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Abstract

We study the sensitivity, with respect to a time dependent domain Ds, of expec-
tations of functionals of a di�usion process stopped at the exit from Ds or normally
re�ected at the boundary of Ds. We establish a di�erentiability result and give an
explicit expression for the gradient that allows the gradient to be computed by Monte
Carlo methods. Applications to optimal stopping problems and pricing of American
options, to singular stochastic control and others are discussed.
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1 Introduction

1.1 Presentation of the problem and main results

In this work, we address the problem of the sensitivity of the law of a di�usion process
Xs constrained in a time dependent domain Ds ⊂ <d, with respect to perturbations of the
domain. Both situations where the process is stopped at the exit from Ds and where the
process is normally re�ected at the boundary are covered. The law of the process is studied
by means of the following expectations of functionals:
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1. E [g(τ,Xτ )Zτ −
∫ τ
t Zsf(s,Xs)ds|Xt = x] , where τ is the �rst exit time of Xs from Ds

and Zs = e−
∫ s

t
c(r,Xr)dr, when Xs is stopped at the exit from Ds;

2. E
[
g(XT )ZT −

∫ T
t Zsf(s,Xs)ds−

∫ T
t Zsh(s,Xs)dΛs|Xt = x

]
, where Λs is the associated

increasing process on the boundary and Zs = e−
∫ s

t
c(r,Xr)dr+β(r,Xr)dΛr , when Xs is nor-

mally re�ected at the boundary of Ds.

The main result of the paper is the di�erentiability of the above expectations with respect
to perturbations of Ds, with explicit expressions for their gradients (Theorems 2.2 and 3.8).
It is worth noticing that these expressions are expectations of other functionals of the form
above, and hence allow the gradients to be computed by Monte Carlo methods.

The issue of sensitivity with respect to the domain is classic in the numerical analysis
literature, if one thinks of the above expectations as solutions of a Partial Di�erential Equa-
tion (PDE in short) with Cauchy-Dirichlet and Cauchy-Neumann boundary conditions in the
time-space domain D = {(s, x) : x ∈ Ds, s ∈]0, T [}: in particular, applications to shape opti-
mization of elastic structures are important (see [All02] and references therein). The �rst re-
sults on this topic date back to Hadamard and have been generalized in [MS76, Sim80, Pir84]
among others. These references de�nitely solve the case of elliptic PDEs. The parabolic case,
the one of interest in the present framework, is less studied: in [SZ92], the sensitivity anal-
ysis is developed for the Laplacian (corresponding to Xs being Brownian motion) in a �xed
domain. Here the analysis is extended to general di�usion processes and time dependent
domains: this extension was partly motivated by a new approach to the numerical solu-
tion of optimal stopping problems, in particular the valuation of American options, which
is presented in Section 4.2 (for optimal stopping and stochastic control problems see, e.g.,
[Kar81]).

The two cases of a stopped di�usion and a re�ected di�usion are exposed in Section 2 and
Section 3, respectively. The results of Section 2 have been announced in a slightly stronger
form in the note [CEG03]. The leading idea of our proofs is to transfer the pertubation from
the domain to the process, which is easier to analyze by stochastic calculus and weak con-
vergence techniques. For related ideas in Malliavin calculus, see [Cat91]. Our techniques are
probabilistic and hence di�erent from those employed by the authors mentioned above. The
connection with PDEs via Feyman-Kac formulas plays an important role, and is discussed
in each case.

Some applications are presented in Section 4. In Subsection 4.1 it is shown how our results
can be used to improve the rate of convergence in the simulation of killed di�usion processes.
In Subsection 4.2 we discuss the above mentioned application to optimal stopping problems
and pricing of American options. The approach we propose is to maximize the expected
payo� when the option is exercised at the exit from a continuation region, over all possible
regions: the results of this paper provide the main tool to construct a numerical procedure
for this optimization problem. In Subsection 4.3 our results are used to establish existence
of the density for the joint law of the maximum and the terminal value of a di�usion process.
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Finally, applications to singular stochastic control problems are presented in Subsection 4.4.
Some technical results are proved in the Appendix.

In the rest of this section, we de�ne the notations used throughout the paper and recall
some de�nitions and results on time-space domains.

1.2 General notation

• Di�erentiation. We adopt the following usual convention on the derivatives: if ψ : <d2 7→
<d1 is a di�erentiable function, its jacobian Jψ(x) = (∂x1ψ(x), · · · , ∂xd2

ψ(x)) takes values in
<d1 ⊗<d2 .
For smooth functions g(t, x), we denote by ∂β

xg(t, x) the derivative of g w.r.t. x according
to the multi-index β, whereas time derivatives of g are denoted by ∂tg(t, x), ∂

2
t g(t, x) and so

on. The notation ∇g(t, x) stands for the usual gradient w.r.t. x (as a row vector) and the
Hessian matrix of g (w.r.t. the space variable x) is denoted by Hg(t, x).
The second order linear operator L below stands for the in�nitesimal generator of the di�u-
sion process with drift and di�usion coe�cients (b, σ):

Lu(t, x) = ∇u(t, x)b(t, x) +
1

2
Tr(Hu(t, x)[σσ∗](t, x)). (1.1)

• Linear algebra. The r-th column of a matrix A will be denoted by Ar (or Ar,t if A is a time
dependent matrix) and the r-th element of a vector a will be denoted by ar (or ar,t if a is a
time dependent vector). A∗ stands for the transpose of A. The identity matrix is denoted
by I and the identity function by Id.
• Metric. The parabolic distance between two points (t, x) and (s, y) in < × <d is de�ned
by pd((t, x), (s, y)) = max(|s− t|1/2, |x− y|), where |x− y| is the usual Euclidean distance.
We set Bd′(x, ε) for the usual Euclidean d′-dimensional open ball with center x and radius
ε and d(x,C) for the Euclidean distance of a point x from a closed set C (and analogously
pd((t, x), C) for the parabolic distance).
• Functions. For an open set D′ ⊂ < × <d and k ∈ N, Cb k

2
c,k(D′) (resp. Cb k

2
c,k(D′)) is

the space of continuous functions f de�ned on D′ with continuous derivatives ∂β
x∂

j
t f for

|β| + 2j ≤ k (resp. de�ned in a neighborhood of D′). The index b in Cb
k
2
c,k

b (D′) indicates
that in addition the functions are bounded as well their derivatives. We may simply write
Cb k

2
c,k and Cb

k
2
c,k

b when D′ = <× <d.
| · |∞ stands for the sup norm.
Denote by C([t, T ],<d) the set of continuous functions from [t, T ] into <d and by I([t, T ],<+)

the set of continuous and non-decreasing functions from [t, T ] into <+. With a slight abuse
of notation, dI denotes the measure associated to I and dIr = dI(dr).
• Floating constants. As usual, we keep the same notation K for all �nite, non-negative
constants which appear in our computations.
• Miscellaneous. To be more concise (whenever needed), g(s, x) may be denoted gs(x).
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1.3 Time-space domains

In the sequel D stands for a bounded time-space domain in ]0, T [×<d (T is a �xed terminal
time). The boundary of D is denoted, as usual, by ∂D. Regularity assumptions on the
domain D will be formulated in terms of Hölder spaces with time-space variables (see [Lie96]
p.46). Let D′ be an arbitrary time-space domain. If the index of regularity is a = k+α for k
a nonnegative integer and α ∈]0, 1], then Ha(D′) is the Banach spaces of functions f of class
Cb k

2
c,k(D′) with Hölder continuous k-th derivatives, namely with a �nite norm |f |a,D′ where

|f |a,D′ =
∑

|β|+2j≤k

sup
D′

|∂β
x∂

j
t f |+ [f ]a,D′+ < f >a,D′

with [f ]a,D′ =
∑

|β|+2j=k

sup
(s,y)∈D′

sup
(t,x)∈D′\{(s,y)}

|∂β
x∂

j
t f(t, x)− ∂β

x∂
j
t f(s, y)|

[pd((t, x), (s, y))]α

and < f >a,D′=


∑
|β|+2j=k−1 sup(s,x)∈D′ sup(t,x)∈D′\{(s,x)}

|∂β
x ∂j

t f(t,x)−∂β
x ∂j

t f(s,x)|
|t−s|(α+1)/2 for k ≥ 1,

0 for k = 0.

Whenever convenient, we may denote (Ha(<× <d), | · |a,<×<d) by (Ha, | · |a).
The following smoothness de�nition for the time-space domain D will be used (cf. [Fri64],
page 64).

De�nition 1.1 The domain D is of class Ha (a ≥ 1) (D ∈ Ha in short) if, for every

(t0, x0) ∈ ∂D ∩ (]0, T [×<d), there exists a neighborhood ]t0− ε20, t0 + ε20[×Bd(x0, ε0), an index

i and a function φ0 ∈ Ha (]t0 − ε20, t0 + ε20[×Bd−1((x1,0, · · · , xi−1,0, xi+1,0, · · · , xd,0), ε0)) such

that

∂D ∩ (]0, T [×<d) ∩ (]t0 − ε20, t0 + ε20[×Bd(x0, ε0)) =

{(t, x) ∈ (]t0 − ε20, t0 + ε20[∩[0, T ])×Bd(x0, ε0) : xi = φ0(t, x1, · · · , xi−1, xi+1, · · · , xd)}.

Let

D0 =
{
x : (0, x) ∈ ∂D − ∂D ∩ (]0, T [×<d)

}
,

DT =
{
x : (T, x) ∈ ∂D − ∂D ∩ (]0, T [×<d)

}
.

D0 and DT are open sets and we assume that they are nonempty domains that coincide with
the interior of their closure (cf. [Fri64], Section 3.2). We assume also (cf. again [Fri64],
Section 3.2) that the time section of D, Dt = {x : (t, x) ∈ D}, is a domain that coincides
with the interior of its closure, for every t ∈]0, T [. If D is of class Ha (a ≥ 1) the sets
PD = ∂D−{0}×D0, BD = {T}×DT and SD = PD−BD are the parabolic boundary, the
bottom and the side of D in the sense of [Lie96], pages 7 and 13.

If D is of class H1, D satis�es an exterior tusk condition, which is analogous to the
exterior (Wiener's) cone condition for elliptic problems (see [Dur84]). We use this result in
our sensitivity analysis and we state it now. The result seems to be standard in the PDE
litterature (see [Lie89]), but for the sake of completeness we prove it in Appendix A.
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Proposition 1.2 [Tusk condition]. Assume D ∈ H1. For some R > 0, δ > 0, at any

point (t0, x0) ∈ PD, there is a tusk

T = {(t, x) : t0 < t < t0 + δ,
∣∣∣x− x0 − x̄0

√
t− t0

∣∣∣2 < R2(t− t0)},

for some x̄0 ∈ <d, such that T intersects D only at (t0, x0).

If D is of class H2, all domains Dt, for t ∈ [0, T ], satisfy the uniform interior and exterior
sphere condition with the same radius r0. Moreover (see [Lie96], Section X.3), the signed
spatial distance F , given by

F (t, x) =

{
−d(x, ∂Dt), for x ∈ Dc

t , d(x, ∂Dt) < r0, 0 < t < T,

d(x, ∂Dt), for x ∈ Dt, d(x, ∂Dt) < r0, 0 < t < T,

is of class H2 and ∇F (t, x) is the unit inward normal vector at the nearest point to x in ∂Dt.
Then there is a function in H2 that coincides with F on {(t, x) : 0 < t < T, d(x, ∂Dt) < r′0},
for some r′0 < r0. If D is of class H2+α, the arguments in [Lie96], Section X.3, show that this
function can be taken in H2+α (hence in C1,2

b ).

2 Di�usion processes stopped at the boundary

Here, for (t, x) ∈ D̄, we consider the <d-valued di�usion process (X t,x) solution of

Xs = x+
∫ s

t
b(r,Xr)dr +

∫ s

t
σ(r,Xr)dWr, (2.1)

where (Wt)t≥0 is a q-dimensional Brownian motion de�ned on a �ltered probability space
(Ω,F , (Ft)t≥0,P) satisfying the usual conditions. The assumption (Aα-1) below ensures the
existence of a unique strong solution to (2.1).

(Aα) (with α ∈]0, 1])

1. Smoothness. b and σ satisfy |b(t, x)− b(s, y)|+ |σ(t, x)− σ(s, y)| ≤ K(|t− s|α/2 +

|x− y|) uniformly in (t, x), (s, y) ∈ [0, T ]×<d.

2. Uniform ellipticity. For some a0 > 0, it holds ξ.[σσ∗](t, x)ξ ≥ a0|ξ|2 for any
(t, x, ξ) ∈ [0, T ]×<d ×<d.

We mention that the additional smoothness of b and σ w.r.t. the time variable is required for
the connection with PDEs. The in�nitesimal generator of X is given by (1.1). Now de�ne

τ t,x := inf{s > t : (s,X t,x
s ) /∈ D} (2.2)

for the �rst exit time from the domain D for the time-space process (s,X t,x
s )s∈[t,T ]. Note that

τ t,x is bounded by T . We focus on the expectation of functionals of the process X stopped
at the exit from D, of the form

u(t, x) = E(g(τ t,x, X t,x
τ t,x)e

−
∫ τt,x

t
c(r,Xt,x

r )dr −
∫ τ t,x

t
e−
∫ s

t
c(r,Xt,x

r )drf(s,X t,x
s )ds), (2.3)

5



and on its sensitivity w.r.t. D. The data f, g, c are bounded continuous functions. For (2.3)
to be meaningful, it is su�cient that these functions are de�ned only on D̄; however in the
sequel the domain changes, therefore we de�ne them directly on <d+1 (as for the coe�cients
b and σ). We are now in a position to state a preliminary result which relates u to the
solution of a Cauchy-Dirichlet type PDE in the time-space domain D. This connection is
standard but, to our knowledge, it appears in the literature only in the case of cylindrical
domains D =]0, T [×D with D ⊂ <d (see Theorem 2.3 p.133 in [Fre85] for instance). The
proof is postponed to Appendix B.1.

Proposition 2.1 [Feynman-Kac's formula and a priori estimates on u]

Assume (Aα), D ∈ H1, c ∈ Hα, f ∈ Hα and g ∈ C0,0 with α ∈]0, 1[. Then, u is the unique

solution of class C1,2(D) ∩ C0,0(D̄) to{
∂tu+ Lu− cu = f in D,

u = g on PD. (2.4)

In addition, if D is of class H1+α and g ∈ H1+α, the function u belongs to H1+α(D) and it

holds |u|1+α,D ≤ K(|f |α,D + |g|1+α,D) (in particular, ∇u is well de�ned and continuous up to

the boundary).

We now turn to one of the main contributions of this paper, namely the sensitivity of

E(g(τ t,x, X t,x
τ t,x)e

∫ τt,x

t
c(r,Xt,x

r )dr −
∫ τ t,x

t e
∫ s

t
c(r,Xt,x

r )drf(s,X t,x
s )ds) w.r.t. spatial perturbations of

D. We de�ne a spatial perturbation of the time-space domain D in the following way:

Dε = {(t, x) : (t, x+ εΘ(t, x)) ∈ D}, ε ∈ <, (2.5)

for some map Θ : [0, T ]×<d 7→ <d. In the sequel
Θ is a function of class C1,2

b ([0, T ]×<d).
For �xed ω, the exit time from Dε of a pathX t,x(ω) is certainly not smooth w.r.t. ε. However,
the law of related functionals of the form (2.3) is smooth in the sense stated in the theorem
below.

Theorem 2.2 Assume (Aα), D ∈ H1+α, c ∈ Hα, f ∈ Hα and g ∈ H1+α with α ∈]0, 1[.

Let (t, x) be in D ∪D0 and set

τ t,x
ε := inf{s > t : (s,X t,x

s ) /∈ Dε}. (2.6)

Then, uε(t, x) = E[g(τ t,x
ε , X t,x

τ t,x
ε

)e−
∫ τ

t,x
ε

t
c(r,Xt,x

r )dr −
∫ τ t,x

ε
t e−

∫ s

t
c(r,Xt,x

r )drf(s,X t,x
s )ds] is di�eren-

tiable w.r.t. ε at ε = 0 and

∂εu
ε(t, x)|ε=0 = E[e−

∫ τt,x

t
c(r,Xt,x

r )dr[(∇u−∇g)Θ](τ t,x, X t,x
τ t,x)].

Note that ∇u in the above expression is well de�ned on the boundary since u is of class
H1+α(D). In view of the formula above and because u = g on PD, only normal pertubations
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of Θ have contributions in the derivative of uε(t, x). It is intuitively correct.

Proof. Without loss of generality we can suppose ε > 0. Since the initial condition (t, x) is
�xed in the proof, we omit the superscripts t, x.
First we prove the result for c, f ∈ H1. For convenience, set Zs = e−

∫ s

t
c(r,Xr)dr. One has to

�nd the limit of ∆ε

ε
as ε→ 0, where

∆ε := E[g(τε, Xτε)Zτε −
∫ τε

t
f(s,Xs)Zsds]− u(t, x).

The idea of the proof is to transform the perturbation of the domain into a perturbation of
the process. Namely, we de�ne

Xε
s = Xs + εΘ(s,Xs), τ ε := inf{s > t : (s,Xε

s) /∈ D}. (2.7)

Then, (2.5) and (2.6) yield the key relation

τε = τ ε. (2.8)

Since Θ is bounded, the perturbed process Xε converges uniformly on [t, T ] to X as ε goes
to 0. Furthermore, Θ being of class C1,2

b and x 7→ x+ εΘ(s, x) being bijective (for any �xed
s) for ε small enough, the perturbed process is still a non-homogeneous di�usion process.
We denote its in�nitesimal generator by Lε. We state now two technical lemmas, which are
justi�ed later.

Lemma 2.3 Assume (Aα) with α ∈]0, 1[ and D ∈ H1. Then, τε = τ ε converges almost

surely to τ as ε goes to 0.

Lemma 2.4 Assume that (Aα), D ∈ H1+α, c ∈ Hα, f ∈ Hα and g ∈ H1+α with α ∈]0, 1[.

For any p ∈ [1, 1
1−α

[, one has

∫ T

t
E[1D(s,Xε

s)(|∂su|p + |∇u|p + |Hu|p)(s,Xε
s)]ds <∞ (2.9)

uniformly for ε in a neighborhood of 0.

Using (2.8) and (2.7), one obtains

g(τε, Xτε)Zτε −
∫ τε

t
f(s,Xs)Zsds = g(τ ε, [Id + εΘ(τ ε, .)]−1Xε

τε)Zτε −
∫ τε

t
f(s,Xs)Zsds.

Thus, ∆ε can be decomposed as ∆ε = ∆1,ε + ∆2,ε + ∆3,ε + ∆4,ε with

∆1,ε = E[g(τ ε, [Id + εΘ(τ ε, .)]−1Xε
τε)Zτε − g(τ ε, Xε

τε)Zτε ],

∆2,ε = E[g(τ ε, Xε
τε)Zτε − u(τ ε ∧ τ,Xε

τε∧τ )Zτε∧τ −
∫ τε

τε∧τ
f(s,Xs)Zsds],

∆3,ε = E[u(τ ε ∧ τ,Xε
τε∧τ )Zτε∧τ − u(τ ε ∧ τ,Xτε∧τ )Zτε∧τ ],

∆4,ε = E[u(τ ε ∧ τ,Xτε∧τ )Zτε∧τ −
∫ τε∧τ

t
f(s,Xs)Zsds]− u(t, x).
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The convergence of ∆1,ε is straightforward to analyse and we get

lim
ε→0

∆1,ε

ε
= −E [(∇g Θ)(τ,Xτ )Zτ ] . (2.10)

We now prove that ∆2,ε/ε converges to 0. Observe that g(τ ε, Xε
τε) = u(τ ε, Xε

τε). Thus, ∆2,ε

can be decomposed using Itô's formula, which application is justi�ed thanks to Proposition
2.1 and the estimates (2.9) for p = 1. We have

∆2,ε = E(
∫ τε

τ∧τε
[∂su(s,X

ε
s) + Lεu(s,Xε

s)− c(s,Xs)u(s,X
ε
s)− f(s,Xs)]Zs ds)

= E(
∫ τε

τ∧τε
[[Lε − L]u(s,Xε

s)− [c(s,Xs)− c(s,Xε
s)]u(s,X

ε
s)

−[f(s,Xs)− f(s,Xε
s)]]Zs ds)

where in the last equality we used the PDE solved by u (see (2.4), noting that for s < τ ε,
(s,Xε

s) ∈ D). Clearly, the di�erence [Lε − L]u is bounded by Kε(|∇u| + |Hu|) and since
c, f ∈ H1, one also has |c(s,Xs) − c(s,Xε

s)| + |f(s,Xs) − f(s,Xε
s)| ≤ Kε for some constant

K. Since Zs and u(s,Xε
s) are bounded, we obtain

|∆2,ε

ε
| ≤ KE(

∫ T

t
1[τ∧τε,τε[(s)[|∇u|+ |Hu|+ 1](s,Xε

s)ds)

≤ K[E(τ ε − τ ∧ τ ε)]1−1/p[E
∫ T

t
1D(s,Xε

s) [|∇u|+ |Hu|+ 1]p(s,Xε
s)ds]

1/p

applying the Hölder inequality to the measure dP⊗ dt (with p ∈]1, 1
1−α

[). The convergence
of Lemma 2.3 clearly holds also in L1, proving that the �rst factor converges to 0, while the
second one is uniformly bounded using estimates (2.9). This proves that limε→0 ∆2,ε/ε = 0.

For the term ∆3,ε, recalling that u ∈ H1+α(D) (Proposition 2.1), we readily obtain

lim
ε→0

∆3,ε

ε
= E[(∇u Θ)(τ,Xτ )Zτ ]. (2.11)

Finally, as far as ∆4,ε is concerned, it is enough to observe that (u(s ∧ τ,Xs∧τ )Zs∧τ −∫ s∧τ
t f(s,Xs)Zsds)t≤s≤T is a (bounded) martingale, and the result follows. Combining di�er-
ent limits for ∆1,ε/ε, · · · ,∆4,ε/ε completes the theorem, when c, f ∈ H1.

Now consider the case where c, f ∈ Hα only. There is a sequence of (cm, fm)m ∈ H1 which
is bounded in Hα and convergent to (c, f) in Hα′-norm (for any α′ ∈]0, α[). Denote uε

m the
associated PDE in the domain Dε. Clearly uε

m(t, x) converges uniformly in ε to uε(t, x) (t and
x are �xed). Moreover, Dε is of class H1+α′ (for ε small enough, say ε ≤ ε0) and the previous
analysis leads to ∂εu

ε
m(t, x) = E[e−

∫ τε

t
cm(r,Xr)dr[(∇uε

m − ∇g)Θ](τε, Xτε)]. What remains to
be proved to complete our theorem in the general case is the convergence of ∂εu

ε
m(t, x) to

E[e−
∫ τε

t
c(r,Xr)dr[(∇uε − ∇g)Θ](τε, Xτε)] uniformly in ε (ε ≤ ε0). This easily reduces to the

uniform convergence of |uε
m−uε|1+α′,Dε to 0 as m→∞. Observe that ū = uε

m−uε is solution
of (2.4) in Dε with data c̄ = cm, f̄ = fm−f+(cm−c)uε and ḡ = 0. By the |·|1+α′,Dε-estimates
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from Proposition 2.1 (with a constant K locally uniform in ε and depending on c̄ only by
|c̄|α′,Dε), we obtain |uε

m − uε|1+α′,Dε ≤ K(|cm − c|α′ + |fm − f |α′) uniformly in ε. The proof is
�nished. 2

Proof of Lemma 2.3. To prove τε → τ a.s., we sandwich Dε between two domains,
D−ε = {(t, x) ∈ D : pd((t, x),SD) ≥ cε} and D+ε = {(t, x) : pd((t, x),SD) < cε}, where
the constant c is large enough to ensure D−ε ⊂ Dε ⊂ D+ε and ε small enough to have
(t, x) ∈ D−ε. We denote τ−ε and τ+ε the relative exit times for X. Since τ−ε ≤ τε ≤ τ+ε, we
are reduced to prove that τ−ε and τ+ε converge a.s. to τ as ε ↓ 0. Firstly, τ−ε is an increasing
sequence bounded by τ : we write τ− for its limit. Since pd((τ−ε, Xτ−ε),D) ≤ cε, taking the
limit gives τ− ≥ τ , and thus τ− = τ . Secondly and analogously, τ ≤ τ+ = limε↓0 τ+ε. In view
of the estimate (2.12) below, the event {τ < τ+} has zero probability. Hence, we get τ+ = τ .
It remains to prove

∀(s, y) ∈ PD,∀∆ > 0 small enough : ps,y,∆ = P(∃ t ∈]s, s+ ∆] : (t,Xs,y
t ) /∈ D̄) = 1. (2.12)

By the Blumenthal Zero-One law, it su�ces to show ps,y,∆ > 0. For this, we combine the
tusk condition of Proposition 1.2 and the Aronson's lower bound [Aro67] for the density
p(s,y)(s + ∆, ·) (w.r.t. the Lebesgue measure) of the law of Xs,y

s+∆, i.e. p(s,y)(s + ∆, y′) ≥
1

K ∆d/2 exp
(
−K |y−y′|2

∆

)
. Let T be the tusk of Proposition 1.2 at point (s, y) and take ∆ < δ.

We have

ps,y,∆ ≥ P((s+ ∆, Xs,y
s+∆) ∈ T ) ≥

∫ 1

K ∆d/2
exp (−K

|y − y′|2

∆
)1|[y′−y]−ȳ

√
∆|2≤R2∆ dy′

=
∫ 1

K
exp (−K|z|2)1|z−ȳ|2≤R2 dz > 0.

The proof of (2.12) is complete. 2

Proof of Lemma 2.4. Take p ∈ [1, 1
1−α

[. It is enough to consider the integrability of
Hu alone. Indeed, we already know by Proposition 2.1 that ∇u is uniformly bounded,
and the control of ∂tu follows from the other estimates by (2.4). Under our standing
assumptions, the second spatial derivatives of u may blow up at the boundary PD at
some rate. Namely, in view of the estimate (4.64) p.79 in [Lie96], we have |Hu(s, y)| ≤
K inf(r,z)∈PD,r≥s [pd[(s, y), (r, z)]]α−1. Thus, the assertion of the lemma follows if∫ T

t
E[1(s,Xε

s)∈D inf
(r,z)∈PD,r≥s

(pd[(s,Xε
s), (r, z)])

p(α−1)]ds < +∞, (2.13)

with p(α − 1) ∈] − 1,−1 + α]. This quantity is partly evaluated using an Aronson's upper
bound [Aro67] for the density pε

t,Xε
t
(s, ·) of the law of Xε

s conditionnally on Xε
t . We note

that for ε small enough, the coe�cients of the dynamics of the non-homogenuous SDE Xε

also satisfy (Aα), with uniform (w.r.t. ε) Lipschitz and ellipticity constants. Thus, one has
pε

t,Xε
t
(s, y) ≤ K

(s−t)d/2 exp ( − |Xε
t−y|2

K (s−t)
) with a constant K uniform w.r.t. ε. We analyse the
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quantity (2.13) according to the event A = {pd((s,Xε
s),DT ) ≤ pd((s,Xε

s),SD ∩ {r ≥ s})}
and its complementary.
On A, inf(r,z)∈PD,r≥s pd[(s,Xε

s), (r, z)] =
√
T − s which gives a integrable contribution (since∫ T

t (T − s)p(α−1)/2ds < +∞).
On Ac, inf(r,z)∈PD,r≥s pd[(s,Xε

s), (r, z)] = pd((s,Xε
s),SD ∩ {r ≥ s}). To prove that∫ T

t E[1(s,Xε
s)∈D(pd[(s,Xε

s),SD ∩ {r ≥ s}])p(α−1)]ds is �nite, we can restrict to points (s,Xε
s)

in a neighborhood of SD. This set can be covered by a �nite number of open balls
(Bj =]t(j) − ε20, t(j) + ε20[×Bd(x(j), ε0))1≤j≤J (with (t(j), x(j)) ∈ SD), on which the local
parameterization of D is available, i.e. D ∩ (]t(j) − ε20, t(j) + ε20[×Bd(x(j), ε0)) = {(s, z) :

s ∈](t(j) − ε20)+, (t(j) + ε20) ∧ T [, z ∈ Bd(x(j), ε0), zi > φ(s, z1, · · · , zi−1, zi+1, · · · , zd)} (see
De�nition 1.1). Furthermore when D ∈ H1, it is an easy exercice to check that |zi −
φ(s, z1, · · · , zi−1, zi+1, · · · , zd)| ≤ Kpd[(s, z),SD ∩ {r ≥ s}]. Combining these arguments
with the Aronson estimate, we obtain∫ T

t
E[1(s,Xε

s)∈D∩Bj
(pd[(s,Xε

s),SD ∩ {r ≥ s}])p(α−1)]ds

≤
∫ (t(j)+ε20)∧T

(t(j)−ε20)+∨t
ds
∫

Bd(x(j),ε0)

K

(s− t)d/2
exp (− |Xε

t − z|2

K (s− t)
)

Kp(1−α)1zi>φ(s,z1,···,zi−1,zi+1,···,zd)

|zi − φ(s, z1, · · · , zi−1, zi+1, · · · , zd)|p(1−α)
dz1 · · · dzd

≤ K
∫ (t(j)+ε20)∧T

(t(j)−ε20)+∨t

ds

(s− t)1/2
< +∞,

where the space integral is easily evaluated by integrating w.r.t. zi �rst. 2

3 Domain sensitivity for re�ecting di�usions

In this section we deal with domain sensitivity of functionals of a normally re�ected di�usion
process X t,x in a time varying domain D. We consider a general functional of the form

u(t, x) = E[g(X t,x
T )ZT −

∫ T

t
Zt,x

s f(s,X t,x
s )ds−

∫ T

t
Zt,x

s h(s,X t,x
s )dΛt,x

s ], (3.1)

where Λt,x is the associated increasing process on the boundary and

Zt,x
s = e−

∫ s

t
c(r,Xt,x

r )dr+β(r,Xt,x
r )dΛt,x

r , (3.2)

and space perturbations of the domain D of the form (2.5).
The de�nition and construction of a di�usion process with normal re�ection in a time

varying domain requires few modi�cations with respect to the analogous de�nition and con-
struction for a �xed domain, but, to our knowledge, does not appear anywhere in the liter-
ature, therefore we formulate it in Subsection 3.1 and add a few more details in Appendix
C. The same holds for the Feynman-Kac representation that relates the functional (3.1) to
a Cauchy-Neumann parabolic problem in D (Subsection 3.2 and Appendix B.2).
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The sensitivity result we are interested in is contained in Subsection 3.3: we prove that
the expectation of the functional (3.1) is di�erentiable with respect to the perturbation and
compute its derivative, which turns out to be an expectation along the paths of (X t,x,Λt,x).
As in Section 2, the idea of the proof is to transfer the perturbation from the domain to the
process, by introducing the perturbed process

X̃ t,xε,ε
s = (Id + εΘs)(X

t,x,ε
s ), xε = (Id + εΘt)(x), (3.3)

where X t,x,ε is the normally re�ecting di�usion in the perturbed domain (2.5). The process
X̃ t,xε,ε takes values inD but re�ects on the boundary along an oblique direction. Therefore we
need to prove some compactness and moment estimates for di�usions with oblique re�ection
in a time varying domain (Subsection 3.1 and Appendix C.1).

3.1 Re�ecting di�usions

In the sequel, we consider a time varying domain D of class at least H2 (see Subsection
1.3). Recall that, with this degree of regularity, the time sections Ds, s ∈ [0, T ], verify the
uniform exterior and interior sphere condition, uniformly for s ∈ [0, T ]; let ns(x) denote the
unit inward normal with respect to Ds at x ∈ ∂Ds. Let γ denote a measurable, unit vector
�eld on SD such that

γs(x) · ns(x) > 0, ∀x ∈ ∂Ds, s ∈ [0, T ],

and let b be a bounded measurable function on D and σ be a continuous function on D. In
the sequel (t, x) will be a �xed point in D.

De�nition 3.1 A (weak) solution of the stochastic di�erential equation (RSDE) of coe�-

cients b and σ in D with re�ection along γ, starting at (t, x), is a stochastic process (X t,x,Λt,x)

with paths in C([t, T ],<d)×I([t, T ],<+), Λt,x
t = 0, that satis�es, almost surely, for s ∈ [t, T ],

X t,x
s = x+

∫ s

t
b(r,X t,x

r )dr +
∫ s

t
σ(r,X t,x

r )dWr +
∫ s

t
γr(X

t,x
r )dΛt,x

r , (3.4)

X t,x
s ∈ Ds, s ∈ [t, T ], dΛt,x

({
s ∈ [t, T ] : X t,x

s ∈ Ds

})
= 0, (3.5)

where W is a Brownian motion on a �ltered probability space (Ω,F , {Fs} ,P) and (X t,x,Λt,x)

is {Fs}-adapted. X t,x will be called a re�ecting di�usion in D with coe�cients b and σ and

direction of re�ection γ, and Λt,x will be called the associated increasing process on the

boundary.

The following two theorems can be proved by arguments similar to those used in [Sai87]
and [Cost92] (a few more details are given in Appendix C.1).

Theorem 3.2 Assume b and σ satisfy (Aα-1) (see Section 2). There exists one and only

one (weak) solution to the RSDE of coe�cients b and σ in D with re�ection along n (normal

re�ection), starting at (t, x) ∈ D.
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Remark 3.3 Indeed, under the assumptions of Theorem 3.2, there exists one and only one

strong solution to the RSDE of coe�cients b and σ in D with normal re�ection.

Let
l(r) = sup

s,t∈[0,T ], |s−t|≤r

sup
x∈Dt

d(x,Ds).

Since D is of class H2,
lim

r→0+
l(r) = 0.

Theorem 3.4 Assume γ is continuous and

γs(x) · ns(x) ≥ k0 >

√
3

2
, ∀x ∈ ∂Ds, s ∈]t, T ]. (3.6)

Let (X t,x,Λt,x) be a solution of the stochastic di�erential equation of coe�cients b and σ in

D with re�ection along γ, starting at (t, x) ∈ D. Denote

Y t,x
s = x+

∫ s

t
b(r,X t,x

r )dr +
∫ s

t
σ(r,X t,x

r )dWr, s ∈ [t, T ]. (3.7)

Then there exists a function κ : C([t, T ],<d) → <+, depending only on D, k0 and the modulus

of continuity of γ, such that, almost surely,

sup
s1≤r1≤r2≤s2

|X t,x
r2
−X t,x

r1
|+ Λt,x

s2
− Λt,x

s1
≤ κ(Y t,x)

(
sup

s1≤r1≤r2≤s2

|Y t,x
r2

− Y t,x
r1
|+ l(s2 − s1)

)
,

t ≤ s1 ≤ s2 ≤ T,

κ is bounded over compact subsets of C([t, T ],<d).

We will also need control on the moments of the associated increasing process on the
boundary: this is provided by the following proposition, which is proved in Appendix C.2.

Proposition 3.5 Let D, γ and (X t,x,Λt,x) be as in Theorem 3.4. Then, for any p ≥ 0,

E
[
epΛt,x

T

]
≤ K (3.8)

where K is a constant depending only on p, D, |b|∞, |σ|∞ and k0.

The above results yield the following proposition, which will be one of the main tools in
the proof of the sensitivity result.

Proposition 3.6 Assume b and σ satisfy (Aα-1). Let (X̃ t,xε,ε, Λ̃t,xε,ε) be a solution of the

stochastic di�erential equation of coe�cients b̃ε and σ̃ε in D with re�ection along γ̃ε, starting

at (t, xε). Suppose γ̃ε, b̃ε, σ̃ε and xε converge uniformly to n, b, σ and x, respectively, as

ε goes to zero, and γ̃ε is continuous. Then (X̃ t,xε,ε, Λ̃t,xε,ε) converges weakly to the solution
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of the stochastic di�erential equation of coe�cients b and σ in D with normal re�ection,

starting at (t, x), and, for some ε0,

sup
ε≤ε0

E
[
epΛ̃t,xε,ε

T

]
<∞, (3.9)

for any p ≥ 0.

Proof. We omit the superscripts t, xε. For ε smaller than some ε0, b̃ε and σ̃ε are bounded
uniformly in ε and the directions of re�ection γ̃ε satisfy (3.6) with the same k0 >

√
3

2
.

Therefore (3.9) follows from (3.8).
Now let us turn to convergence. (X̃ε, Λ̃ε) satis�es (3.4) for some Brownian motion W̃ ε.

Let Ỹ ε
s be as in (3.7). Let {εn} be any sequence converging to zero. The directions of re�ec-

tion γ̃εn are equicontinuous and satisfy (3.6) with the same k0 >
√

3
2
, therefore the function

κ that appears in Theorem 3.4 does not depend upon n. In addition, since b̃εn and σ̃εn are
bounded uniformly in n, the family of stochastic processes {Ỹ εn} is relatively compact. Then
the family {(X̃εn , Λ̃εn)} is relatively compact and hence so is the family {(X̃εn , W̃ εn , Λ̃εn)}.
Now let {εn} be a sequence converging to zero such that {(X̃εn , W̃ εn , Λ̃εn)} converges in
law to a limit point (X̃, W̃ , Λ̃), and let {(Xεn

,W
εn
,Λ

εn
)} and (X,W,Λ) be versions of

{(X̃εn , W̃ εn , Λ̃εn)} and (X̃, W̃ , Λ̃), respectively, such that {(Xεn
,W

εn
,Λ

εn
)} converges al-

most surely, on a suitable probability space, to (X,W,Λ), uniformly on [0, T ]. Clearly
{(b̃εn(·, Xεn

), σ̃εn(·, Xεn
), γ̃εn(·, Xεn

),W
εn
,Λ

εn} converges almost surely to {(b(·, X), σ(·, X),

n(·, X),W ,Λ}, uniformly on [t, T ]. Theorem 2.2 in [KP91] ensures that the right hand side
of (3.4) converges in probability, uniformly on [t, T ], to x+

∫ ·
t b(r,Xr)dr+

∫ ·
t σ(r,Xr)dW r +∫ ·

t nr(Xr)dΛr as soon as

sup
n

E
[
〈W εn〉T

]
<∞, sup

n
E
[
Λ

εn

T

]
<∞. (3.10)

The �rst inequality in (3.10) holds trivially and the second one holds by (3.9). In fact the
convergence holds almost surely, because Xεn converges to X almost surely.

In order to show that (X,Λ) satis�es (3.4-3.5) it only remains to show that dΛ({s ∈ [t, T ] :

Xs ∈ Ds}) = 0 almost surely. To this end, observe that the sequence of measures
{
dΛ

εn
}
on

[t, T ] converges, almost surely, ∗weakly to the measure dΛ. For every η > 0,{
s ∈ [t, T ] : d(Xs, ∂Ds) > η

}
⊆
{
s ∈ [t, T ] : d(X

εn

s , ∂Ds) > η/2
}
,

for all n large enough, almost surely. The set on the right hand side has zero measure under
dΛ

εn and hence so does the set on the left hand side. In addition the set on the left hand
side is open, so that it has zero measure under dΛ as well, for every η > 0, which implies
that dΛ

({
s ∈ [t, T ] : Xs ∈ Ds

})
= 0.

The assertion of the proposition then follows from uniqueness of the solution to the RSDE
of coe�cients b and σ with normal re�ection in D (Theorem 3.2). 2
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3.2 Feynman-Kac's representation

As in Section 2, in order to study the sensitivity of the function u de�ned by (3.1) with
respect to perturbations of D we need to represent u as the solution of a suitable partial
di�erential equation, i.e. to extend the Feynman-Kac formula.

Proposition 3.7 Assume (Aα), D ∈ H2+α, β ∈ H1+α, c ∈ Hα, f ∈ Hα and h ∈ H1+α

with α ∈]0, 1[. Let g be a bounded, continuous function on <d. Then there exists a unique

solution of class C1,2(D) ∩ C0,0(D̄) to the parabolic problem
∂tu+ Lu− cu = f in D,
∇un− βu = h on SD,
u(T, ·) = g on DT .

(3.11)

The solution is given by (3.1). If, in addition, g is twice continuously di�erentiable with

bounded derivatives, the second order derivatives of g are uniformly Hölder continuous of

order α and ∇g n(T, ·)− β(T, ·)g = h(T, ·) on ∂DT , then u belongs to H2+α(D).

The proof is given in Appendix B.2.

3.3 Boundary sensitivity

Let X t,x be the re�ecting di�usion with coe�cients b and σ and normal re�ection in the
time space domain D, starting at (t, x), and let Λt,x be the associated increasing process
on the boundary. Our goal is to study the sensitivity of the functional (3.1) with respect
to space perturbations of D of the form (2.5), with Θ ∈ C1,2

b ([0, T ] × <d). We will suppose
that |ε| ≤ ε0, where ε0 is chosen suitably (in particular ε0 ≤ 1

2|JΘ|∞ ∧ 1, so that the map
Id + εΘ(t, ·) is invertible for |ε| ≤ ε0). A straightforward computation shows that the unit
inward normal vector on ∂Dε

s is given by

nε
s(x) =

(I + εJΘ∗
s) (x)ns ◦ (Id + εΘs) (x)

|(I + εJΘ∗
s) (x)ns ◦ (Id + εΘs) (x)|

, ∀x ∈ ∂Dε
s. (3.12)

Let Xε,t,x be the re�ecting di�usion with coe�cients b and σ and normal re�ection in Dε,
starting at (t, x), and let Λε,t,x be the associated increasing process on the boundary. Denote
by uε the corresponding functional (3.1). The following theorem contains the sensitivity
result we are interested in.

Theorem 3.8 Assume, for some α ∈]0, 1[, (Aα), D ∈ H2+α, β ∈ H1+α, c ∈ Hα, f ∈ Hα

and h ∈ H1+α. Suppose g is a twice continuously di�erentiable function on <d with bounded

derivatives, the second order derivatives of g are uniformly Hölder continuous of order α

and ∇g n(T, ·)− β(T, ·)g = h(T, ·) on ∂DT . Then, for every �xed (t, x) ∈ D ∪D0, u
ε(t, x) is

di�erentiable with respect to ε at ε = 0 and

duε(t, x)

dε
|ε=0 = E

[
−
∫ T

t
Zt,x

s (βu+ h)(s,X t,x
s )n∗(s,X t,x

s )JΘ(s,X t,x
s )n(s,X t,x

s )dΛt,x
s
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−
∫ T

t
Zt,x

s Θ∗(s,X t,x
s )Hu(s,X t,x

s )n(s,X t,x
s )dΛt,x

s

+
∫ T

t
Zt,x

s ∇u(s,X t,x
s )JΘ∗(s,X t,x

s )n(s,X t,x
s )dΛt,x

s

+
∫ T

t
Zt,x

s ∇(βu+ h)(s,X t,x
s )Θ(s,X t,x

s )dΛt,x
s

]
(3.13)

where Zt,x is given by (3.2).

Proof. In the rest of this section we omit the superscripts t, x and denote

Zε
s = e−

∫ s

t
c(r,Xε

r)dr+β(r,Xε
r)dΛε

r .

Without loss of generality we can suppose ε > 0. Since D is of class H2+α and u ∈ H2+α(D),
we can extend u to a function in H2+α(]0, T [×<d), which we will still denote by u. Then,
for ε small enough that (t, xε) ∈ Dε ∪ Dε

0,

uε(t, x)− u(t, x) = E[Zε
Tg(X

ε
T )−

∫ T

t
Zε

s f(s,Xε
s)ds−

∫ T

t
Zε

s h(s,X
ε
s)dΛ

ε
s]− u(t, x)

= E[Zε
T (g(Xε

T )− u(T,Xε
T ))]

+E[Zε
Tu(T,X

ε
T )− u(t, x)−

∫ T

t
Zε

s f(s,Xε
s)ds−

∫ T

t
Zε

s h(s,X
ε
s)dΛ

ε
s]

= E[Zε
T (g(Xε

T )− u(T,Xε
T ))]

+E[
∫ T

t
Zε

s (∂su+ Lu− cu− f)(s,Xε
s)ds]

+E[
∫ T

t
Zε

s (∇unε − βu− h)(s,Xε
s)dΛ

ε
s]

= ∆1,ε + ∆2,ε + ∆3,ε. (3.14)

As in the proof of Theorem 2.2, the idea is to transfer the perturbation from the domain to
the process, by introducing the perturbed process X̃ε

s = X̃ t,xε,ε
s given by (3.3). The following

lemma is proved after this theorem.

Lemma 3.9 X̃ε is a re�ecting di�usion in the domain D with coe�cients

b̃ε(s, x) = (bs + ε (∂s + L) Θs) ◦ (Id + εΘs)
−1 (x), (3.15)

σ̃ε(s, x) = (σs + εJΘsσs) ◦ (Id + εΘs)
−1 (x),

and direction of re�ection

γ̃ε(s, x) =

(
I + εJΘs

(
(Id + εΘs)

−1 (x)
)) (

I + εJΘ∗
s

(
(Id + εΘs)

−1 (x)
))

ns(x)∣∣∣(I + εJΘs

(
(Id + εΘs)

−1 (x)
)) (

I + εJΘ∗
s

(
(Id + εΘs)

−1 (x)
))

ns(x)
∣∣∣ . (3.16)

The associated increasing process is

Λ̃ε
s =

∫ s

t

∣∣∣(I + εJΘr(X
ε
r)) (I + εJΘ∗

r(X
ε
r))nr(X̃

ε
r)
∣∣∣∣∣∣(I + εJΘ∗

r(X
ε
r))nr(X̃ε

r)
∣∣∣ dΛε

r. (3.17)
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By Proposition 3.6, (X̃ε, Λ̃ε) converges weakly to (X,Λ), as ε goes to 0, and (3.9) holds.
Since |Xε

s − X̃ε
s| ≤ ε |Θ|∞ for every t ≤ s ≤ T , Xε too converges weakly to X. As far as Λε

is concerned, we have

Λε
s =

∫ s

t

∣∣∣(I + εJΘ∗
r(X

ε
r))nr(X̃

ε
r)
∣∣∣∣∣∣(I + εJΘr(Xε

r)) (I + εJΘ∗
r(X

ε
r))nr(X̃ε

r)
∣∣∣dΛ̃ε

r, (3.18)

so that Λε converges weakly to Λ by (3.9) and Theorem 2.2 in [KP91]. In addition, since the
integrand in (3.18) is bounded from above by a positive constant, uniformly for ε ≤ ε0, (3.9)
holds for Λε as well. Therefore Zε converges weakly to Z and

sup
ε≤ε0

E

[
sup

t≤s≤T
|Zε

s|p
]
<∞. (3.19)

We are now ready to analyze the right hand side of (3.14). Since g and u(T, ·) coincide on
DT and their second order derivatives derivatives are Hölder continuous of order α, one has

∆1,ε = O(ε2+α).

Next consider ∆2,ε and let

A(s, x) = (∂su+ Lu− cu− f)(s, x).

Notice that A is of class Hα. By (3.19) we have, for 1
p

+ 1
q

= 1,

|∆2,ε| ≤ E[
∫ T

t
|Zε

s |pds]
1/pE[

∫ T

t
|A(s,Xε

s)|qds]
1/q ≤ K E[

∫ T

t
|A(s,Xε

s)|qds]
1/q.

Now observe that, as u satis�es (3.11), A(s,Xε
s) 6= 0 implies

d(Xε
s, ∂Ds) ≤ |Θ|∞ε.

Therefore we have

|∆2,ε| ≤ K E[
∫ T

t
1d(Xε

s ,∂Ds)≤|Θ|∞ε|A(s,Xε
s)− A(s, X̃ε

s)|qds]
1/q, (3.20)

and, by the smoothness of A,

|∆2,ε| ≤ K εαE

[∫ T

t
1d(Xε

s ,∂Ds)≤|Θ|∞εds

]1/q

.

The following lemma is proved after this theorem.

Lemma 3.10 There is a constant K depending only on D and the coe�cients of L, such

that, for some ε0, η0 > 0,

sup
ε≤ε0

E

[∫ T

t
1d(Xε

s ,∂Ds)≤ηds

]
≤ Kη,
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for every 0 < η < η0.

By Lemma 3.10, |∆2,ε| ≤ Kεα+ 1
q , and, by choosing 1

q
> 1− α, we obtain

∆2,ε = o(ε).

Now consider ∆3,ε. Since the unit inward normal to Ds, nε
s, is given by (3.12), we have

∆3,ε = E

[∫ T

t
Zε

s (∇unε − βu− h) (s,Xε
s)dΛ

ε
s

]

= E

[∫ T

t
Zε

s

(
∇u(s,Xε

s)
ns(X̃

ε
s)

|(I + εJΘ∗
s)(X

ε
s)ns(X̃ε

s))|
− (βu+ h)(s,Xε

s)

)
dΛε

s

]

+ ε E

[∫ T

t
Zε

s ∇u(s,Xε
s) (JΘ∗)(s,Xε

s)
ns(X̃

ε
s)

|(I + εJΘ∗
s)(X

ε
s)ns(X̃ε

s)|
dΛε

s

]
.

Taking into account the boundary condition (3.11) satis�ed by u, and the fact that dΛε
s

increases if and only if Xε
s ∈ ∂Dε

s, that is if and only if X̃ε
s ∈ ∂Ds, we obtain

∆3,ε = E

[∫ T

t
Zε

s ∇u(s,Xε
s)ns(X̃

ε
s)

(
1

|(I + εJΘ∗
s)(X

ε
s)ns(X̃ε

s)|
− 1

)
dΛε

s

]

+E

[∫ T

t
Zε

s

(
∇u(s,Xε

s)−∇u(s, X̃ε
s)
)
ns(X̃

ε
s)dΛ

ε
s

]

+E

[∫ T

t
Zε

s

(
(βu+ h)(s, X̃ε

s)− (βu+ h)(s,Xε
s)
)
dΛε

s

]

+ εE

[∫ T

t
Zε

s ∇u(s,Xε
s) (JΘ∗)(s,Xε

s)
ns(X̃

ε
s)

|(I + εJΘ∗
s)(X

ε
s)ns(X̃ε

s)|
dΛε

s

]

and, by exploiting the identity 1
|v| − 1 = 1−|v|2

|v| (|v|+1)
, v ∈ <d,

∆3,ε = εE

[∫ T

t
Zε

s ∇u(s,Xε
s)ns(X̃

ε
s)

−2n∗s(X̃
ε
s) JΘs(X

ε
s)ns(X̃

ε
s)

|(I + εJΘ∗
s)(X

ε
s)ns(X̃ε

s)|(|(I + εJΘ∗
s)(X

ε
s)ns(X̃ε

s)|+ 1)
dΛε

s

]

+ εE

[∫ T

t
Zε

s

(
−Θ∗

s(X
ε
s)Hu(s,X

ε
s)ns(X̃

ε
s) +∇(βu+ h)(s,Xε

s)Θs(X
ε
s)
)
dΛε

s

]

+ εE

[∫ T

t
Zε

s ∇u(s,Xε
s) (JΘ∗)(s,Xε

s) ns(X̃
ε
s)dΛ

ε
s

]

+ ε1+αE

[∫ T

t
Zε

s R
ε
s(X

ε
s, X̃

ε
s)dΛ

ε
s

]
, (3.21)

where |Rε
s(x, x̃)| is uniformly bounded by (3|JΘ|2∞ + |Θ|1+α

∞ )(|u|2+α + |βu + h|1+α). The
last summand in the right hand side of (3.21) is o(ε) because {Λε} satis�es (3.9) and {Zε}
satis�es (3.19). Moreover all other integrals on the right hand side of (3.21) converge in law
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to the integrals on the right hand side of (3.13) because (X̃ε, Xε, Zε,Λε) converges weakly to
(X,X,Z,Λ) and {Λε} satis�es (3.9) (by Theorem 2.2 in [KP91]). Then the assertion follows
from the fact that the sum of the integrals on the right hand side of (3.21) is bounded in
absolute value by

K( sup
s≤T

|Zε
s|)(|∇u|∞|JΘ|∞ + |Hu|∞|Θ|∞ + |∇(βu+ h)|∞|Θ|∞)Λε

T ,

and {Zε}, {Λε} satisfy (3.19) and (3.9), respectively. 2

Proof of Lemma 3.9. By Ito's formula for semimartingales, taking into account (3.12),
X̃ε satis�es (3.4), almost surely, with b̃ε, σ̃ε, γ̃ε and Λ̃ε given by (3.15), (3.16) and (3.17),
respectively. dΛ̃ε is equivalent to dΛε because the integrand in (3.17) is uniformly bounded
from below and from above by two positive constants, for ε ≤ ε0. On the other hand
X̃ε

s ∈ ∂Ds if and only if Xε
s ∈ ∂Dε

s, so that dΛ̃ε
({
s ∈ [t, T ] : X̃ε

s ∈ Ds

})
= 0. Therefore all

conditions in De�nition 3.1 are satis�ed. 2

Proof of Lemma 3.10. Since D is of classH2+α, there is a function F ∈ C1,2
b that coincides

with the signed spatial distance of x from ∂Ds on {(t, x) : 0 < t < T, d(x, ∂Dt) < r′0}, for
some r′0 (see Subsection 1.3). Then F ε

s = F (s,Xε
s), t ≤ s ≤ T , is a semimartingale and, by

(Aα-2), for t ≤ s1 ≤ s2 ≤ T ,

〈F ε〉s2 − 〈F ε〉s1 =
∫ s2

s1

|∇F σ|2 (r,Xε
r) dr ≥ a0

∫ s2

s1

1d(Xε
r ,∂Dr)<r′0

dr. (3.22)

Therefore, for η < η0 = r′0,

E

[∫ T

t
1d(Xε

s ,∂Ds)≤ηds

]
= E

[∫ T

t
1|F (s,Xε

s)|≤η1d(Xε
s ,∂Ds)<η0ds

]

≤ 1

a0

E

[∫ T

t
1|F ε

s |≤ηd〈F ε〉s
]

=
1

a0

E
[∫ η

−η
Lε

s(y)dy
]

≤ 2η

a0

sup
|y|≤η0

E [Lε
T (y)] ,

where Lε(y) denotes the local time of F ε at y. On the other hand, by the Tanaka formula,

E [Lε
T (y)] = E

[
|F ε

T − y| − |F ε
t − y| −

∫ T

t
sign(F ε

s − y)dF ε
s

]
≤ |F |∞ + |y|+ |(∂s + L)F |∞ (T − t) + |∇F |∞E [Λε

T ] ,

and the assertion follows by the fact that (3.9) holds for {Λε}. 2
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4 Applications

The sensitivity results proved in the previous sections can be used for a variety of problems.
In this section we give a few relevant examples of applications. Some of them are the object
of current or future work by the authors or other researchers and are only sketched here.

4.1 Correcting the bias in the simulation of killed Brownian motion

Let us consider the problem of evaluating E[g(X0,x
T )1τO>T ], where X t,x

s = x + µ(s − t) +

σ(Ws −Wt) ∈ <d, O is a domain in <d and τO is the �rst exit time of X0,x from O. For
instance, in �nance this is the problem of pricing barrier options written on d risky assets
that follow the Black and Scholes model. We can compute E[g(X0,x

T )1τO>T ] numerically by
Monte Carlo methods, i.e. by simulating independent copies of g(X0,x

T )1τO>T and averaging
them out. Even though X0,x

T can be simulated exactly, the exit time τO cannot; therefore it
is usually approximated by τh

O = inf{ti = ih > 0 : X0,x
ti /∈ O} where h is a time discretization

step.
Let us consider the simplest possible situation, i.e. X t,x

s = x+(Ws−Wt) ∈ <, O =]−∞, b[,
and suppose that g vanishes in some neighborhood of b (we could alternatively assume that
g is smooth and vanishes in b). Then a special case of a theorem in [GM04] shows that the
discretization error can be expanded to the �rst order w.r.t.

√
h, i.e.

E[g(X0,x
T )1τh

O>T ]− E[g(X0,x
T )1τO>T ] = −c0ux(τO, b)

√
h+ o(

√
h),

where c0 = 0.5823 . . . is a universal constant and u is the solution of (2.4) in D =]0, T [×O.
When ux(τO, b) < 0 (which actually holds as soon as g is non-negative and non-identically
zero), this approximation overestimates the exact value. Actually, this is clear since τO ≤ τh

O

systematically. In order to correct this bias, we can restrict the domain O to Oh =]−∞, b−
C
√
h[ (C to be �xed) and approximate τO by τh

Oh = inf{ti = ih > 0 : Xti /∈ Oh}. Then the
error can be split into(

E[g(X0,x
T )1τh

Oh
>T ]− E[g(X0,x

T )1τ
Oh>T ]

)
+
(
E[g(X0,x

T )1τ
Oh>T ]− E[g(X0,x

T )1τO>T ]
)
.

By the result of [GM04] and by the space homogeneity of X, we have

E[g(X0,x
T )1τh

Oh
>T ]− E[g(X0,x

T )1τ
Oh>T ] = −c0ux(τ

h
O, b− C

√
h)
√
h+ o(

√
h)

= −c0ux(τO, b)
√
h+ o(

√
h).

As far as the second summand is concerned, recalling that g vanishes in some neighbor-
hood of b we have E[g(X0,x

T )1τO>T ] = E[g(X0,x
τO∧T )] = E[g(X0,x

τD
)] and E[g(X0,x

T )1τ
Oh>T ] =

E[g(X0,x
τ
Oh∧T )] = E[g(X0,x

τDh
)], with D =]0, T [×O and Dh =]0, T [×Oh. Then we can apply

Theorem 2.2, which yields (see [GM04])

E[g(X0,x
T )1τ

Oh>T ]− E[g(X0,x
T )1τO>T ] = ux(τO, b)C

√
h+ o(

√
h).
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By choosing C = c0, the leading terms in the two expansions above cancel and we get

E[g(X0,x
T )1τh

Oh
>T ]− E[g(X0,x

T )1τO>T ] = o(
√
h).

The case of Brownian motion killed at the exit from O =]−∞, b[ (as well as its extension to
multidimensional Brownian motion with drift killed at the exit from a half space) is actually a
toy example because in this case one can simulate τO exactly by Brownian bridge techniques
[Gob01]. Much more interesting situations (such as 2-dimensional wedges) are dealt with in
[Men05].

4.2 Pricing of American options

The valuation of American options is still a major issue in asset pricing. The buyer of such
a contract is given the right to exercise the option at any time τ between now (t say) and
the maturity T . Assume that the vector of the prices of the underlying assets X evolves
according to an SDE of type (2.1), that the market is complete and that the instantaneous
interest rate is of the form (c(s,Xs))s≤t≤T . If the payo� at time τ is g(τ,Xτ ) (g a continuous
function satisfying suitable integrability conditions), the fair price of the option is given by
(see [Kar88])

P (t, x) = sup
τ∈[t,T ]

E
[
e−
∫ τ

t
c(s,Xt,x

s )dsg(τ,X t,x
τ )

]
,

the supremum being taken over all stopping times with values in [t, T ]. There is no simple
numerical method available to evaluate the price of American options. We refer the reader to
[FLM+01] for a review of numerical methods to handle this issue. A possible new approach
is based on the observation that, since the smallest optimal stopping time is given by the
�rst exit time of X t,x from the (unknown) continuation region C = {(s, y) : P (s, y) > g(s, y)}
(see [Kar81]), one has

P (t, x) = sup
D⊂]0,T [×<d

E

[
e−
∫ τ

t,x
D

t
c(s,Xt,x

s )dsg(τ,X t,x
τ )

]
, (4.1)

where τ t,x
D is the �rst exit time of X t,x from D, and D is an open set. The optimization

of the r.h.s. of (4.1) can be carried out by a 'gradient' algorithm that uses the sensitivity
with respect to the domain D. Theorem 2.2 provides a tractable formula for this sensitivity.
In practice, only smooth domains with a suitable parameterization are considered. The
algorithm will be fully described in further work. An approximation to the ∆-hedging can
also be obtained.

It is worth mentioning that the expression for the sensitivity given in Theorem 2.2 is
consistent with the smooth-�t condition ([Fri76], [BØ91]): formally, at the boundary of the
continuation region C, we have ∇P = ∇g. By Theorem 2.2 this gives that at D = C the
sensitivity of u = P is null.
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4.3 Joint density of the maximum and the terminal value of a dif-

fusion process

Let X t,x be the solution of a d-dimensional SDE of the form (2.1), under (Aα) (α ∈]0, 1]).
The aim of this subsection is to prove that the joint law of ( max

t≤s≤T
X t,x

1,s , X
t,x
1,T , · · · , X

t,x
d,T ),

t < T , has a density w.r.t. the Lebesgue measure on <d+1, and to give a representation of
this density. What follows extends the one-dimensional result of [CFS87], which is proved
by di�erent techniques.

Let τ t,x
a = inf{s > t : X t,x

1,s ≥ a}. For �xed (y1, · · · , yd),

P
(

max
t≤s≤T

X t,x
1,s ≤ a,X t,x

1,T ≤ y1, · · · , X t,x
d,T ≤ yd

)
= ua(t, x) = E

[
1{T}(τ

t,x
a ∧ T )1]−∞,y1[×···]−∞,yd[(X

t,x

τ t,x
a ∧T

)
]
,

is the expectation of a functional of the form (3.1) with D =]0, T [×] − ∞, a[×<d−1 and
g(t, x) = 1{T}(t)1]−∞,y1[×···]−∞,yd[(x). Without loss of generality we can take a > x1 and
a > y1. We want to apply Theorem 2.2 to compute ∂aua. In this example D is non bounded
and g is not of class H1+α. However, denoting by qa(t, x, T, ·) the density of the di�usion
process killed at the exit from ]−∞, a[×<d−1, ua(t, x) can be represented as

ua(t, x) = E
[
1{τ t,x

a >T}1]−∞,y1[×···]−∞,yd[(X
t,x
T )

]
=
∫

z1<y1,···,zd<yd

qa(t, x, T, z)dz.

Since qa(t, x, T, z) is a smooth function of (t, x) and its derivatives satisfy exponential inte-
grability conditions in z (see [GM04] for details), ua is also a smooth function in D and ∇ua

can be extended continuously and boundedly up to SD = {(t, x) : 0 ≤ t < T, x1 = a}. A
closer inspection of the proof of Theorem 2.2 shows that in addition, only smoothness of g on
the side SD is needed, and this holds here. Then, by taking Θ = (−1, 0, · · · , 0)∗ in Theorem
2.2, we get the di�erentiability of ua w.r.t. a, and

∂aua(t, x) = −E[1τ t,x
a <T∂x1ua(τ

t,x
a , X t,x

τ t,x
a

)]

= −
∫

z1<y1,···,zd<yd

E[1τ t,x
a <T∂x1qa(τ

t,x
a , X t,x

τ t,x
a
, T, z)]dz.

This, together with the observation that ua(t, x) =
∫ a
x1
∂a′ua′(t, x)da

′, proves that the density
of the law of ( max

t≤s≤T
X t,x

1,s , X
t,x
1,T , · · · , X

t,x
d,T ) exists and is given by

r(a, y) = −1a>x11a>y1E[1τ t,x
a <T∂x1qa(τ

t,x
a , X t,x

τ t,x
a
, T, y)].

Note that r is non-negative since qa(s, z, T, y) ≥ 0, qa(s, z, T, y) = 0 if z1 = a and thus
∂z1qa(s, z, T, y)|z1=a ≤ 0. Actually, ∂z1qa(s, z, T, y)|z1=a < 0 for s < T and a > y1 (see
Lemma 13 in [GM04]), so that r(a, y) is strictly positive on the set {a > x, a > y1}. A little
extra work would show the continuity of r. Furthermore, we could iterate our arguments to
study the di�erentiability of r: it leads to tedious computations we do not reproduce.
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4.4 Singular stochastic control problems

In singular stochastic control problems (see, e.g., [Sh88] or [FS93] for an introduction to
these problems) admissible controls (and, in general, optimal controls, when they exist) are
not absolutely continuous in time. One considers a family of SDE's in <d of the form

Xφ,t,x
s = x+

∫ s

t
b(r,Xφ,t,x

r )dr +
∫ s

t
σ(r,Xφ,t,x

r )dWr + φs (4.2)

where the control φs, t ≤ s < T, φt = 0, is a process with bounded variation, left continuous
paths with right hand limits, such that the direction γr de�ned by

φs =
∫
[t,s[

γrd|φ|r, (4.3)

satis�es
γr ∈ Γ, d|φ| − a.e., (4.4)

for a given closed cone Γ. The goal is to minimize, over all φ's, J0,x(φ), where

Jt,x(φ) = E

[
g(Xφ,t,x

T )−
∫ T

t
f(s,Xφ,t,x

s )ds−
∫
[t,T [

h(s, γs)d|φ|s
]
.

When the value function V (t, x) = infφ Jt,x(φ) is su�ciently smooth (typically under
some convexity assumptions), it can be shown that, letting

D̂ = {(t, x) : 0 < t < T, H(t,∇V (t, x)) < 0} , (4.5)

where H(t, v) = sup|γ|=1, γ∈Γ {−v∗γ − h(t, γ)}, if the SDE with coe�cients b and σ and
re�ection along Γ in D̂, starting at (0, x), has a solution (X̂0,x, φ̂0,x), then φ̂0,x is an optimal
control. The de�nition of solution of a RSDE with re�ection along a cone Γ in the closure
of a domain D is analogous to De�nition 3.1, except that (3.4) has to be replaced by (4.2),
(4.3) and (4.4) and accordingly Λt,x has to be replaced by |Φt,x|. In addition, in the present
context (t, x) does not necessarily belong to D, therefore, for (t, x) /∈ D, one has to allow
an initial jump φt,x

t+ ∈ Γ such that X t,x
t+ = x + φt,x

t+ ∈ ∂D (as a consequence (X t,x, φt,x) is
required to be continuous on ]t, T ], with right hand limits in t and (3.5) holds for s ∈]t, T ]).
Then the problem can be viewed as that of minimizing, over all domains D such that the
RSDE with coe�cients b and σ and re�ection along Γ in D has a solution, a functional of
the form (3.1) (at least if γ̂0,x

s = γ(s, X̂0,x
s ) for some known function γ, or if h is a function of

time alone). If a sensitivity result like Theorem 3.8 can be proved, it can be used to derive
necessary conditions for the optimal domain D̂ and to construct a 'gradient' type stochastic
algorithm to approximate D̂ numerically.

As an example, consider the stochastic control problem analyzed in [SoSh91]:

b = 0, σ =
√

2, Γ = {λe, λ ≥ 0}, e = (0, · · · , 0,−1)∗, (4.6)

h(s, γ) = h(s).
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It is shown in [SoSh91], that, under suitable assumptions on f , g and h (in particular f and
g convex in the xd variable, f , g and h smooth and satisfying growth conditions), the domain
D̂ de�ned by (4.5) is of the form

D̂ = {(t, x) : 0 < t < T, xd < q̂(t, x1, · · · , xd−1)}, (4.7)

for some (unknown) function q̂, which is locally Lipschitz on [0, T [×<d−1. The RSDE with
coe�cients (4.6) and re�ection along e in D, starting at (t, x), has a (unique) solution
(X t,x,Φt,x) for any domain D of the form (4.7). Therefore

inf
φ
J0,x(φ) = uD̂(0, x) = inf

D
uD(0, x),

where uD is de�ned by (3.1) and the in�mum is taken over all domains of the form (4.7) for
some function q.

The results of Section 3 can be easily extended to this situation. For a domain D of the
form (4.7), if q ∈ H2+α, f ∈ Hα, h ∈ H1+α for some α, g is twice continuously di�erentiable
with bounded derivatives, the second order derivatives of g are Hölder continuous of order
α and − ∂g

∂xd
(x) = h(T ), for all x ∈ <d, considering perturbations of D of the form

Dε = {(s, x) : 0 < s < T, xd < (q − εΘ′)(s, x1, · · · , xd−1)}, Θ′ ∈ C1,2
b ([0, T ]×<d−1),

and a point x such that xd < q(0, x1, · · · , xd−1), we have, as in (3.14),

uDε(0, x)− uD(0, x) = E[(g(Xε
T )− uD(T,Xε

T ))]

+E[
∫ T

0
(∂suD + LuD − f)(s,Xε

s)ds]

+E[
∫ T

0
(∇u D(s,Xε

s) e− h(s))d|Φε|s]

= ∆1,ε + ∆2,ε + ∆3,ε,

where (Xε,Φε) is the solution of the RSDE with coe�cients (4.6) and re�ection along e in
Dε, starting at (0, x). Since uD satis�es (3.11) (with n replaced by e and c = β = 0) it can
be easily shown that ∆1,ε = O(ε1+α), ∆2,ε = o(ε) and

∆3,ε = E

∫ T

0

∇u D(s,Xε
s) − ∇u D(s,Xε

s − εΘ′(s,Xε
s) e)

 e d|Φε|s

 .
Therefore

duDε(0, x)

dε

∣∣∣∣∣
ε=0

= E

[∫ T

0
Θ′(s,X0,x

s )
∂2uD
∂x2

d

(s,X0,x
s ) d|Φ0,x|s

]
. (4.8)

Notice that (4.8) is consistent with the smooth �t condition, which is proved to hold in
[SoSh91].
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A Tusk condition: proof of Proposition 1.2

If (t0, x0) ∈ DT , the result is clear. Now, consider (t0, x0) ∈ SD and a new (local) coordinate
system centered at (t0, x0) (see De�nition 1.1), such that xd > φ(t, x1, · · · , xd−1) provides a
local description of D. In this coordinate system, if we put δ = ε20, x̄0 = (0, · · · ,−λ)∗, 0 <

R ≤ λ (λ and R are chosen later), the tusk writes T = {(t, x) : 0 < t < δ, |(x1, · · · , xd−1)|2 +

(xd + λ
√
t)2 < R2t}. Now take a point (t, x) in this neighborhood of (0, 0) and in T ∩D: we

aim at proving (t, x) = (0, 0). On the one hand, using the tusk and λ ≥ R we obtain xd ≤ 0.
Moreover, for ε > 0, a Young inequality gives

|(x1, · · · , xd−1)|2 ≤ R2t− (xd + λ
√
t)2 ≤ R2t− x2

d − λ2t+ x2
d/ε+ λ2tε.

On the other hand, the Hölder continuity property of φ when D ∈ H1 writes
xd ≥ −K|(x1, · · · , xd−1)| −K

√
t. Thus,

x2
d ≤ 2K2(|(x1, · · · , xd−1)|2 + t) ≤ 2K2(R2t− λ2t− x2

d + x2
d/ε+ λ2tε+ t).

The choice ε = 2K2/(1 + 2K2) < 1 and R =
√

1−ε
2
λ (≤ λ) leads to a cancellation of terms

with x2
d and it reduces to 0 ≤ t(1 − λ2 1−ε

2
). For λ large enough, the last inequality can be

satis�ed only if t = 0. Then x = 0 easily follows using (t, x) ∈ T .

B Feynman-Kac representation

B.1 Stopped di�usion: proof of Proposition 2.1

Existence and uniqueness of a solution to the PDE (2.4). These are direct conse-
quences of more or less classical results about PDEs in time-space domains. For this, one has
to reverse the time when de�ning functions and domains: namely, set ũ(t, x) = u(T − t, x)

(and analogously for b, σ, c, f and g), denote L̃v = ∇v b̃ + 1
2
Tr(Hvσ̃σ̃∗) and de�ne the

time-reversed time-space domain D̃ = {(t, x) : (T − t, x) ∈ D}. Then, the PDE problem
(2.4) is equivalent to −∂tũ + L̃ũ − c̃ũ = f̃ in D̃ with ũ = g̃ on PD̃. An application of
Theorems 5.9 and 5.10 p.92 in [Lie96] ensures, under (Aα), D ∈ H1, c ∈ Hα, f ∈ Hα and
g ∈ C0,0, the existence and uniqueness of a strong solution ũ of class C1,2(D̃) ∩ C0,0(D̃) to
this PDE. Actually, what remains to be justi�ed for an application of these theorems is the
existence of local barriers at any point of the parabolic boundary. This property is implied
by the tusk condition (see p.43 in [Lie96]), which holds when D ∈ H1 (see Proposition 1.2).
A priori estimates on u. As a strong solution, ũ is also a weak solution, to which we can
apply Theorem 6.45 p.140 in [Lie96] which states that u ∈ H1+α(D).
Feynman-Kac's formula. The proof is analogous to the case of cylindrical domains
(see [Fre85]): for sake of completeness, we brie�y give it. Take (t, x) ∈ D ∪ PD. If
(t, x) ∈ PD, the veri�cation is clear in view of (2.12). Otherwise, we may apply Ito's formula
to u(s,X t,x

s )e−
∫ s

t
c(r,Xt,x

r )dr but, we have to be careful since derivatives ∂tu(t, x), ∇u(t, x) and
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Hu(t, x) a priori explode for (t, x) close to the boundary (see Theorem 5.9 p.92). However,
owing to the same cited estimates, these derivatives are uniformly bounded while the distance
from (t, x) to ∂D remains bounded from below by a positive constant, say η; hence, if we de-
�ne the bounded stopping time τ t,x(η) := inf{s ≥ t : d((s,X t,x

s ), ∂D) ≤ η} (strictly positive
for η small enough), the random variables ∂tu(s,X

t,x
s ),∇u(s,X t,x

s ), Hu(s,X t,x
s ) are uniformly

bounded for s ≤ τ t,x(η). It authorizes an application of Itô's formula, which immediately

gives E(u(τ t,x(η), X t,x
τ t,x(η))e

−
∫ τt,x(η)

t
c(r,Xt,x

r )dr) = u(t, x) + E(
∫ τ t,x(η)
t e−

∫ s

t
c(r,Xt,x

r )drf(s,X t,x
s )ds)

taking account the PDE for u. Take the limit as η goes to 0: it is clear that τ t,x(η)

converges to τ t,x almost surely. Then, by continuity of u, u(τ t,x(η), X t,x
τ t,x(η)) converges to

u(τ t,x, X t,x
τ t,x) = g(τ t,x, X t,x

τ t,x) since u = g on PD. The dominated convergence theorem com-
pletes the proof. 2

B.2 Re�ecting di�usion: proof of Proposition 3.7

The arguments are similar to the one for stopped di�usions. For the PDE results, we
apply Theorem 5.18 p.96 in [Lie96]. The Feynman-Kac formula follows from a veri�cation
procedure based on Itô's formula. We omit further details. 2

C Re�ecting di�usions in time dependent domains

C.1 Proofs of Theorems 3.2 and 3.4

Our approach relies on the Skorohod problem.

De�nition C.1 Let w ∈ C([t, T ],<d), wt ∈ Dt. A solution to the Skorohod problem for

(D, γ, w) is a pair (x, λ) ∈ C([t, T ],<d)× ([t, T ],<+) such that xs ∈ Ds for all s ∈ [t, T ] and

xs = ws +
∫ s

t
γr(xr)dλr, ∀s ∈ [t, T ], dλ {s ∈ [t, T ] : xs ∈ Ds} = 0.

Theorem 3.2 is an immediate consequence of the following.

Theorem C.2 For every w ∈ C([t, T ],<d), wt ∈ Dt, there exists one and only one solution

to the Skorohod problem for (D,n, w).

Proof. Let r0 be the radius of the uniform exterior sphere to Ds, for all s ∈ [t, T ]. For n large
enough that supt≤s≤r≤T, r−s≤2−n(T−t) |wr − ws| < r0

2
and l (2−n(T − t)) < r0

2
, approximate w

by the step functions wn de�ned by

wn
s = wt+k2−n(T−t), for s ∈ [t+ k2−n(T − t), t+ (k + 1)2−n(T − t)[, t ≤ s ≤ T.

For t ≤ s ≤ T , de�ne, for s ∈ [t, t+ 2−n(T − t)[, xn
s = wt, and, for s ∈ [t+ k2−n(T − t), t+

(k + 1)2−n(T − t)[, k ≥ 1,

xn
s = πt+k2−n(T−t)

(
xn

t+(k−1)2−n(T−t) + wn
t+k2−n(T−t) − wn

t+(k−1)2−n(T−t)

)
,
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where πs(x) denotes the normal projection of x on Ds, and

λn
s = λn

t+(k−1)2−n(T−t) +
∣∣∣xn

s −
(
xn

t+(k−1)2−n(T−t) + wn
t+k2−n(T−t) − wn

t+(k−1)2−n(T−t)

)∣∣∣ .
Notice that xn

s not necessarily belongs to Ds for all s ∈ [t, T ], but

sup
[t,T ]

d(xn
s ,Ds) ≤ l

(
2−n(T − t)

)
, ∀s ∈ [t, T ].

This and the fact that |y − πr(y)| ≤ l(|r − s|), for any y ∈ Ds, s, r ∈ [t, T ], yield that∫
(s1,s2]

(
xn

r − xn
s1

)
· nr(x

n
r ) dλn

r

≤
∫
(s1,s2]

(
xn

r − πr(x
n
s1

)
)
· nr(x

n
r ) dλn

r +
[
l(2−n(T − t)) + l(s2 − s1)

] (
λn

s2
− λn

s1

)
.

Then the same arguments used in [Sai87] and [Cost92] allow one to prove the assertion. 2

Theorem 3.4 is an immediate consequence of the following.

Theorem C.3 Assume γ is continuous and satis�es (3.6). If (x, λ) is a solution of the

Skorohod problem for (D, γ, w), w ∈ C([t, T ],<d), wt ∈ Dt, then

sup
s1≤r1≤r2≤s2

|xr2 − xr1|+ λs2 − λs1 ≤ κ(w)

[
sup

s1≤r1≤r2≤s2

|wr2 − wr1|+ l(s2 − s1)

]
,

where κ is a function of w that depends only on D, k0 and the modulus of continuity of γ

and is bounded on compact sets of C([t, T ],<d).

Proof. Since |y − πr(y)| ≤ l(|r − s|), for any y ∈ Ds, r, s ∈ [t, T ],∫
(s1,s2]

(xr − xs1) · γr(xr) dλr ≤
∫
(s1,s2]

(xr − πr(xs1)) · γr(xr) dλr + l(s2 − s1) (λs2 − λs1) .

Then the proof can be carried out by the same arguments used in [Cost92]. 2

C.2 Proof of Proposition 3.5

Since D is of class H2 (see Subsection 1.3) there is a function in H2 that coincides with F on
{(s, x) : 0 < s < T, d(x, ∂Ds) < r′0}, for some r′0; in particular its gradient equals ns(x) for
x ∈ ∂Ds. We approximate this function by a sequence {Fm} of functions of class C1,2

b (<d+1),
uniformly bounded in H2 and convergent in H3/2-norm. Then, in particular, supm(|Fm|∞ +

|∂tFm|∞+|∇Fm|∞+|HFm|∞) <∞, and form large enough, one has∇Fm(s, x) γs(x) ≥ k0/2,
uniformly for x ∈ ∂Ds, s ∈]t, T ]. Combining these facts with Ito's formula, we get

Λt,x
T ≤ 2

k0

(2|Fm|∞ + |(∂t + L)Fm|∞(T − t)−
∫ T

t
∇Fm(s,X t,x

s )σs(X
t,x
s )dWs),

and the assertion follows from the properties of the exponential martingale. 2
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