours.

Note �rst that the killed case can be seen as a special case of the stopped one with ∀t ∈ [0, T ], g(t, .)|∂D =
0, g(T, .)|D = f(.)|D. Introducing ∀t ∈ [0, T ], Vt := E[g(T ∧ τt, πD̄(XT∧τt

))|Ft] := E[g̃(T ∧ τt, XT∧τt
)|Ft]

where τt := inf{s ≥ t : Xs 6∈ D}, the error writes

Err(T, h, g, x) = E[VT∧τN ]− V0. (1.6)

In a Markovian framework, for all t ≤ T ∧ τ, Vt = v(t,Xt) where, under suitable assumptions, v is a smooth
function satisfying the mixed Cauchy-Dirichlet problem{

(∂t + L)v(t, x) = 0, (t, x) ∈ [0, T )×D,

v(t, x) = g(t, x),∀(t, x) ∈ [0, T )× ∂D
⋃
{T} × D̄,

(1.7)

L being the in�nitesimal generator of the di�usion X. The process (Vt∧τ )t∈[0,T ] is associated to the standard
Feynman-Kac representation of the solution of (1.7). In our case, we can not rely on a PDE, but on a martingale
property that is one of the main ingredients needed for the proof. Namely, one has the following

Proposition 1.3 Let X be an Itô process that follows the dynamics of equation (1.1). Assume the function g
of (1.7) is bounded. Then, ∀t ∈ [0, T ), (Vs∧τt)s∈[t,T ] is a martingale.

Observe that in the Markovian case, one can derive this martingale property from the PDE (1.7) using
Itô's formula.

Proof. Note that ∀s ∈ [t, T ], on {s < τt}, Vs∧τt = Vs = E[g̃(T ∧ τs, XT∧τs)|Fs], and on {s ≥ τt}, Vs∧τt =
Vτt

= g̃(τt, Xτt
). Turning to the former de�nition of V it comes

E[Vs∧τt
− Vt|Ft] = E[g̃(T ∧ τs∧τt

, XT∧τs∧τt
)− g̃(T ∧ τt, XT∧τt

)|Ft]

= E[Is<τt(g̃(T ∧ τs, XT∧τs)− g̃(T ∧ τt, XT∧τt))|Ft] + E[Is≥τt(g̃(τt, Xτt)− g̃(τt, Xτt))|Ft] = 0
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since on the event {s < τt} one has τt = τs. �

From (1.6), the strategy in the Markovian setting consists in writing Itô like expansions in order to isolate
the leading term of the error (see [Gob00]). The above martingale property is crucial for our error decompo-
sition. Namely, it replaces the use of Itô's formula on v in the Markovian case.

Outline of the paper

In section 2 we state our working assumptions as well as our main results. Section 3 is dedicated to the
common decomposition of the errors Err(T, h, f, x),Err(T, h, g, x). We give in Section 4 the auxiliary results
needed to obtain the bound of the error in the killed and stopped case. In Section 5, we show how our previous
techniques can be employed to extend the previous control on Err(T, h, f, x) to the case of an intersection of
smooth domains. We conclude in Section 6 giving some possible extensions and evoking some remaining open
problems.

2 Assumptions and main results

2.1 About the process

We assume the coe�cients (bs)s∈[0,T ], (σs)s∈[0,T ] of (1.1) are bounded. Some mild smoothness property on σ
(some continuity in probability) will be also needed: the condition stated below is not restrictive at all and is
ful�lled for instance as soon as (σs)0≤s≤T satis�es a Hölder-continuity property in Lp-norm.

(S) For any δ > 0, there is some function ηδ with limh→0+ ηδ(h) = 0 such that a.s, for s ∈]ti, ti+1[ with
Xs ∈ ∂D, one has P(|

∫ ti+1

s
(σu − σs)dWu| ≥ δ

√
ti+1 − s | Fs) ≤ ηδ(h).

2.2 About the domain

In this section we assume the domain D satis�es assumption

(D) The domain D is of class C2 with bounded boundary ∂D, X0 = x ∈ D̄.

Additional notations and assumptions concerning the intersection of domains satisfying (D) are speci�ed in
section 5. For x ∈ ∂D, denote by n(x) the unit inward normal vector at x. For r ≥ 0, set V∂D(r) := {z ∈ Rd :
d(z, ∂D) ≤ r} and D(r) := {z ∈ Rd : d(z,D) ≤ r}. B(z, r) stands for the closed ball with center z and radius
r. We now recall standard facts on the distance to the boundary and the orthogonal projection on ∂D (see
Lemma 1 and its proof from [GT77] p. 382).

Proposition 2.1 Assume (D). There is a constant R > 0 such that:

i) for any x ∈ V∂D(R), there are unique s = π∂D(x) ∈ ∂D and F (x) ∈ R such that x = π∂D(x) +
F (x)n(π∂D(x)).

ii) The function x 7−→ F (x) is the signed normal distance of x to ∂D: this is a C2-function on V∂D(R),
which can be extended to a C2 function on Rd with bounded derivatives. This extension satis�es F (x) ≥
d(x, ∂D) ∧R on D, F (x) ≤ −[d(x, ∂D) ∧R] on Dc and F = 0 on ∂D.

iii) For x ∈ V∂D(R), one has ∇F (x) = n(π∂D(x)).

Assume D satis�es (D). Following the notations of Proposition 2.1, we now introduce the non characteristic
boundary condition

(C) ∃a0 > 0 such that a.s.
(
Xs ∈ V∂D(R), s ∈ [0, T ] =⇒ αs := ∇F (Xs).σsσ

∗
s∇F (Xs) ≥ a0

)
which enforces the process to exit the domain in a non-tangential manner.
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2.3 Main results

We are now in a position to state our main results for killed and stopped processes in the case of smooth
domains.

Theorem 2.2 Upper bound in the smooth domain case for a killed process.
Assume (C), (D), (S) and suppose f is a borelian and bounded function s.t. ∃ε > 0, d(supp(f), ∂D) ≥ 2ε.
For some constant C, one has

|Err(T, h, f, x)| = |E[f(XT )IτN >T ]− E[f(XT )Iτ>T ]| ≤ C
‖f‖∞
1 ∧ ε

√
h.

Remark 2.1 Note that if f is non-negative one also has Err(T, h, f, x) ≥ 0. This readily derives from the
inequality τN ≥ τ a.s.

Theorem 2.3 Upper bound in the smooth domain case for a stopped process.
Assume (C), (D), (S) and suppose g is bounded in C1,2([0, T ]× Rd). For some constant C, one has

|Err(T, h, g, x)| = |E[g(T ∧ τN , πD̄(XT∧τN ))− g(T ∧ τ,XT∧τ )]| ≤ C
√
h.

Remark 2.2 Let us �rst mention that we can not improve the above rate in our framework, since in the
Brownian case, one has an expansion w.r.t.

√
h (cf. Siegmund and Yuh [SY82] and [Men04]).

Remark 2.3 To study the impact of the time discretization, few asssumptions are needed to get, as indicated
in the previous remark, the expected rate of convergence. To obtain the same upper bound with the discretely
killed Euler scheme of a di�usion process, an additional hypoellepticity condition is necessary (see [GM04]).

Note also that Assumptions (D) and (S) could possibly be weakened. On the other hand, Assumption (C) is
somehow a minimal condition to ensure a convergent approximation. Indeed, it easy to imagine a deterministic
path which hits ∂D only at time τ = χT where χ is an irrational number in ]0, 1[: for this, τN > T for any
N ≥ 1 and Err(T, h, f, x) = f(XT ) is constant.

Remark 2.4 Recall also that the results of Theorems 2.2 and 2.3 concern respectively the impact of a dis-
cretization time in the quantities E[f(XT )Iτ>T ] and E[g(T ∧τ,XT∧τ )]. They can therefore not be directly com-
pared to the results of Theorem 2.3 in [Gob00] or Section 6.4 Chapter I in [Men04] except in the special case of
Brownian motion. Note anyhow that in that case we obtain the upper bound of the weak error with a much sim-
pler proof. The next natural question, in the killed case and when f ≥ 0, concerns a possible lower bound of the
same order for Err(T, h, f, x) as stated in Theorem 5 in [GM04] in a Markovian framework. We give a counter
example that illustrates this property can fail under the sole assumption (C). De�ne for all t ≥ 0, the one

dimensional di�usion process Xt = π/2 +
∫ t

0

cos(Xs)ds+
∫ t

0

sin(Xs)dWs and put D :=]− π/2, 3π/2[. (C) is

readily satis�ed and by construction one has Xs ∈ [0, π] a.s. Hence, IτN >T = Iτ>T = 1 and Err(T, h, f, x) = 0.
A minimal necessary condition to have a lower bound of order 1/2 w.r.t h is to reach the boundary on the
interval [0, T ] with positive probability.

3 Common decomposition of the error

In this section we assume (D) is in force. The constant R is the one of Proposition 2.1. In particular, on D(R)
the projection on D̄ is uniquely de�ned.

3.1 Miscellaneous

We will keep the same notation C (or C ′) for all �nite, non-negative constants which will appear in our
computations: they may depend on D, T , b, σ, f or g, but they will not depend on the number of time steps
N and the initial value x. We reserve the notation c and c′ for constants also independent of x, T , f or g.
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3.2 Localization of X in D(R)

In this subsection we justify that for studying Err(T, h, g, x), we can assume w.l.o.g. that ∀t ∈ [0, T ], Xt ∈
D(R) a.s. Indeed, if it is not the case, we introduce τR := inf{s ≥ 0 : Xs 6∈ D(R)}, X̄t = Xt∧τR

, τ̄N :=
inf{ti ≥ 0 : X̄ti 6∈ D}, τ̄ := inf{t ≥ 0 : X̄t 6∈ D} = τ . Note that

|Err(T, h, g, x)−
(
E[g(T ∧ τ̄N , πD̄(X̄T∧τ̄N ))]− E[g(T ∧ τ̄ , X̄T∧τ̄ )]

)
|

:= |Err(T, h, g, x)− Err2(T, h, g, x)| ≤ 2|g|∞P[τR < τN ].

The process X̄ satis�es (C), (S) and is D(R) valued. Hence, from Assumption (D), the projection on D̄
is uniquely de�ned in the term Err2(T, h, g, x). It therefore remains to control the probability P[τR < τN ]. To
this end, a key tool is the following

Lemma 3.1 (Bernstein's type inequality) Consider two stopping times S, S′ upper bounded by T with
0 ≤ S′−S ≤ ∆ ≤ T . Then for any p ≥ 1 and c′ > 0, there are some constants c > 0 and C, such that for any
η ≥ 0, one has a.s:

P[ sup
t∈[S,S′]

‖Xt −XS‖ ≥ η
∣∣ FS ] ≤C exp

(
−cη

2

∆

)
,

E[ sup
t∈[S,S′]

‖Xt −XS‖p
∣∣ FS ] ≤C∆p/2.

Proof. We omit the proof of the �rst inequality which is standard and refer the reader to Lemma 4.1 in [Gob00]
for instance. The other one easily follows from the �rst one. �

Lemma 3.1 readily gives P[τR < τN ] ≤ C exp
(
−cR2

h

)
. Thus, taking (X̄, τ̄N ) instead of (X, τN ) has no

signi�cant impact. This has however the advantage to keep the projection on D̄ well de�ned. Hence, in the
following we assume

(Xt)t∈[0,T ] ∈ D(R) a.s.

3.3 Error decomposition and proof of the main results

The error decomposition is common to both the killed and stopped cases. Put ∀(t, z) ∈ [0, T ]×D(R),

g̃(t, z) :=

{
It<T f(z) in the killed case,

g(t, πD̄(z)) in the stopped case.

We denote by Err(T, h, g̃, x) the error corresponding to Err(T, h, f, x) in the killed case (resp. Err(T, h, g, x)
in the stopped case). It comes

Err(T, h, g̃, x) = E[g̃(T ∧ τN , XT∧τN )− g̃(T ∧ τ,XT∧τ )]

= E[Iτ<T E[g̃(T ∧ τN , XT∧τN )− g̃(τ,Xτ )|Fτ ]].

Hence, to show Theorems 2.2 and 2.3, it is enough to derive

|E| := |E[g̃(T ′ ∧ τN ′
, XT ′∧τN′ )− g̃(t, x)]| ≤ C

√
h, (3.1)

for an initial point x ∈ ∂D, t ∈ [0, T ), for a shifted time mesh de�ned by {ti : 0 ≤ i ≤ N ′} with t0 = 0, 0 < t1 ≤
h, ti+1 = ti+h (i ≥ 1), for a new terminal time T ′ = tN ′ and a modi�ed exit time τN ′

= inf{ti ≥ t1 : Xti
/∈ D}.

The constant C in (3.1) has to be uniform in T ′ in a compact set, in N ′, in x and in t. For the sake of simplicity,
we still write N for N ′, T for T ′ and take t = 0. Introduce now for all s ∈ [0, T ], Vs := E[g̃(T ∧ τs, XT∧τs)|Fs]
where τs := inf{u ≥ s : Xu 6∈ D} and recall from Proposition 1.3 that (Vu∧τs

)u∈[s,T ] is a martingale. For
x ∈ ∂D, τ0 = 0 so V0 = g(0, x). On the other hand VT∧τN = g̃(T ∧ τN , XT∧τN ). Thus,

E = E[VT∧τN ]− V0 =
N−1∑
i=0

E[Vti+1∧τN − Vti∧τN ] =
N−1∑
i=0

E[IτN >ti

(
Vti+1 − Vti

)
]

=
N−1∑
i=0

E[IτN >ti

(
Vti+1 − Vti+1∧τti

)
] + E[IτN >ti

(
Vti+1∧τti

− Vti

)
].
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It readily follows from the martingale property of (Vu∧τti
)u∈[ti,T ] (see Proposition 1.3) that E[IτN >ti

(Vti+1∧τti
−

Vti)] = 0. Therefore we have

E =
N−1∑
i=0

E[IτN >ti
Iτti

<ti+1(Vti+1 − Vτti
)]. (3.2)

Remark 3.1 Note that to obtain (3.2) we did not use any smoothness properties of g̃.

To control E we state two auxiliary Lemmas whose proofs are postponed to section 4.

Lemma 3.2 Assume (C), (D), (S) and that in the killed case f satis�es the assumptions of Theorem 2.2
(resp. in the stopped case g satis�es the assumptions of Theorem 2.3). For all i ∈ [[0, N − 1]], on the set
{τN > ti, τti

< ti+1} one has
|E[Vti+1 − Vτti

|Fτti
]| ≤ C

√
h.

Lemma 3.3 Assume (C), (D) and (S). There are some positive constants C and N0 such that for N ≥ N0,
for any i ∈ [[0, N − 1]], one has for Xti

∈ D

P[∃t ∈ [ti, ti+1] : Xt /∈ D | Fti ] ≤ C P[Xti+1 /∈ D | Fti ].

Plugging the control of Lemma 3.2 into (3.2) we obtain

|E| ≤ C
√
h

N−1∑
i=0

E[IτN >ti
Iτti

<ti+1 ].

Using now Lemma 3.3 it comes

|E| ≤ C
√
h

N−1∑
i=0

E[IτN >ti
IXti+1 6∈D] = C

√
h

N−1∑
i=0

P[τN = ti+1] ≤ C
√
h

which completes the proof of Theorems 2.2 and 2.3. �

4 Proof of the technical Lemmas

This section is devoted to the proof of Lemmas 3.2 and 3.3. For smooth functions g(t, x), we denote by ∂tg(t, x)
its time derivative, by ∇g(t, x) its gradient w.r.t. x and by Hg(t, x) its Hessian matrix w.r.t. x. The notation
∂g
∂n (t, x) = ∇g(t, x).n(x) stands for the normal derivative on the boundary.

Using the results of Proposition 2.1 and Lemma 3.1, we prove the following Lemma that will be repeatedly
used.

Lemma 4.1 Assume (D). For all i ∈ [[0, N − 1]], on the set {τti ≤ ti+1}, one has

E[
∣∣F (Xti+1)

∣∣ |Fτti
] = E[

∣∣F (Xti+1)− F (Xτti
)
∣∣ |Fτti

] ≤ C
√
h.

4.1 Proof of Lemma 3.2

For this proof we distinguish the killed and stopped cases.

4.1.1 Proof in the killed case

In that case Lemma 3.2 is a direct consequence of the following

Lemma 4.2 Assume (C), (D), (S) and let the function f be as in Theorem 2.2. There is some constant C
such that for any t ∈ [0, T ], one has a.s

|Vt| ≤ C
‖f‖∞
1 ∧ ε

[F (Xt)]+.
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Indeed, we deduce from Lemma 4.1 that ∀i ∈ [[0, N − 1]], on {τN > ti, τti
≤ ti+1} one has

|E[Vti+1 |Fτti
]| ≤ C

‖f‖∞
1 ∧ ε

E[[F (Xti+1)]+|Fτti
] ≤ C

√
h
‖f‖∞
1 ∧ ε

.

Proof of Lemma 4.2

W.l.o.g. we assume f ≥ 0. Since Vt = 0 forXt /∈ D, it is enough to prove the estimate forXt ∈ D∩V∂D(R∧ε/2)
for which 0 < F (Xt) ≤ R∧ε/2. Denote τR

t = inf{s ≥ t : F (Xs) ≥ R} and split V into two parts Vt = V 1
t +V 2

t

with V 1
t = E

[
IT<τt

IT<τR
t
f(XT ) | Ft

]
and V 2

t = E
[
IT<τt

IT≥τR
t
f(XT ) | Ft

]
.

Before estimating separately each contribution, we set some standard notations related to time-changed
Brownian martingales. De�ne the increasing continuous process As =

∫ s

t
αudu (from [t,+∞[ into R+) and its

increasing right-continuous inverse Cs = inf{u ≥ t : Au > s} (from R+ into [t,+∞[) (see section V.1 in Revuz-
Yor [RY99]) and put Ms =

∫ Cs

t
∇F (Xu).σudWu, Zs = F (XCs

). From the Dambis-Dubins-Schwarz theorem,
M coincides with a standard BM β (de�ned on a possibly enlarged probability space) for s <

∫∞
t
αudu and it

is easy to check that β is independent of Ft (see the arguments in the proof of Theorem V.1.7 in [RY99]).
Owing to the assumption (C), A and C are strictly increasing on [t, τR

t ] and [0,
∫ τR

t

t
αudu]. Thus, for s ∈

[0,
∫ τR

t

t
αudu], one easily obtains

Zs = F (Xt) + βs +
∫ s

0

λvdv

where λv = {[∇F (Xu).bu + 1
2 tr(HF (Xu)σuσ

∗
u)]|u=Cv} 1

αCv
is bounded by ‖λ‖∞. De�ne

Z ′s = F (Xt) + βs + ‖λ‖∞s ≥ Zs. (4.1)
Finally, put τZ

0 = inf{s ≥ 0 : Zs ≤ 0}, τZ
R = inf{s ≥ 0 : Zs ≥ R} and analogously τZ′

0 , τZ′

R for Z ′.

Estimation of V 1. Let us �rst prove that for any stopping time S ∈ [t, T ], one has
E
[
f(XT ) | FS

]
≤‖f‖∞P[F (XT ) ≥ 2ε | FS ]

≤C‖f‖∞ exp
(
− c

(2ε− F (XS))2+
T − S

)
a.s. (4.2)

The �rst inequality simply results from the support of f included in D\V∂D(2ε). To justify the second one,
note that {F (XT ) ≥ 2ε} ⊂ {|F (XT )−F (XS)| ≥ 2ε−F (XS)} ⊂ {|F (XT )−F (XS)| ≥ (2ε−F (XS))+} and the
proof of (4.2) is complete using Lemma 3.1 applied to the Itô process (F (Xs))s≥0 with bounded coe�cients.
We now turn to the evaluation of V 1

t . On {T < τR
t }, using the notation with the time change above, one

has T = CAT
≥ Ca0(T−t) and a0(T − Ca0(T−t)) ≤

∫ T

Ca0(T−t)

αudu = AT − ACa0(T−t) . Hence, T − Ca0(T−t) ≤

1
a0

(AT − a0(T − t)) ≤ ‖α‖∞
a0

(T − t). Thus, one obtains

V 1
t ≤ E

[
ICa0(T−t)<τt

ICa0(T−t)<τR
t

I
T−Ca0(T−t)≤

‖α‖∞
a0

(T−t)
E
[
f(XT ) | FCa0(T−t)

]
| Ft

]
≤ C‖f‖∞E

[
ICa0(T−t)<τt

ICa0(T−t)<τR
t

exp
(
− c′

(2ε− F (XCa0(T−t)))
2
+

T − t

)
| Ft

]
≤ C‖f‖∞E

[
Ia0(T−t)<τZ′

0
ICa0(T−t)<τR

t
exp

(
− c′

(2ε− Z ′a0(T−t))
2
+

T − t

)
| Ft

]
where one has applied at the second line the estimate (4.2) with S = Ca0(T−t) (here c′ = c a0

‖α‖∞ ), at the third
one {Ca0(T−t) < τt} = {∀s ∈ [t, Ca0(T−t)] : F (Xs) > 0} = {∀u ∈ [0, a0(T − t)] : Zu > 0} = {a0(T − t) < τZ

0 } ⊂
{a0(T − t) < τZ′

0 } and (2ε − F (XCa0(T−t)))+ = (2ε − Za0(T−t))+ ≥ (2ε − Z ′a0(T−t))+. Reminding the law of
β, one �nally gets that V 1

t ≤ C‖f‖∞Φ1(a0(T − t), F (Xt)) with Φ1(r, z) = E
(
I∀u∈[0,r]:z+βu+‖λ‖∞u>0 exp

(
−

a0c
′ (2ε−z−βr−‖λ‖∞r)2+

r

))
.With clear notations involving the smooth transition density of the killed drifted BM

and Gaussian type estimates of its gradient (see [LSU68] Theorem 16.3), one has Φ1(r, z) =
∫∞
0
qr(z, y) exp

(
−

a0c
′ (2ε−y)2+

r

)
dy and

|∂zΦ1(r, z)| ≤ C

∫ ∞

0

1
r

exp(−c (z − y)2

r
) exp

(
− a0c

′ (2ε− y)2+
r

)
dy.
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We now justify that |∂zΦ1(r, z)| ≤ C
1∧ε for 0 ≤ z ≤ ε/2 and for this, we may split the domain of integration

into two parts. For y < ε, (2ε − y)2+ ≥ ε2 and the corresponding contribution for the integral is bounded
by
∫∞
0

1√
r

exp(−c (z−y)2

r )
[

1√
r

exp
(
− a0c

′ ε2

r

)]
dy ≤ C

1∧ε . For y ≥ ε and 0 ≤ z ≤ ε/2, (z − y)2 ≥ ε2/4 and the
integral is bounded by

∫∞
0

1√
r

exp(− c
2

(z−y)2

r ) 1√
r

exp(− c
2

ε2

4r )dy ≤ C
1∧ε .

Since Φ1(r, 0) = 0, one gets Φ1(r, z) ≤ C
1∧εz for z ∈ [0, ε/2] and this proves that V 1

t ≤ C ‖f‖∞
1∧ε F (Xt).

Estimation of V 2. Clearly, one has V 2
t ≤ ‖f‖∞P

[
τR
t < τt | Ft

]
. Note that {τR

t < τt} = {τZ
R < τZ

0 } ⊂ {τZ′

R <

τZ′

0 } because of (4.1). Hence, one has V 2
t ≤ ‖f‖∞Φ2(F (Xt)) where Φ2(z) = P[(z+βu+‖λ‖∞u)u≥0 hits R before 0].

It is well-known that Φ2(z) = 1−exp(−2‖λ‖∞z)
1−exp(−2‖λ‖∞R) ≤ Cz (see Section 5.5 in [KS91] e.g.) and this proves that

V 2
t ≤ C‖f‖∞F (Xt). Combining estimates for V 1 and V 2 gives the result of Lemma 4.2. �

4.1.2 Proof in the stopped case

Assume the function g is as in Theorem 2.3. In this case, we use the smoothness of g. Since we also assumed
Xt is D(R) valued, the semi-martingale decomposition stated in Proposition 3.1 in [Gob00] remains valid for
(πD̄(Xt))t≥0. Hence, ∀i ∈ [[0, N − 1]], on the set {τti

≤ ti+1} we write

g̃(T ∧ τti+1 , XT∧τti+1
)− g̃(τti

, Xτti
)

=
∫ T∧τti+1

τti

∂ug(u, πD̄(Xu))du+∇g(u, πD̄(Xu)) · d(πD̄(Xu)) +
1
2
tr(Hg(u, πD̄(Xu))d〈πD̄(X)〉u)

:= (MT∧τti+1
−Mτti

) + (VT∧τti+1
− Vτti

) +
∫ T∧τti+1

τti

∂g

∂n
(u,Xu)dL0

u(F (X))

whereM is a local martingale and V a �nite variation process. From the boundedness of the derivatives of g and
of the coe�cients bs, σs, we derive thatM is a true martingale and that a.s |VT∧τti+1

−Vτti
| ≤ C(T ∧τti+1−τti

).
It comes

|E[g̃(T ∧ τti+1 , XT∧τti+1
)− g̃(τti , Xτti

)|Fτti
]| ≤ C

{
E[L0

T∧τti+1
(F (X))− L0

τti
(F (X))|Fτti

]

+E[(T ∧ τti+1 − τti)|Fτti
]
}

:= C
(
A1

τti
+A2

τti

)
.

Term A1
τti
: control of the local time.

Since the measure dL0
t (F (X)) is a.s carried by the set {t : F (Xt) = 0} we write

A1
τti

= E[L0
ti+1

(F (X))− L0
τti

(F (X))|Fτti
]

= 2E[[F (Xti+1)]− − [F (Xτti
)]− +

∫ ti+1

τti

IF (Xs)<0dF (Xs)|Fτti
] ≤ C

√
h. (4.3)

The last equality follows from Tanaka's formula. The last inequality is a consequence of the boundedness of
F and its derivatives, the boundedness of the coe�cients of X and Lemma 4.1.

Term A2
τti
: time-change techniques.

Write

A2
τti

= (T − τti
)P[τti+1 > T |Fτti

] + E[(τti+1 − τti
)Iτti+1≤T |Fτti

] := A21
τti

+A22
τti
.

The key idea is now, as in the proof of Lemma 4.2, to use time-changes in order to apply well known results
for hitting times in a Brownian framework. We rewrite

A21
τti

= (T − τti)E[IXti+1∈DE[Iτti+1>T |Fti+1 ]|Fτti
].

Put Cti+1 := P[τti+1 > T |Fti+1 ] and de�ne τR
t := inf{s ≥ t : F (Xs) ≥ R}. We decompose Cti+1 = P[τti+1 >

T, τR
ti+1

≤ T |Fti+1 ] + P[τti+1 > T, τR
ti+1

> T |Fti+1 ] := C1
ti+1

+C2
ti+1

. Since C1
ti+1

≤ P[τti+1 > τR
ti+1

|Fti+1 ], we can
control this term in the same way we did for V 2 in the proof of Lemma 4.2. Namely, we get

E[IXti+1∈DC
1
ti+1

|Fτti
] ≤ CE[[F (Xti+1)]+|Fτti

]. (4.4)
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In the following we use the notation introduced in the proof of Lemma 4.2 for time-changed martingales with
t = ti+1. For all i ∈ [[0, N − 2]], on the set {Xti+1 ∈ D} we write

C2
ti+1

= P[ inf
s∈[ti+1,T ]

F (Xti+1) + βAs + λAs > 0, τR
ti+1

> T |Fti+1 ]

≤ P[ inf
s∈[0,AT ]

F (Xti+1) + βs + ‖λ‖∞s > 0, τR
ti+1

> T |Fti+1 ]

≤ P[ inf
s∈[0,a0(T−ti+1)]

F (Xti+1) + βs + ‖λ‖∞s > 0, τR
ti+1

> T |Fti+1 ]

≤
∫ ∞

a0(T−ti+1)

dt
F (Xti+1)
(2πt3)1/2

exp(−
(F (Xti+1) + ‖λ‖∞t)2

2t
) ≤

CF (Xti+1)
(T − ti+1)1/2

(4.5)

exploiting the explicit density for the hitting times of the drifted BM, see e.g. [KS91] section 3.5.C, for the
last but one inequality. From (4.4) and (4.5) we derive that ∀i ∈ [[0, N − 2]]

A21
τti

≤ C(T − τti
)E[[F (Xti+1)]+(1 +

1
(T − ti+1)1/2

)|Fτti
].

Observing that ∀i ∈ [[0, N − 2]], T − ti+1 ≥
T − ti

2
≥ T − τti

2
we derive from Lemma 4.1

A21
τti

≤ CE[[F (Xti+1)]+|Fτti
] ≤ C

√
h. (4.6)

Since for i = N − 1 we also have A21
τti

≤ (T − τti
) ≤ h and we �nally obtain that equation (4.6) is valid for all

i ∈ [[0, N − 1]]. We now turn to the control of A22
τti

reintroducing the events {τR
ti+1

> τti+1}, {τR
ti+1

< τti+1}. It
comes

A22
τti

= E[(τti+1 − τti
)Iτti+1≤T IXti+1∈D(IτR

ti+1
>τti+1

+ IτR
ti+1

<τti+1
)|Fτti

] +O(h)

:= A221
τti

+A222
τti

+O(h).

Conditioning w.r.t. Fti+1 and using the same arguments as for C1
ti+1

we readily getA222
τti

≤ CE[[F (Xti+1)]+|Fτti
] ≤

C
√
h. For A221

τti
write

A221
τti

≤ h+ E[IXti+1∈DE[(τti+1 − ti+1)Iτti+1≤T IτR
ti+1

>τti+1
|Fti+1 ]|Fτti

]

:= h+ E[IXti+1∈DQti+1 |Fτti
].

Regarding Qti+1 , one has

Qti+1 ≤
∫ T−ti+1

0

dsP[τti+1 − ti+1 ≥ s, τR
ti+1

> τti+1 |Fti+1 ]

≤
∫ T−ti+1

0

dsP[ inf
u∈[0,As+ti+1 ]

F (Xti+1) + βu + ‖λ‖∞u > 0, τR
ti+1

> τti+1 |Fti+1 ]

≤
∫ T−ti+1

0

dsPy[τ β̃
0 ≥ a0s]

where we denote y = F (Xti+1), β̃u = y + βu + ‖λ‖∞u, τ β̃
0 := inf{s ≥ 0 : β̃s = 0}. Thus, recalling that y > 0

on the set {Xti+1 ∈ D}, it comes

Qti+1 ≤ a−1
0

∫ (T−ti+1)a0

0

dsPy[τ β̃
0 ≥ s] = a−1

0 Ey[τ β̃
0 I

τ β̃
0 ≤a0(T−ti+1)

]

≤ a−1
0

∫ (T−ti+1)a0

0

dt
ty

(2πt3)1/2
exp(− (y + ‖λ‖∞t)2

2t
) ≤ Cy.

From this last estimate and the previous controls we derive
A221

τti
≤ h+ CE[IXti+1∈DF (Xti+1)|Fτti

] ≤ C
√
h.

Hence, for all i ∈ [[0, N − 1]],
A22

τti
≤ C

√
h. (4.7)

We conclude the proof of Lemma 3.2 in the stopped case putting together the controls (4.3), (4.6), (4.7) . �
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4.2 Proof of Lemma 3.3

We adapt some ideas from [Gob00]: in the cited paper, a uniform ellipticity condition was assumed, and this
enabled to use a Gaussian type lower bound for the conditional density of Xti+1 w.r.t. the Lebesgue measure,
together with some computations related to a cone exterior to D. Here, under (C), the conditional law of
Xti+1 may be degenerate and our proof rather exploits the scaling invariance of the cone and of the Brownian
increments.
It is enough to prove that a.s on {ti < τti

< ti+1}, one has

P[Xti+1 /∈ D | Fτti
] ≥ 1

C
. (4.8)

Indeed, it follows that P[Xti+1 /∈ D | Fti ] = E[Iτti
≤ti+1P[Xti+1 /∈ D | Fτti

] | Fti ] ≥
P[τti

≤ti+1 | Fti
]

C and Lemma
3.3 is proved.
To get (4.8), write Xti+1 = Xτti

+ στti
(Wti+1 −Wτti

) +Ri where Ri =
∫ ti+1

τti
budu+

∫ ti+1

τti
(σu − στti

)dWu. The
domain D is of class C2, and thus satis�es a uniform exterior sphere condition with radius R/2 (R de�ned in
Proposition 2.1): for any z ∈ ∂D, B(z − R

2 n(z), R
2 ) ⊂ Dc. In particular, if we de�ne for θ ∈]0, π/2[ the cone

K(θ, z) := {y ∈ Rd : (y− z).[−n(z)] ≥ ‖y− z‖ cos(θ)}, then one has K(θ, z)∩B(z,R(θ)) ⊂ B(z− R
2 n(z), R

2 ) ⊂
Dc for some appropriate choice of the positive function R(.). Then, it follows that

P[Xti+1 /∈ D | Fτti
] ≥ P[Xti+1 ∈ K(θ,Xτti

) ∩B(Xτti
, R(θ)) | Fτti

]

≥ P[Xti+1 ∈ K(θ,Xτti
) | Fτti

]− P[Xti+1 /∈ B(Xτti
, R(θ)) | Fτti

]

≥ P[(Xti+1 −Xτti
).(−n(Xτti

)) ≥
√
ατti

(ti+1 − τti) ≥ ‖Xti+1 −Xτti
‖ cos(θ) | Fτti

]

− P[Xti+1 /∈ B(Xτti
, R(θ)) | Fτti

] ≥ A1 −A2(θ)−A3(θ), (4.9)

where A1 = P[(Xti+1 −Xτti
).(−n(Xτti

)) ≥
√
ατti

(ti+1 − τti
) | Fτti

],

A2(θ) = P[
√
ατti

(ti+1 − τti) < ‖Xti+1 −Xτti
‖ cos(θ) | Fτti

],

A3(θ) = P[Xti+1 /∈ B(Xτti
, R(θ)) | Fτti

].

Term A1. Clearly, one has A1 ≥ P[(−n(Xτti
)).στti

(Wti+1 − Wτti
) ≥

2
√
ατti

(ti+1 − τti) | Fτti
] − P[|n(Xτti

).Ri| ≥
√
ατti

(ti+1 − τti) | Fτti
] := A11 − A12. The random variable

(−n(Xτti
)).στti

(Wti+1−Wτti
) is conditionally to Fτti

a centered Gaussian variable with variance ατti
(ti+1−τti

),
and thus A11 = Φ(−2) > 0, where Φ denotes the distribution function of the standard normal law. Owing to
the condition (S) and since ατti

≥ a0 a.s, it is easy to see that the contribution A12 converges uniformly to 0
when h goes to 0, and thus for h = T/N small enough, one has A1 ≥ A11

2 > 0.

Term A2(θ). From Markov's inequality, A2(θ) ≤
E[‖Xti+1−Xτti

‖2 cos2(θ) | Fτti
]

ατti
(ti+1−τti

) ≤ C cos2(θ) using (C) and esti-
mates of Lemma 3.1. In particular, taking θ close to π/2 ensures that A2(θ) ≤ A11

6 .
Term A3(θ). Using Lemma 3.1, one readily gets A3(θ) ≤ C exp

(
−cR2(θ)

h

)
≤ A11

6 for h small enough (R(θ) > 0).
Putting together estimates for A1, A2(θ) and A3(θ) into (4.9) gives P[Xti+1 /∈ D | Fτti

] ≥ A11
6 . This proves

(4.8). �

4.3 A simple extension in the stopped case

From the previous controls we easily derive the following

Theorem 4.3 Assume (C), (D), (S) and that g is bounded, uniformly Hölder continuous with index α ∈
(0, 1/2] in time and Hölder continuous with index 2α in space. For some constant C, one has

|Err(T, h, g, x)| ≤ Chα/2.
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Proof. Starting from (3.2) we write

|E| ≤ C
N−1∑
i=0

E[IτN >ti
Iτti

≤ti+1E[(T ∧ τti+1 − τti
)α + ‖XT∧τti+1

−Xτti
‖2α|Fτti

]]

≤ C
N−1∑
i=0

E[IτN >ti
Iτti

≤ti+1E[(T ∧ τti+1 − τti
)α|Fτti

]]

using the BDG inequalities for the last inequality. We controlled the term E[(T∧τti+1−τti
)|Fτti

] := A2
τti

≤ C
√
h

in the proof of Lemma 3.2 in the stopped case. Hence, the result is a consequence of Hölder's inequality and
Lemma 3.3. �

5 Extension to an intersection of smooth domains

5.1 Additional notations and assumptions

In this section we allow the domain to be singular in the sense of the following Assumption

(D') The domain D =
⋂m

j=1Dj , m ≥ 2. For all j ∈ [[1,m]], Dj satis�es (D). We denote its boundary by
Γj := ∂Dj .

For r ≥ 0, we set ∀j ∈ [[1,m]], VΓj (r) := {z ∈ Rd : d(z,Γj) ≤ r}, V∂D(r) := {z ∈ Rd : d(z, ∂D) ≤ r}, D(r) :=
D ∪ V∂D(r). Since the Γj are C2, we recall from Proposition 2.1 that ∃Rj > 0 s.t. on VΓj

(Rj) the projection
on Γj is uniquely de�ned. For all x ∈ Γj , the notation nj(x) stands for the inner normal unit of Dj . In
the following, Fj denotes the signed distance to Γj which is C2 on VΓj

(Rj) and can be extended into a C2

function on Rd with bounded derivatives (see once again Proposition 2.1 for details). Set R := ∧m
j=1Rj . Our

non degeneracy assumption on the domain D is stated as follows:

(C') ∃a0 > 0 such that a.s.
(
Xs ∈ VΓj

(R) ∩ V∂D(R), s ∈ [0, T ], j ∈ [[1,m]] =⇒ ∇Fj(Xs).σsσ
∗
s∇Fj(Xs) ≥ a0

)
.

This corresponds to a non characteristic boundary condition w.r.t. every hypersurface in a neighbourhood
of the domain D.

5.2 Main result

We are now in a position to state the main result of the section.

Theorem 5.1 (Upper Bound for an intersection of smooth domains in the killed case)
Assume (C'), (D'), (S) and let f be as in Theorem 2.2. For some constant C := C(m), one has

|Err(T, h, f, x)| = |E[f(XT )IτN >T ]− E[f(XT )Iτ>T ]| ≤ C
‖f‖∞
1 ∧ ε

√
h.

We restrict ourselves to the killed case for simplicity because we do not need to project XτN on the boundary
to de�ne our approximation.

Remark 5.1 The result of Theorem 5.1 is very interesting even in the Markovian setting of Brownian Motion.
Indeed, for non smooth domains it is a hard task to use the traditional error analysis techniques that require
the smoothness of the derivatives of the solution of the underlying PDE (1.7) up to the boundary, see also
[Men04]. We thus provide an alternative technique that points out that the main di�culty to upper-bound the
weak error in the Brownian context does not lie in the lack of regularity of the domain.

5.3 Proof of Theorem 5.1

Without modifying the rate of convergence, see Section 3.2 for details, we can assume Xt ∈ D(R) a.s.
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Using the above de�nition of (Vt)t∈[0,T ], i.e. ∀t ∈ [0, T ], Vt = E[f(XT )Iτt>T |Ft], and for an initial point
x ∈ ∂D, we derive in a similar way than for the proof of Theorem 2.2

E := E[f(XT )IτN >T ] =
N−1∑
i=0

E[IτN >ti
Iτti

<ti+1Vti+1 ].

Recall that, to prove Theorem 5.1, it is enough to show |E| ≤ C
√
h controlling that C is uniform w.r.t. x ∈ ∂D.

Put τ j
t := inf{s > t : Xs 6∈ Dj} and note that τt = ∧m

j=1τ
j
t . From (C'), we then derive that X satis�es our

previous assumption (C) w.r.t. Dj ,∀j ∈ [[1,m]]. Hence, as a consequence of Lemma 4.2 it comes

|Vti+1 | = |E[f(XT )Iτti+1>T |Fti+1 ]| ≤ E[|f(XT )|Iτj
ti+1

>T |Fti+1 ]

≤ C‖f‖∞
1 ∧ ε

[Fj(Xti+1)]+, ∀j ∈ [[1,m]].

Thus,

|E| ≤
N−1∑
i=0

E[IτN >ti,τti
<ti+1 |Vti+1 |] =

N−1∑
i=0

E[IτN >ti,∪m
j=1{τ

j
ti

<ti+1}|Vti+1 |]

≤ C‖f‖∞
1 ∧ ε

m∑
j=1

N−1∑
i=0

E[IτN,j>ti,τ
j
ti

<ti+1
[Fj(Xti+1)]+]

where τN,j := inf{si ≥ 0 : Xsi
6∈ Dj}. Applying Lemma 4.1 we derive that

|E| ≤
√
h
C‖f‖∞
1 ∧ ε

m∑
j=1

N−1∑
i=0

P[τN,j > ti, τ
j
ti
< ti+1].

We conclude the proof using Lemma 3.3 for all j ∈ [[1,m]]. �

6 Conclusion

In this paper, we �rst emphasized that, under suitable assumptions, the error Err(T, h, ψ, x) associated to the
discrete sampling ofX for a given set of functionals ψ, is not given by the Markov property of SDEs but actually
only depends on the Brownian stochastic integral in the dynamics (1.1). For a discretely sampled maximum
or integral we used standard arguments to get this result. For killed/stopped processes, we introduced some
martingale techniques that allow to go beyond the Markovian framework and also to control Err(T, h, f, x) at
the expected rate for a certain class of non-smooth domains. In the killed/stopped case, as a matter of fact,
few technical tools are needed for the error analysis we present. This is promising since even in a Brownian
setting, for non-smooth domains the PDE approach for the error analysis is rather tedious or fails. The next
natural question concerns the possible extension of our techniques when the stochastic integral in (1.1) is
driven by a stable process.
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