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Abstract. We are concerned with the numerical resolution of backward
stochastic differential equations, whose data depend on a jump-diffusion pro-
cess. We propose and analyze a numerical scheme based on iterative regressions
on function bases, which coefficients are evaluated using Monte Carlo simula-
tions. Regarding the error, we derive explicit bounds with respect to the time
step, the number of simulated paths and the number of basis functions, which
allows us to optimally adjust the parameters to achieve a given accuracy. We
also present numerical experiments related to option pricing with differential
interest rates and to locally risk-minimizing strategies (Follmer-Schweizer de-
composition).
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Introduction

Let (2, F, (F+)t,P) be a given filtered probability space on which are defined a
standard Brownian motion W in RY and a jump-diffusion process X in R?. We
aim at numerically approximating a generalized backward stochastic differential
equation (GBSDE) with a fixed terminal time T'

—dY; =f(t, X1, Y, Zy)dt — Z,dW, — dLy, Yr = ¢(X7), (1)

*Corresponding author.



where Y is a scalar cadlag adapted process, Z is a predictable R?-valued process
(as a row vector) and L is a scalar cadlag martingale orthogonal to W (with
Lo = 0). Actually in what follows, in principle X could also be any Markov
process and the terminal condition could be a functional of the path (X;)o<i<r
(see Remark 1). Our results can be readily extended to higher dimensional Y,
Z and L as well. Under suitable Lipschitz assumptions on the driver f and
Lo-integrability conditions, there is an unique solution (Y, Z, L) in appropriate
spaces of processes (with Lo norms): for details, we refer to Pardoux and Peng
(1990) for the Brownian filtration (L = 0), and to El Karoui et al. (1997) for
general filtrations. A more complete situation is handled in Barles et al. (1997),

where in addition the driver is allowed to depend somehow on the martingale
L.

The main focus of this work is to provide and analyze a simple algorithm, based
on empirical regression methods using simulated paths of X, which approxi-
mates (Y, Z) solution of (1) (L could be obtained as a difference). For the
convergence analysis, techniques from BSDEs and non-parametric regressions
are mixed, which illustrates another interesting interface between probability
and statistics. To encourage future collaborations between people of these dif-
ferent fields, we now give an overview of the related applications and issues.

Applications. During the last decade, the interest in designing efficient nu-
merical methods to solve (1) has become very high, because of the various
applications. We mention some of them.

1. Solving (1) may give an access to the Follmer-Schweizer (FS in short) de-
composition of ¢(Xr) = Yo+ fOT &dX;+ Ly, with a martingale L strongly
orthogonal to the martingale part of X; in that case, the driver f is lin-
ear. Regarding the applications in finance, the FS decomposition plays
a crucial role in valuing and hedging claims (of type ¢(Xr)) in incom-
plete markets, see Monat and Stricker (1995). Incompleteness may arise
from non tradeable sources of risk; this is indeed the case with stochastic
volatility models and jump models, both models being included in our
jump-diffusion framework for X. A direct use of the FS decomposition
leads to the locally risk-minimizing strategies and to the minimal martin-
gale measure valuation. For a mean-variance hedging criterion, one also
needs FS decompositions. For these issues, we refer to Pham et al. (1998)
and for a survey, to Schweizer (1999). In these problems, we are interested
in the prices (related to Y) and particularly in the hedging strategies (re-
lated to Z).

2. Non-linear drivers f allow to deal with market imperfections in finance:
higher interest rate for borrowing (Bergman 1995), short sales constraints



(Jouini and Kallal 1995)... There is also a strong connection with non-
linear pricing rules and dynamic risk measures (Peng 2003). For numerous
references, see El Karoui et al. (1997).

3. In view of the connection with semi-linear PDEs, possibly with integral-
differential operators (see Barles et al. 1997), our probabilistic approach
may be an interesting alternative to deterministic PDE schemes.

To our knowledge this is the first time that the case of a non Brownian filtra-
tion (leading to L # 0) is considered for the numerical resolution of (1). This
more general framework has been partly motivated by recent financial model-
ing: Lévy processes are now often incorporated to model jumps and spikes in
energy markets (see for instance Benth et al. 2003); modeling credit risk makes
an intensive use of Poisson processes (see Bielecki and Rutkowski 2002); point
processes can be used to model the impact of rating and credit events on the
dynamics of risky assets (see Becherer and Schweizer 2005).

Where non-parametric regressions come in. The first approximation of
(1) is a time discretization using a time step h = % : the discretization times are
denoted (t), = kh)o<r<n. We denote AW}, = Wy, ., — W;, (AW, component-
wise) and XV a relative approximation of X at these discretization times: say
it is obtained through an Euler scheme on the jump-diffusion equation satisfied
by X (see Jacod 2004 among others). Quite naturally, the solution (Y, Z) of (1)
is approximated by (Y, Z") defined in a backward manner by Y, = ¢(X]\)

and

}/t]kV = Etk (}/;iv+1) +hEtkf(tkaXt]ZvKiy+17Z1§]Z)v (2)
h Z{ =By, (Y AW), (3)

where E;, stands for the conditional expectation with respect to F;, and * for
the transpose. In Theorem 1 below, we state the convergence of (Y, Z%)
towards (Y, Z) in the standard BSDE Lo-norm as N goes to infinity. As the
terminal condition is a deterministic function of X7\ and as X" is a Markov
chain, it is easy to see that Y, =y (X/V) and Z}Y = 2}V (X/V) where y;\ and z}Y
are unknown regression functions defined in a backward manner by y¥(-) = ¢(-)
and:

ylzcv(x) :E(yliv+1(Xz£]Z+1) + hf(tkﬂ thzvyl{chrl(Xt]ZH)v ZliV(Xt]Z)”Xt]Z = ;v),
2 (@) —E (i (X, AW XY = ).

tht1

We are thus faced to the iterative computation of N unknown regression func-
tions. There are several ways to approximate a regression function : for exam-
ple, we can think of either kernel methods (see for example Bosq and Lecoutre
1987), or projection methods on functions basis (see for instance Gyorfi et al.



2002). But compared to the classic non-parametric regression problem, in our
case there is an extra difficulty because the N regression functions are intri-
cate: the regression function estimated at time t5,1 is used to estimate a new
regression function at time t;. Thus we have to find a way of approximating
the unknown regression functions which matches two constraints : it must lead
to a nice propagation of the error during the backward in time iteration and its
complexity must be reasonable regarding the accuracy (keeping in mind that N
going to infinity, more and more regression functions have to be estimated).
Some approximation schemes have already been considered to solve this prob-
lem, in the case of Brownian filtration and diffusion processes for X. The first
method consists in replacing XV by a Markov chain with finite state space and
known transition probabilities, leading to a regression function that can be ex-
actly computed. This is either achieved by replacing the Brownian motion by
a random walk (see Briand et al. 2001, or Ma et al. 2002) or by using quan-
tization techniques (see Bally and Pagés 2002). The second method consists
in directly computing a non-parametric approximation of the regression func-
tion. Bouchard and Touzi (2004) use a technique based on Malliavin calculus
integration by part formulae (under an ellipticity assumption on the diffusion
process X) whereas Egloff (2005) uses a least-squares method, both methods
using Monte-Carlo simulations of X%,

Our contributions. In this paper, we also approximate the unknown regres-
sion functions using projections on functions basis. Using M Monte-Carlo sim-
ulations of XV, we solve at each discretization time t; a least-squares problem
to determine our approximation in the vector space spanned by a finite number
of functions. The parameters of this numerical scheme are the number of time
steps N, the number of Monte-Carlo simulations M and the number and kind
of basis functions. In Gobet et al. (2005), for an analogous procedure we have
already studied the influence of the parameters but unfortunately, the estimates
as M — oo (see Gobet et al. 2005, Theorem 3) involve the fourth moments of
the Lo-orthonormalized basis functions. It turns out that these moments are
difficult to estimate and in fact, they presumably converge to infinity as the
size of the basis increases. Hence the practical use of these results is still ques-
tionable, in particular if one has to achieve a given accuracy by allowing a joint
convergence of N, M and the number of basis functions to infinity. Here, our
goal is to derive tractable error estimates that depend only on N, M and the
number of basis functions.

Before going into details, we mention that these results enable us to derive an
explicit rate of convergence for an algorithm which is very efficient. Beyond
the fact that we are not restricted to Brownian randomness, we mention other
advantages of our approach compared to existing schemes. Compared to Bally



and Pageés (2002), we do not need quantization grids and we allow more flexible
choices of functions basis than Voronoi cells only. Compared to random walk
approximations (Briand et al. 2001, Ma et al. 2002), we establish a rate of con-
vergence. The algorithm is easier to implement than the one in Bouchard and
Touzi (2004) and leads to a better accuracy. In addition, regarding to X our
approach is distribution-free, which is a major advantage; in particular one does
not require any non-degeneracy condition on X, as it is necessary in a Malliavin
calculus approach. Finally, it improves results given in Egloff (2005), obtained
for optimal stopping problems with a fixed number of dates N (actually, his
error estimates increase geometrically with IV and thus, are not relevant in the
current framework).

Organization of the paper. The paper is organized as follows. In Section
1, we define rigorously the model, introduce notations used throughout the
paper, explain the algorithm and state error bounds with respect to the time-
step, the number of Monte-Carlo simulations and the number of basis functions.
These bounds are proved in Section 2, combining BSDE techniques and non-
parametric regression arguments. In Section 3 we propose a better (but less
natural) alternative to the algorithm proposed in Section 1. Finally in Section 4
we make numerical experiments which illustrate the bounds derived in Section
1 for explicit choices of function bases.

Remark 1 By considering extra state variables, the results obtained here can be
extended to the case of a terminal condition ¢(X) which is a Lipschitz functional
of the path of X. For instance, if $(X) = ¢(Xp, ming<i<7 X¢) for a scalar
process X, the regression functions at time ty should depend on Xt]Z but also on
miny, <y, X7 . For details, see Gobet et al. (2005).

1 The algorithm

1.1 Model

We follow the presentation of Barles et al. (1997). Let (2, F,(F):,P) be
a stochastic basis, where the filtration satisfies the usual conditions of right-
continuity and completeness. We suppose that the filtration is generated
by the two mutually independent processes: a R%-valued Brownian motion
W and a Poisson random measure ;4 on R, x E, where E = R!\{0} is
equipped with its Borel field £, with compensator v(dt,de) = diA(de), such
that {f([0,t] x A) = (p — v)([0,t] x A)}4>0 is a martingale for all A € &
with A\(4) < +oo. A is assumed to be a o-finite measure on (FE, &) satisfy-



ing [(1 A le[*)A(de) < +o00. We consider the R%-valued jump-diffusion

t t t
X, =2 +/ b(s, X.)ds +/ o (s, X, )dW, +/ / B(s, X.- e)ji(ds, de), (4)
0 0 0o JE
which is uniquely defined under the following assumption.
(H1) The functions b(¢,x) and o(¢,z) are uniformly Lipschitz continuous with
respect to (t,7) € [0,T] x R<.

For some constant ¢, the function 3 satisfies |3(¢,z,e)| < ¢(1 A |e|) and
|B(t,z,e) =B, 2" e)| < c(|lz—a'|+ |t —t'|)(1 Ale]) for any (¢, ), (t,2") €
[0,7] x R? and e € E.

We consider a time-discretization of X, which we denote XV (we may think of
Euler schemes, see Jacod 2004 and references therein). The latter is assumed
to converge to X in Lo-norm, which is stated as

(H2) As N goes to infinity, one has supy<;.<y E[Xy, — X/V|? — 0.
The GBSDE (1) is well-defined under the assumption

(H3) The driver f satisfies the following continuity estimate:
|f(t2, @2, 92, 22) = f (1, 21,91, 21)| < Cllta—ta|" P Hwa—21 [ +|ya—y1 [+ 22—z )

for any (t1, 71,1, 21), (t2, T2, Y2, 22) € [0,T] x R? x R x RY.

The terminal condition ¢ is Lipschitz continuous.

Actually, only the Lo-integrability of ¢(Xr) is usually required, but here the
smoothness of ¢ is imposed to derive explicit error estimates.

Finally, to ensure that the discrete GBSDE satisfy a Lipschitz continuity prop-
erty with respect to the state variable X, one requires (Xt];/ )i to be a Markov
chain and Xt]Z ko ¢ satisfy!

(H4) For some constant C' > 0, one has

a) ELXM = X000 2 BT — X2 < Cla—a![? for any

z and z’, uniformly in kg and N.

b) E|X5Z$]i°1’r — x> < Ch(1 + |z|?) for any x, uniformly in ko and N.
This kind of assumption has been introduced in Gobet et al. (2005). The above
property is quite natural since it is fulfilled by X itself under (H1). Now, we
state a convergence result regarding the time discretization.

las usual, XtN’kO’z denotes X}V starting at = at time #;,
k k 0



Theorem 1 Under (H1-H2-H3), define the error

trt1

_ N 2 N 2
e(N) = ‘max E[V; - Y| +EZ/ \ZN — Z,|dt,

where Y and ZN are given by (2) and (3). Then, e(N) converges to 0 as
N — oco. Furthermore, in the case of Brownian filtration (5 =0 and L = 0)
and when X* is the Euler scheme of X, one has e(N) = O(N~1).

The proof is somewhat standard and is not the core of our work. Hence we
postpone it to the Appendix.

1.2 Notations

We now introduce convenient notations to describe the algorithm.
Localization. We define localized versions of the Brownian increments and of
the functions f, ¢:

[AWyk]w = (— RoVh ) V AW, A (RoVh ),
(txy, ):f(t _Rl\/ffl/\Rl, _RdV5Cd/\Rd,y,Z)7
o™ (x) =d(—Ri Va1 ARy, ,—RgV za A Ry),

where R = (R, Ry,...,Rq) € (RT)%! which influence is analyzed in the fol-
lowing section. These localizations enable us to slightly modify (2-3) and define
(YN7R, ZN’R) by:

Y;]}Q\/,R =E, (Ytivﬂ ) + h’]Etkf (tkﬂ thzv Ytiﬁ?ﬂ ZN R)? (5)
Wzl R =B, (VN FIAWL]E), ©)

and Y\ = ¢®(XN). With the same arguments as for (Y, ZV), we easily
see that YN B _ yN R(XtJZ) and Zt]Z’R = z,iv’R(Xt]Z) for deterministic functions
N,R N,R . N,R \/— N,R . .
yp () and 2, "*(-). Moreover, the functions y, """ and v hz; ™ are Lipschitz
continuous, unlformly in R and N (see Proposition 1 later). But the main
interest of this localization is to provide bounded (unknown) regression functions
yp " and 2" one has [lyp" o < Cy(R) and ||} < C2(R) (for details

on these upper bounds, see again Proposition 1). This boundedness property
plays a important role in the derivation of error bounds.

Function basis. At each discretization time ¢;, 0 < k < N —1, we choose ¢+ 1
deterministic function bases (puc(')) 0<i<q and we look for an approximation
of y,iv () (resp. zl]\;R( -)) in the vector space spanned by the basis pg  (resp.
pik). Each basis p; i is considered as a vector of functions, which size equals
K ;- The vector space of functions spanned by p; j is denoted P, i.e. P =

{a-pii(-),a € REurY,



Monte-Carlo simulations. The evaluation of the different projection coef-
ficients o will be obtained using M independent Monte—Carlo simulations of
(Xt]Z)OSkSN and (AWk)nggN—l- We denote by ( tk )1§m§M,O§k§N and
(AW]™)1<m<m,0<k<n—1 these Monte-Carlo simulations.

To keep notations short, we write pl,k(Xt]Z’m) = p{'y- We define by Bl{v,{C the
matrix of size M x Kj ) which rows are (pj%)*. We denote by K"} the rank of
B}l (K} is random and lower than K ;).

Truncations. We have mentioned that y,iv H and zl],\;R are respectively bounded
by Cy(R) and C(R), and it is useful to force our approximations to be bounded
in the same way. This is the role of the following truncations. For a function
1, we define two new functions [¢], and [¢]. by

[Y]y(2) = =Cy(R)V ib(x) A Cy(R),  [](x) = =C=(R) V ib(x) A C=(R),

which are bounded respectively by C,(R) and C.(R). Our approximation of
y,iV’R (resp. zl{\;’R) will belong to the space [Po k], = {[o - poily(), € RE0x}
(resp. [Pl = {[a prilo(-), @ € R4}

Constants. In the following, we denote by C any finite constant which value
may change from line to line but which is independent on N, M, the functions
bases and the vector R. It depends only on b, o, 3, A, f, ¢, T and =x.

1.3 Description of the algorithm

. N N .
The functions (y, ’R)ogng—l and (zl7k’R)1§l§q70§k§N_1 are approximated by
N,R,M N,R,M . o
(" MYochen—1 and (2)7"")1<1<q.0<k<n—1, which are built in a backward
manner.

— Initialization : for k = N take yN R, M( )= oR().

— Iteration : for k=N —1,--- 0, solve the ¢ least-squares problems :
N,R, M N,m [AWZZZ]W m
= argmf -7 Z ly Y1 tk+1 )T -« 'pl,k|2' (M)

Then compute a’, as the minimizer of
N RM (N xNom  NRM N,
iV Z | Y11 th::l) + th(tlw mayk+1 (th:?)a [al]\,/l[c 'ka]Z)
—a-pgl? (8)
Here, we use the shorter notation fZ(ty,z,y,2) = fE(tk, 2,9, (21)1<1<q)-

Then we define yN RBM Yy and zN BM (Y by

N.RM ()

Yk NRM()

= [op porly(),  Zy = [k - o= ().



In the least-squares problems (7-8), whenever convenient we can suppose (as
done for example in the proof of Theorem 11.1 in Gyorfi et al. 2002) that for
0 <1< gq, pii is a complete orthonormal system in 7P; ;, with respect to the
empirical scalar product < -,- >y defined by

<Y1 ¥2 >eM= 7 21/)1 Y (X,

Of course these orthonormal systems depend on the simulations (XtJZ MY <m<M
and their ranks (K;'{)o<i<q satisfy K"} < Kjx. These orthonormal systems
can be easily computed using a Singular Value Decomposition (see for instance
M \x p M
Golub and Van Loan 1996)). With this choice, (B”“)% =1d (0<1<gq)and
the solutions of (7-8) are given by:
M
1 (AW w
M N,R,M /N, 1,k
Qg :M Z Pl k Yei1 (thﬁ)T,
m=1

3

N,R,M /N, N,m N,R,M /N,
a(JJV,[k M Z DoAYt (thﬁ) +th(tkath B (th:?) [0‘%@ Plz)}-

)

1.4 Results

Firstly, the following (easy) Proposition states that the couple (YV:% ZN:R) ig
bounded and satisfies a Lipschitz property.

Proposition 1 Under (H1-H2-H3), there exists a constant C such that
VE,0< k< N:

Y < R = Ol e+ 170, 12055 < Cuty = 4,
where ||¢"]|c = sup, [¢"(z)] < C(1 + |R]) and |[f"]|oc = sup(q 4 [f7(t,2,0,0)]
< C(1+|R]).

In addition under (H4), for h small enough, the functions y,iv and 2y
deﬁned by yNR(XtN) = YN and ZN R(XN) = ZtJZ’R satisfy |y B ) —
B + V2 ﬁ( ) — z,inR( | < Clz — 2'| uniformly in ko, N and R.

N,R

Secondly, we state an error bound regarding the localization.

Proposition 2 Under (H1-H2-H3-H4), there exists a constant C such that
for h small enough, one has

N—-1
Jmax EY, = YN+ R |z - 2]
k=0

R)? ¥
< CE|¢(X}Y) — o"(X{)I? + C Z E( |AWk|21|AWk\zRO\/E)
k=0



N-1
+CRE D | f(te, X)LV 2N — e, XYY 2P

tea1? te? Ttra1o
k=0

As a consequence and since |[Y,Y |+ vh|Z)| < C(1+|X}Y|) (using the arguments
of Proposition 1, see also Gobet et al. 2005), we easily get that

N-1

max BV - VN2 4+hE > 200 - 2|
0<k<N
k=0
C |R|2 )
S 7 oBe |+ XY P o +07 xp(—R5/4).

Hence for appropriate thresholds R going to infinity, the localization er-
ror converges to 0. Rates are available if in addition supy<j<y EXNP <
Cp(1 + |z|?) for some p > 2 (stronger moment conditions on the Lévy mea-
sure A would lead to larger exponents p): indeed the upper bound becomes

C 1+‘hR‘2 exp(—R2%/4) and to get a contribution of order h (as in

Cy n
R(I+IR])P—2
Theorem 1), it is enough to asymptotically set R; = h=2/(P=2) (i = 1,--- d)
and Ry = c¢y/log(1/h) (for ¢ large enough). Hence, the convergence with respect
to R is rather fast, especially if p can be taken large. In other words, setting
R to a fixed large value gives a very good approximation, as it will be later
observed in the numerical experiments.

. . N,R

The error on the unknown regression functions (y,""")o<k<n—1 and
N,R . . . . ..

(2,3 )1i<i<q0<k<N—1 is now estimated in the following Theorem, which is our

main result.

Theorem 2 Assume (H1-H2-H3-H4) and let 8 €]0,1]. Then, there ezists a
constant C' (independent on ) such that:

M
1 N,R,+vN,m N,R,M ;v N,my |2
s B 32 OG0 06

L RE Z Z B N,R XNm _ Zliv,R,M(thz,m)lz

Cy(R)? "= = ot 5
<C—- > Y EKM) +Ch
k=0 [=0

N—1

+C > {infElyy (X)) — - pos(X))) |2+meE|x/ﬁzlk (XN) — o pup(XN)12)
k=0 =1
Cy(R)? = MRP+2 C Cy(R)(KL)?

+ C h kZ:O E(KOJC eXp(—m) eXp(CKO,k_i_l 10g hﬁ% ))

10



MRS+ C Cy(R)Ro(K}})?

hE(KM — CK 1 :
+ B (K, exp( 720y(R)233K%)eXp( 0.k+1 08 = )
C Cy(R) MnP+2
CKo plog ——4 ) _
+ exp( 0,k 108 hﬁ;rZ ) exp 72Cy(R)2)

Remark 2 Using standard techniques of covering of functions classes (see
for example the proof of Theorem 11.3 in Gyérfi et al. 2002), we can state
error estimates related to the law of XV instead of the empirical law of
(XN™)) o<, d.e. we can bound maxo<k<y E|y,iV’R(Xt]Z) - y,iV’R’M(Xt]Z)F +
hE S o [2n (XYY — 20 BM(XN)|2. This extension is valid if we add to the
upper bound a term CCy(R)gw 2\7:—01 Soilo Kik, which is essentially of
same order that the other ones (up to the log factor).

Remark 3 Of course, the inequality K% < K1 leads to simpler but rougher
estimates; however, we think that in many cases it is possible to take advantage
of better estimates on the law of K, l”,é This will be investigated in future works.

The terms Cy](vf)2 Yo E(K[) and infaE(|y,iV’R(XgZ) —a - pop(XM)?) +
i, inf, ]E(|\/Ezlj\2R(Xt]Z) —a-pre(XN)?)} are classic error terms which
arise when one approximates a regression function from i.i.d. observations using
projections on a finite functions basis (Gyorfi et al. 2002). They are summed up
from k = 0 until kK = N — 1 because we make N estimations, one at each time
tx. The other terms come from the lack of independence between the different
estimation problems at each discretization time. From the contribution h”, we
understand why 3 > 0 is necessary to ensure that the error tends to 0 and why
(> 1 is unnecessary because it gives a negligible term compared to h arising in
Theorem 1.

Presumably, the optimal parameter 3 is equal to 1 (see in the next paragraph
the discussion on the trade-off between complexity and accuracy). But regard-
ing the exponential contributions, we see that allowing 3 to be close to 0 is less
stringent than 5 = 1 on the values of M for which the convergence holds.
Theorem 2 improves Theorem 3 in Gobet et al. (2005) because the error is not
estimated in terms of the high moments of the orthonormalized basis functions,
but directly in terms of the number of functions that are used in the algorithm.
This result can therefore be easily used in practice.

1.5 Accuracy and complexity of the algorithm

Now, we can derive from Theorem 2 how to make N, M and the number of
basis functions vary together. In this discussion, we neglect the influence of
the localization parameter R, which is supposed to be large enough from the
beginning (see the comments after Proposition 2). As already observed in Gobet

11



et al. (2005), local basis functions enable us to take advantage of the Lipschitz
property of functions y,iV’R and \/Ezl],\;R. Let us consider the simplest example
of a local function basis, i.e. the hypercubes basis, already used in Gobet et
al. (2005) and still denoted HC here. To simplify, p; r does not depend on !
or k and its size is denoted by K. Choose a domain D C R? centered on z,
that is D = H?:1 |x; — a, z; + a], and partition it into small hypercubes of edge
6. Thus, D = Ui17”'7idDi1,---,id where Di17~',id :]$1 —a+i16,x1 —a+ (il +
1)0] x -+ X]xg—a+igd,xq—a+ (ig+1)0]. Then we define p; , as the indicator
functions associated to this set of hypercubes: p;i(-) = (1Di1""vid(.))i17'”7id'
With this particular choice of function bases, we can make the projection error
of Theorem 2 explicit and refer to Gobet et al. (2005) for details:

igf]Euy,i“R(ng) —a-por(XP)?) £ C{8% + Cy(R)’P(X)Y € D°)}.

As for the impact of the localization parameter R, P(X;| € D°) becomes
negligible with respect to the other errors if we choose D big enough (a fea-
ture which is confirmed by the next numerical experiments). Thus and as far
the projection errors are concerned, to get a global (squared) error of order
h? we have to choose § ~ h%, or equivalently a number of basis functions
K ~ h= %" (considering a fixed domain D). Regarding now the number of
simulations M, to avoid an explosive upper bound in Theorem 2, one should
take M ~ Ch=dB+D=(8+2) Jog(h= " ="} for a constant C' large enough
(here, the ranks K % have simply been upper bounded by K).

The dominant term of the algorithm’s complexity C associated to this choice of
function basis is C = NMdlog(K), which corresponds to determine in which
cells the simulation fall (this is the cost of a nearest neighbour algorithm in a ten-
sored grid, i.e. O(dlog(K)) for one path at a given time). Hence, up to logarith-
mic factors, the complexity equals C = O(h~'~4B+1)~(8+2)) while the squared
error is of order h% = O(C—A/+(B+D(d+1)) The optimal value of 3 €]0,1] is
achieved for § = 1, for which the squared error is of order h = O(C~1/(24+4)),
It is now interesting to compare with the complexity of the algorithm presented
in Bouchard and Touzi (2004). We compute the complexity of their algorithm
in the most favourable case where X is a geometric Brownian motion; otherwise
the algorithm is more difficult to implement and its complexity more difficult
to evaluate because of the necessary calculation of Skorohod’s integrals.

In this algorithm, one needs N independent sets (My)1<k<n of M simulated
paths of X (one set for each discretization time). At each discretization time
t, and for each path in the set My, a calculation involving the M paths of the
set M1 is performed. This leads to a complexity C = O(NM?). The squared
error associated to this complexity is given by Theorem 6.2 in Bouchard and

d
Touzi (2004) and is of order % + N\j}%“ . Expressing the squared error as a func-

tion of the complexity, we find C™ T
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Thus, in the case of the geometric Brownian motion model, our algorithm is
more efficient for d < 9 and less efficient otherwise. But in the case of a general
model, the complexity of the algorithm presented in Bouchard and Touzi (2004)
is really difficult to evaluate whereas in our case the complexity is independent
of the model.

Finally, we present in Section 3 a slight modification of our algorithm, which
gives a far better trade-off complexity/accuracy for all models and all dimension
d.

2 Proofs

The section is devoted to the proofs of the results announced in Section 1.

2.1 Influence of the localization: proof of Proposition 2

We first estimate the localization error. Subtracting (2) from (5) and applying
Young’s inequality, we get for 0 < k < N — 1 and for all real v > 0 (the value
of v will be chosen later)

N.R N,R
Yo =Y 2 < (L vh) By (Yo, — Y, )P

h
+C(h? + ;)Etk | (e, X300,V 20 = R, XYY 2001
h h
+0(h2+;)Etk Y-y N P+ O + ;)IZﬁZ’R -z (9)

Subtracting (3) from (6), it comes for 1 <[ < ¢:
1

N,R N _
Z — Zl7tk =7

Lty

1
N,R :
B, ({0 = Yo, JAW 1) + 7 Et (Y T [AW k] — AWk }).
Applying the inequality (a + b)? < 2(a® + b?), the Cauchy-Schwarz inequality
to the first term of the right hand side and |Y,;Q;If| < Cy(R) (see Proposition 1)
we get:

N.R 2 N.R : 2
|Z - Zlf,\;k|2 S E{Etk (|Y7-5k+1 - Y—tg+1|2) - (Etk {Y—t]k\;}f - Y;f]kVJrl ) }

Lty
Cy(R)?
yhﬂ o (AWK A Rovi)- (10)

+2
Plugging this into (9), we finally obtain

EIYYR - YN < (14 yh)EJE,, (ViR - VY

tr41 tr41

h
)2+ C(h? + ;)EIYtN’R -YYy

|2
k41 trt1

h
+ C(hQ + ;)E|f(tk7Xt]\[a}/t],y+1aZt]Z) - fR(tkvXN YN

ted " le41?

Z1

13



|2) - E(]Etk {}/7&]:4;11% o Y;:]Jrl )2}

k+1 tr41

1
+C(h+ ;){E(D@N’R —yN

CC,(R)* 1
+ yT(h + ;)E(|AW/€|21\AW;C|ZR0\/E)'

Now we take 7 = C and we obtain the following simplification:

N,R
EY,, " - Y ?

2
<A+ ChEYNE vl 124 %E(

k+1 trt1

[AWEL A, 12 o Vi)
+ ChE|f(tka Xt]Z7 Y;],:Z_l? Zt]Z) - fR(tkana Y;],:C_l? Zt]\k,)|2

An application of the discrete Gronwall lemma, leads to the expected result for
the difference between Y V- and Y. For the difference between ZV-% and ZV,
we use (10) to get

N-1
N,R
VA A

k=0
N—-1 )
<O {E(YVT =N, —EE YT - Y1)
k=0
CC,(R)? =
+ yT > E(AWL A, 5 ryvi)
k=0
CC, (R)? "=
< CEI* (X)) — o) + OIS B (AW g1y, 2, 0)
k=0
N—-1 9
+C Y AE(Y R -V P) —EE, V-V D)7 (11)
k=0

Taking the expectation in (9) leads to (Vv > 0)

E|Y, " = V[* — E[Ey, (Yo — Y.

2
trt1 tk+1)|
h h
< (yh+C(h* + ;))Emff - P+ om® + ;)]E|Z5Z’R —ZN)?
h
+ C(h2 + ;)EU(tk’XtJZ’KJILNZg) - fR(thXtJZ’YtJ:H’Zg)'Z'

Plug this inequality into (11) and take v = 3C? to get the result for
hES N |Zt]Z’R — Z{Y|?, for h small enough. O

14



2.2 Influence of the localization: proof of Proposition 1

The aim is to prove that (YV:f!, ZV:1) is bounded. Applying Young’s inequality
to (5), we get using the Lipschitz property of f% (Vy > 0)

1

Y PP < (L )|, (Y5 T)P + ChP (L + ,yh)

Etk |Yt

k+1|
R+ ) ZNRE 4 on2(1+ 5 R (e XN, 0, 0)2,
’yh tr ’yh ’ tr
Using

NR
Rl Z00 T < (B [V B2 — By, (Vi )} (12)

tr41
and adjusting v in the same way than for Proposition 2, we get |Y,;ka ’R|2 <
(1 + CRh)Ey, [Y,2 2 + Ch|ff(te, X{¥,0,0)>. We get the result for YV by
applying the discrete Gronwall lemma and deduce the result for Z™:® thanks
o (12).
The Lipschitz property can be established using analogous techniques (see also
the proof of Proposition 3 in Gobet et al. 2005): for this, the assumption (H4)a)

is crucial. 0

2.3 Proof of Theorem 2

The proof is technical and we divide it into several steps. Firstly, we introduce
additional notations, which are closely related to non-parametric regression ar-
guments. Secondly, we state a result concerning the propagation of the error
from time t51 to time t;, (see Proposition 3). Finally, the different contributions
in the propagation error are evaluated in Proposition 4.

2.3.1 Extra notations for the proofs

Monte-Carlo simulations. We recall that the algorithm uses M Monte-Carlo
simulations of the Brownian increments AW and of an approximation X% of
X, (X))i being a Markov chain. In addition to (X, J:?,AW’”) and for the

tk+1 , AW/™) which
are, conditionally to X, '™, an independent copy of (X tk+1 ,AW/™) (and also
independent of everythlng else). For instance, when X has no jump part (6 = 0)

and an Euler scheme is used for X%, X,ff ™ and X Nom are defined by

proofs, we will use at each time ¢; extra random variables (
N,m

XN = XM 4 b(t, X A+ ot XtN’m)AW,;”,

tet1
X0 = X0 b, XD o, XD AW,

trt1

where (AW]")g,m and (AW,ZV”);CM are i.i.d.

15



Norms. For a function 1, we define (0 < k < N):

19 170r = Z|¢XN’“, 117 o = leXN’”

ml ml

Projection coefficients. Remind that coefficients (a;'%)o<i<, are defined by:

N,R, M [Awﬁ]w
a%c argmf Z |ychrl tk+1 )T —a 'kaF

and o} as the minimizer of
N R ( xNom  NRM (N,
XN%H ua*”ﬁwﬁvumﬂm1(xmmiﬁﬁmm) o pil®.

We will need other coeflicients in the proofs below. Thus, we define the projec-
tion coefficients (&}},)1<i<q

M m
- 1 N.RM(ZN [AW]} ]
Al =angint 7 3 WP CRDTIEE —alil 09
Y, as the minimizer of
M
N.RM (%N, N,m  N,RM N, ~
Z Yrr1 th:?) + th(tkvth mayk+1 (thﬁl) [al]\i ‘ka]z) -« 'p8?k|27
m:
(14)
the projection coefficients (B%C)lglgq
M im
1 %N (AW} ]w
Blo=argint 7 SRR a9

and 3} as the minimizer of

N,R; N, XN N,R; N, N,R;+N,
(X0 A+ B (e, X5y (X007, 20 (X)) — e pgll .

(16)

We emphasize the differences between these projection coefficients: for
N,R,M

M = M ; RM :
(7% )o<i<q and (al7k)0<l<q, the function y; 77 is fixed and we esti-
M N,m
mate o’ from (X th+1v

Nom N %
(X ™ X, AW ) 1<menr. As for (ﬂl,k)oglgq, we also estimate from

AW[")1<m<y whereas we estimate &} from

16



(X, XgZ;T,AWﬁ)lngM but knowing the true functions y, ;. (-) and

2T (-). We also note that o, = 0‘0 M4 0‘0 M where

1,M _ NRM Nm 2
g’k —arglnf— E ly Ypi1 tk+1) p0k|

2,M R N, N,R,M /N, M
Qo = argmf T Z |hfo( tkath mayk+1 (thﬁ)a [%k Plelz) — a'PS?kP-

s

5, M ~i,M :
We define (85 )1<i<2 and (&g )1<i<2 in the same way.

Conditional expectations. We write 7™ for the o-algebra generated by
(X ™o<ken, (AW)o<k<n—1)1<m<nr and EM for the conditional expecta-
tion with respect to 7. We denote by EM (resp. P2) the conditional expec-
tation (resp. conditional probability) with respect to the o-field generated by
(X ™)o<i<h, (AWM o<ich—1)1<m< -

Error terms. According to 8 and the projection coefficients, we define the
following events which probabilities are evaluated later in Proposition 4:

M
1 LM ~1,M
=57 2 Pl — agh )P < 72,
m=1

M
1 ~
M= S I (ofh — &l < b7,
m=1

N,R fy2
A = e [Poly =y, 18l — [0llkar < h7Z )
We also deal with the following quantities, which are bounded in Proposition 4
as well:

1% = EIEM (50%) - ok — y,iV’R ;

1,M
Tzk—EH{@ —EM( )} pOk”kMa
N,R
T37l,k = E”EM(@%) "PLk — 2k
Tk = El{a% —EM (@)} - powlliar-

Covering numbers. In the proofs below we use random covering numbers.
We refer to Gyorfi et al. (2002) for a complete description. However for sake
of completeness, we briefly recall here that if G is a class of functions and
oM = (21,...,2) are M points of RY, Na(e,G,z}1) (¢ > 0) is the minimal
p € N such that there exist functions g1, - - , gp, such that for all g € G we can
findaje{l,---,p} with

W=

< €.

1 M
(M Z |g($m) - gj(xm)|2)
m=1

17



To simplify, we adopt the notation

Na(e, k) = Na(e, [Pokly: (Xiy ™, X ™) 1<m<n)-

2.3.2 Propagation of the error
Our main tool is the following result.

Proposition 3 Under the assumptions of Theorem 2, for 0 < k < N — 1 one
has

N,R N,R,M
EHyk — Y’ ”k,M

q
N,R,M
< (1+ Ch)E”ka Ygr1 ||k+1,M + C{T%c + TQMk} +Ch E {T:),Ivzlk + Tﬁ,k}
=1

Cy(R)?
h

+C {P( +hZ]P’ ([AM]) + P([ARA,]9)} + CRPHL

If we admit for a while this result and Proposition 4 which estimates each contri-
bution, it is easy to complete the error’s estimation on Y in Theorem 2. Then,
the same calculations we made in Proposition 2 enable us to deduce an error’s
estimate on Z from that on Y.

Proof of Proposition 3. First by using [y,iV’R]
Lipschitz, we get

y =y and that [, is 1-

N,R,M _ N,R N,R
Elly; 2.0 < Eladh ok — v l2as

Now we introduce ﬁM (see (16)) and noting that EM (j3 ) is the minimizer of
= Z |yN R(XN ™ —a- po),ﬂ|2 we apply the Pythagoras Theorem to get

—EM(B0%)} - poxlliar + Tk

Elledl - por — v I3

Now as EM (afl) = ol and ol = agy' + ag we first apply Young’s in-
equality, then Jensen’s inequality to get

EH{%,k EM(ﬁOk)} pOkaM (1+7h)]EH{041M EM( )} pOkaM

+(1+ —>E||{ o —EM(ﬁS;% P

< (14 vh)ﬂ«:u{al V- EM (B

1+ ZBIHaEY = ALY ol (17)
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We deal separately with the two terms of the right-hand side of (17). For the
first term, we introduce dé:g/[ (see (14)) and use the definition of A}’ and T3,
to get:

Ell{aqy —EM By )} - polliar

_ S ~ ,M ~1,
< (1 +h HE[[{ag —aé,k}-po,k||i,M+<1+h>E||{aé, —EM By} - polZ g

C

< O DO RPRARL) + (-4 1) (Bl - B 1) sl

L E{EM (aLY) — EM (3L} pMnkM)

< Chﬁ+1+gcy(R)2P([Ag4 1) + (14 h)T5%

s

M
1 m
+ (1 +nE Z EM (gt M (X — v (X (18)
=1

At the second and third inequalities, we have used the contraction property of

the projection on ((pg%)* )1<m<M
we get for the second term of the right hand side of (17):

Using once more this contraction property,

o2M  32.M
E”{%,k _ﬁo,k }'p07k||%7M (19)

Ch? NRM (x N,R N.RM _ VR
< ]E Z Vgt tk+1 ") = Y (X tk+1)|2 + Ch’E| %, ' ”iM

Let us deal with the last term of the right hand side of (19). For 1 < < g we
can first write that

]E”ZNRM N,R||2

_sz ||kM<E||alk Pk — kM

as [z1]. = zlj\%R. Next, we introduce 3% (see (15)) and as EM (3/1) is the

minimizer of M |zl)]\;’R(X,fZ’m) — o pf|?, we get

Ellaf' - pre—2i 5 17 ar
= E”EM(B%C)WLI@ Zlk ||kM+E||{]EM(ﬁlk) a%} 'pl7k||z,M
= T?,I\,/zf,k =+ 3E||{EM(51,1¢) - EM(al,k)} 'pl,ka,M + 3E||{]EM(O7%¢) - 07%} 'pl,k“z,M
+3E({a% — ok} - puklli ae
737 1, + 3EI{EM (31%) — EM (&)} - pusll7, ar + 3T4 4 + ChP

I papyye), (20

IN

+C
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Now, an application of the contraction property associated to the projection on
( (p}”k)*) and of the Cauchy-Schwarz inequality yields

M
3 ) ~ m
i E Y HEM(BM) — EM (@)} - pilil?
m=1
M Tm
3 m My o Ny AW ]w
<R S M RN -y M () Sy
m=1
M
N,R,M /5 N,m
S]\4— Z {|y/€+1 tk+1 ) Ykt (th+1 )|2
— [BM (R =y M (X)) (21)
Putting (18), (19), (20) and (21) in (17) we get:
]EHZ/N y/iv f M”k,M

C
< TN+ (L+vh) (Ohﬂ“ + —cy(R)QP([Ag?k]C) + (14 h)TM

M N,R,M ;v N,m\\ |2
]E Z |E k+1 tk+1) - ykJrl (th+1 ))| >

N,R,M ;v N,m
+0h21+— E2|k+l — P (o2

tk+1 tet1
+CR2(1+ %)E Z {T50 5 + T i}
=1

1 q
+Oh2(1+%)hﬂ+0h2(1 o (R)>> P([AM%])
=1

1 1 N,m N,R,M ;& N.m
+C(h+ = ’y E Z {| Y1 th+1 ) — Yk+1 (th+1 )|2
N,m N,R,M N,m
- |EM(yk+1 (XtHl ) — Yei1 (th+1 ))|2}
Taking now v = C we get the following simplification
L A A [ Y (22)

9 q
Cy(hR) (PLAYL) + B> PAN])
=1

N,R,M
<1+ Ch)]EHZ/kH —Yri1 ||k+1 T

q
+TV, + CTY + Ch Y {TY  + Ti ) + ChPH
=1

N,R,M N,m N,m
Ch]E”ka —Yri1 ||k+1 M +C E Z | Yrt1 th+1) yk+1 (th+1)|2'
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Since y,i\ff is Lipschitz continuous, the last term of the right hand side above is
bounded by Ch? (here, we use (H4)b)). To get the result of Proposition 3, the
first term of the right hand side should be changed in E||y,€Jrl y,ﬁr}f M||k+17M.

Thus, we use the definition of A} | to write:

E N,R,M
||yk+1 Yri1 ||k+1 N
—E N,R,M N,R,M N,R,M 2

(Hyk+1 —Yri1 ||k+1 M ||yk+1 ~Ypi1 k1,00 + ||yk+1 —Yri1 Hk+17M)

_ N,R,M N,R,M 2
< (1+hTHE (||3/k+1 ~Ypt1 ||k+1,M ||Z/k+1 —Ypi1 ||k+1,M)+
N,R,M
+(1+ h)]EHka Yii1 Hk+1,M
C (R) N,R,M

< ChPH 4 02 ([Ak+1]c) (1+ h)]EHyk—H —Ypi1 ||k+1,M' (23)
Plugging (23) into (22) gives the result. O

2.3.3 Other estimates

Proposition 4 Under the assumptions of Theorem 2, for 0 < k < N — 1 one
has

Mhﬁ+2 h¥
P([495]°) < QE(KOke p(= Ml ’k+ 1)>’
720, (R)2KLT g 2K
MhS+! e
P([AM]¢) < 2E (KM exp(— )N ( ke 1))’
M Lk 72C,(R)?RZK [, 3,/2K . Ro
MnP+2
Miec < T 790 (R)2
Fay) <28t 2 et g )

levjc = E(lngy,iv —a-poxl?: M) < 1anE|yN R(XN) — a-p07k(Xt]Z)|2,

Cy(R)?
T3k < =5 - E(KG),

1. .
T3] ) = E]E(Half H\/Ezl{\;vR —a-pilZa) < = lngNEzz],\kR(Xt]Z) e pa(XE,

Cy(R)*
T%kﬁ 1;1M I[‘E(KI{VIIC)7

C Cy(R

Na(e,k+1) < Cexp(CKo g log S-Sy

Proof of the bound for ]P’([Aé\fk]c). As already mentioned, we suppose without

M N« M
loss of generality that (BO*’“)% = Id and that B}, is a matrix of size M x K.
Under this assumption, we can rewrite (see our notations for ]P’% )

21



By making the norm |- |2 in (24) explicit, we get:

PY (Jag ™! — g2 > hP+2)
Ko k .
N,R,M (N, N,R,M /N,
EDM Z |_ Z pO k z{yk+1 (th_:;l) yk+1 (th-:?)” > hﬁJrQ)
m=1
KM

1 m N,R,M /+N,m N,R,M <+ N,myq |2
< Z ]P)Q/[(| i Z pO,k,i{yk-H (thﬂ) Yiif1 (th+1 )}| >
=1 m=1

Kox 1 M 2 _ hP+?
< DRV E Poknly 57 D pi AT — (XTI >

i=1 m=1

Kéuk M
]- m N m N m hﬁ+2
= Y P (3 € [Posialy Z Pk i Um {0(X 1) = (X Y = \/ m)
=1 ’
where (U,,) is a sequence of i.i.d. Bernoulli random variables, taking values 1
and —1 with probability %, which are independent of everything else. The last
equality comes from the fact that X Nmoand X, Nm pave the same law. Now,
we introduce a covering G of [Po)k+1]y such that V¢ € [Po,k+1]y, 3 g € G such
that

hB+2
18Ké‘/[k

Ms

XA = g (XTI + (X — (XY <

trt1 tet1

m=1

We can assume without loss of generality that elements of G are bounded by
Cy(R). Note that G depends on (X,f:ﬁ, Xt]fo)lngM but not on (Up,)1<m< M,

and that the cardinal of G is equal to Na( %, k + 1). Taking advantage of
0,k
the Cauchy-Schwarz inequality |4 S _ Pi.Aml? < 37 SM_ X2, (under the
M N« oM
assumption % = 1d), we easily get
hP+2
N,m N m
BY (30 € [Posel, z PR Um0 (R o 2 [0
0,k
M
1 m hB+2
SP{@V[(HQEQ M Zp()szm{g( tkﬂ)_g( trop }‘ =z 3 KMk
0

hﬁ+2 Nm hﬂ+2
SNQ(HW7/€+1)?§§<PJ< ZpomUm{g X)) —a( tkﬂ "} > K(])\,/[k).

To bound this last probability, we additionally condition by

(Xt]Z J:?,f(t]: ﬂl)1<m< u and denote by }f”kMk +1 the resulting conditional proba-

bility. We note that, if X, = pfy ;Un{g(X7"") — (X, EM 1 (Xim) =0

41 41
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and |Xm| < 2Cy(R)[pgly ;|- A combination of Hoeffding’s inequality and of

M
% Zm:l |pg,1k z|2

/hﬂ+2

N

k k+1 Z P ki Um{9( tk:?) - tkﬂ }‘ KM )
0,k

=1 gives:

( QM hB+2 - ( MhB+2

< 2exp(— =2exp(—— ).
144C, (R)2K % 47 SM . 12 72C,(R)2 K

The estimate on P([A{%]¢) is now proved. O

Proof of the bound for ]P’([A%C]C). The calculations are the same as for
P([A)%]¢) except that we need here a covering G of [Py 1]y such that V¢ €
[Po,k+1ly, 39 € G which satisfies

hB+1

7 Z (X0 = g(X0™MP + [ (X0 — g(X™MPY < W

ml

O

Proof of the bound for P([4}7]¢). We partially follow the proof of The-
orem 11.2 in Gyorfi et al. (2002) and define the vector (Z,,)i<m<om by
(Zuns Zarsm) = (X207, X0 i Uy = 1 and (Zin, Zagsm) = (X0 X00™)
if Uy, = —1 where (Up,)1<m<nm is a sequence of i.i.d. Bernoulli variables, inde-
pendent of everything else, taking values 1 and —1 with probability % As for
P([A)%]¢), we introduce a covering G (whose elements are bounded by 2C,(R))
of [Pokly — y,iV’R such that for all ¢ € [P i), — y;iv’R, there exists a g € G such
that

B+2

- h
S Z [9(EN™) = (XY™ + [0 (X)) - g(X ™)} <

Thus, we can write that P([A}]¢) is equal to

1 M 1 1 M 1 +
P3¢ € Posly —up " {q7 D [0(Zm) Y2 = {57 D [(Znem) PY2 2 075
m=1 m=1
]. M 1 ]_ M 1 hﬁTz
<P(EgeG: {5 > 19(Zn)l*}* — {57 D l9(Zuem)I*}? = ——).
m=1 m=1
L

Introducing the conditional probability ]P’ ~1 and No( 3 \/5 , k) (the cardinal of
G), simple computations lead to (see Gyorﬁ et al. 2002, p.191)

Wl
Y

. 1 X , 1 X
P x(39€G: {37 > lgZm)P}? — {37 > 19(Zarem)*} )

m=1
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9€g

=n MBFF2SM fg(XNm)2 4 g(x )2
L2 No(——= 7 k) sup exp 7 o Nomgi )
3v2 18 M {g(XN ™2 — |g(X2™)[2)

The above exponential is bounded by exp ( — %), because

Ms

M
D AgXa ™ — 19X ™Y <

m=1 m

(g™ + 19X ™))

Il
-

NE

<4Cy(R) Y (l9(Xi™)1P +19(X™)I%). (25)

3
Il

Bringing together all the previous estimates gives the required upper bound for

P([A}1]°)- O
Proof of the identities for IET{V){~C and IETBJV){JC. Observe that EM(B(%C)
N,R/ 5N, N,R .
minimizes 7 Zm e XM — p’orfk|2 = |y, " — - pO,kHz7M5 ie.
T, = inf, ™ — - Po.k|l% ar- The same arguments apply to ET3 . O

Proof of the bounds for ET; and ET,],. We prove only the estimate
for ET,",, techniques being the same for ET,"],. We adapt the proof of The-
orem 11.1 in Gyorfi et al. (2002) and suppose without loss of generality that

% = Id as before. We can thus write for 1 <m < M
EM (Ipf-{agk — EM (@)} ) (26)
BM * BM
—5" 3@)*( 5y gy —enony Bok
i Bl g - mv ) Bk,

where V is the vector of RM with coordinates yN M x] N+m) We bound this
last expression by considering ||[EM ({V —EM (V )}{V EM(V)}*)[l2- As agfyyy
is FM_measurable, we get
N,R,M 5+ N,my, N,R,M N,m’
EM (y k+1 (th+1 )yk+1 (th+1 ))
=EM ([ao,k+1 " Po,k+1 (thjrl )]y[aé\?kJrl " Po,k+1 (Xt]Z;T )]u)
o N,m o> N,m’

:EM([O‘é\?kH 'pO,k+1(th+1 )]y)EM ([O‘gf[kjtl 'p0>k+1(th+1 )]y)
from which we deduce that the non-diagonal terms of the matrix EM ({V —
EM(V)HV — EM(V)}*) are equal to 0. The introduction of the projection
coefficients dgffk ensures this crucial property which is not true with projection
coefficients o). As for the diagonal terms, they are bounded by C,(R)?. Thus
|EM({V = EM(V)H{V — EM(V)}*)||l2 < Cy(R)?. Finally, in view of (26), we
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get

m=1
M pM
1 Bok
< Mﬂ;'ﬁpo’klgcy(}zﬁ
Cy(R? G~ | o Cu(R)? . Cy(R)*
< Ip mZ:lm,kP: S Tl(BGL) Bl = = Ko
The estimates for ET", readily follows. O

Proof of the bound for N;(e,k + 1). One can directly apply Theorem 9.4
in Gyorfi et al. (2002) (and Theorem 9.5 in the same reference to bound the
Vapnik-Chervonenkis dimension of a functions vector space) which writes:

Ko, k1
Na(e k +1) < 3<2e<26;%<R>>2 1Og(3e<2cy<R>>2)> |

€2

whence our result. O

3 Another algorithm

We have used in the proof of Proposition 3 projections coefficients (d%)oglgq,
which have enabled us to overcome the lack of independence between least-
squares problems at different discretization times t;. Up to simulating few
extra random variables, we could design an algorithm where, at a discretization
time ¢, we would calculate the coefficients (&} )o<i<, instead of the coefficients
('1.)o<i<q- We now describe this algorithm:

— Initialization : for k = N take y%’R’M(-) = ¢ft(.).

— Let k < N — 1. For each path m, simulate (X "™ AW/™) which are, con-

tea1?
ditionally to Xt]Z ™ an independent copy of (X,ffﬁl, AW;™) (and indepen-
dent of everything else; see paragraph 2.3.1). Solve the least-squares prob-
lems (13) to get (&;'},)1<i1<q- Then define zl]’\;’R’M(-) = [}, -pik)=(-). Next,

solve the least-squares problem (14) to get dévfk and define y,iv AM ey —

[d(])v,[k “Po,kly(")-
— Iterate until time tg.

Compared to the algorithm of Section 1, we draw twice more simulations. The
global complexity is therefore multiplied at most by a factor 2, which is not
costly at all. Nevertheless the accuracy is improved, at least theoretically (see
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comments below). It is easy to adapt the proof of Proposition 3 to analyze this
new algorithm (for full details, see Lemor 2005). Theorem 2 simplifies to give:

Theorem 3 Assume (H1-H2-H3-H4) and let 8 €]0,1]. Then, there ezists a
constant C' (independent on () such that:

N,R,M N,my (2
OE}%VEMZW X = g M )
m S, R,M N,m
+hEZ Z X = M (N 2
2N—1 q
Cy(R) ZE(K )—|—C’h5

+C Y {inf By (X)) = o po (X))

—|—meE|\/ﬁzlk (X)) —a-pa(X)PY

Cy(R)? = C Cy(R) Mh5+2
+C " kzo exp(CKy x log 7}1“2 ) ex 20, (R)? ).

Firstly, as for Theorem 2, analogous estimates are valid for
maxo<p<n Elyp H(XN) =yt PR+ BEYNS X)) -
2 M (XN) 2 (see Remark 2).

Alg. of Section 1 | Alg. of Section 3 | Alg. Bouchard and Touzi (2004)

- 133—{1
C

== C-Ta (if X=Brownian motion
or geometric BM)

Table 1: Squared error for different algorithms with respect to the complexity
C.

Secondly, it is not surprising to see that the terms coming from the events
(A} )o<i<q (which express the closeness between (a;'})o<i<q and (&'})o<i<q)
have disappeared. Mimicking the calculations done after Theorem 2, this leads
to a squared error of order C ~a+d. The table 1 sums up the complexity’s evalu-
ations for the different algorithms and it appears that this new algorithm gives
a far better complexity to achieve a given accuracy.
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4 Numerical experiments

To test asymptotic results by letting N, M and the number of basis functions
go to infinity, one needs to use a functions basis for which the regression error
arising in Theorem 2 is explicit. We use the hypercubes basis HC (see paragraph
1.5).

We consider the case of pricing an option with a differential of interest rates
(Bergman 1995). We suppose that X follows the Black-Scholes model in di-
mension d = 1, d))(it = pdt + odW;, with parameters ¢ = 0.05, 0 = 0.2 and
Xo = 100. For the terminal condition, we take that of a Call Spread option,
that is (X7 — K1)t —2(X7 — K3)T with K; = 95 and K3 = 105. The non-linear
driver f is defined by f(t,z,y,2) = =0z —ry+ (y — 2)” (R — ), where the two
interest rates are r = 0.01, R = 0.06 and § = (¢ — r)/o. The maturity of the
option is T' = 0.25. According to Gobet et al. (2005), the relative solution Yj
is equal to 2.95.

Price

Figure 1: basis HC, 3 = 0.2, o, = 3.4, apy = 1,2,3,4,5.

Here the numerical issue is to determine if our algorithm asymptotically recov-
ers this value when one modifies all the parameters N, M and ¢ (the edge of
the hypercubes). Regarding N, one starts from Ny = 2 and N = Ny(v/2)0—1
where j = 1--- is the number of different values of N to be tested. As men-
tioned before, we neglect the influences of the Brownian increments threshold
Ry and of the domain width R; on which the basis HC is defined. This do-
main is fixed once for all to [40,180]. As far the regression errors are con-

cerned, the choice 6§ = —2%—— ~ C h"% makes the algorithm converge

(\/§)T(j71)
at rate h? (for the squared error). Now it remains to adjust M as a function
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Figure 2: basis HC, f =1, a}; =5, ay =1,2,3,4,5.

of N and J, or equivalently h and 3. In Theorem 2, the convergence to 0 of
the term C%Rﬁ o DL E(KM) leads to Mn'+%* = co. Furthermore,
the inspection of the other terms involving the covering numbers imposes the
stronger condition MhFT2+B+D — NA3+26 s oo, The following experiments
are aimed at testing the empirical validity of this threshold rule. For this, we
set M = 2(y/2)* (=1 for different values of «j; and check the algorithm con-
vergence according to ay < aj; or any > aj; where aj, = 3 + 203 is the
(theoretical) critical convergence threshold. In practice, we perform tests for
8 =10.2, 3 =1 and report the average value given by the algorithm on 50 runs.
From Figure 1, the algorithm’s price seems to diverge for ap; = 1 whereas the
prices ajp; > 1 seem to converge towards the reference price but very slowly, in
accord with the choice of § = 0.2. From Figure 2 (8 = 1) we note that this
time the algorithm’s price for aps > 3 clearly converges towards the reference
price but we observe on Figure 3 that too big values of o), are undesirable :
this does not speed up the convergence with respect to j because some error
terms (actually the bias) only depend on N and ¢ but not on M whereas the
calculation time becomes very large. Moreover, one cannot anymore use the
confidence interval for the price given by the empirical standard deviation be-
cause when M tends too quickly to infinity, this empirical standard deviation
tends very fast to 0 and does not reflect anymore the bias terms depending on
N and 6. As usual, it is important to well balance the bias and variance terms.
Finally, we observe on this last example that the empirical levels of convergence
of aps are better than the ones expected from the condition MA3+2% — oo:
this indicates that the bounds of Theorem 2 may be not optimal. One possible
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Price

25 e -

Figure 3: basis HC, § = 1, o}, = 5, oy = 6 : curves with cross markers,
ap = 7 : curves with circle markers. In plain line, prices and in dotted lines
upper and lower 0.95 confidence intervals.

reason could be the sub-optimality of the upper bound (25): indeed, as a matter
of fact we do not use the closeness between Xt]Z ™ and thz '™ Another reason
may be that essentially only the empirical basis dimension K % is involved in
Theorem 2 and this dimension can be much smaller than the theoretical one
K i (see Remark 3).

A numerical comparison between the algorithms of Section 1 and 3 on several
examples shows that both algorithms behave similarly (they have the same
convergence levels), even if the bound of Theorem 3 is better than the one in
Theorem 2.

On Figure 4, we test again f = 0.2 but with the basis HC(1,0) which is
analogous to HC: it consists in using the local polynomial basis 1,z on each
hypercube to approximate y™' ¥ instead of just 1 in the case of basis HC, while
for 2V'E there is no modification. We refer to Lemor (2005) for more details on
these function bases. On this example, the basis HC(1,0) speeds up the overall
convergence. This phenomenon is fundamental to our opinion, compared to the
quantization method that can be viewed as using only indicator function bases
(basis HC).

Finally, we look at a last example taken from Heath et al. (2001). In this article,
the authors approximate via PDE’s methods the local risk-minimization price
(see Follmer and Schweizer 1991) of a put option in a stochastic volatility model
(Heston type model). The dynamics of the asset price X and of the square of
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Price

Figure 4: basis HC(1,0), 5 = 0.2, o}, = 3.4, ap = 1,2,3,4,5.

the volatility F' are:

X
% :’}/Ftdt =+ \/ Ftth,
t

dFt :Kl(g — Ft)dt + Z\/ FtthI

with W, W’ two independent Brownian motions. It is easy to see that the local
risk-minimization price Y must satisfy the following GBSDE:

—dY; = —(rY; + \/Z—I’;_t(th —ry))dt — Z;,dW; — dLy,
Yr=  (K—Xp),.

Taking r to be 0 this leads to the driver f(¢,z, F,y,z) = —~2z+/F which is not
Lipschitz (for related results, see El Karoui and Huang 1997). We nevertheless
apply our algorithm for ajp; = 3 and present the results on Figure 5. As in
Heath et al. (2001), we take k =5, § = 0.04, ¥ = 0.6, v = 2.5, Xy = K = 100,
Fy = 0.04. The functions basis is HC, in dimension 2 (one dimension for the
asset price and one for the stochastic volatility). The reference price (for r = 0)
is taken from Heath et ol. (2001) and is 7.69. We observe that, in this non-
Lipschitz case, the price still converges towards the reference price.

5 Conclusion

We have proposed a simple algorithm to solve GBSDEs. The dynamic program-
ming equation resulting from the time discretization of the equation (1) is solved
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Figure 5: basis HC, § =1, a; = 3.

using a sequence of empirical regression problems based on simulations of the
underlying Markov process. The extension to path-dependent terminal condi-
tions is straightforward (see Remark 1). We have derived explicit error bounds
which allow to optimally choose the parameters of the method to achieve a given
accuracy. This is a major improvement compared to previous works. However
our numerical experiments reveal that the convergence can be faster than what
our theoretical estimates predict. The explanation of this phenomenon concerns
future researches. Additional works are also necessary to consider in (1) another
martingale than W and to let the driver depend on L.

6 Appendix: proof of Theorem 1

We  only prove the result for maxo<p<nE[Y:, — YN[?

that for EZ,CN:_Ol ::“ |2} — Zy|*dt following from the same kind of calcula-

tions than in the proof of Proposition 2.
Firstly, we know from El Karoui et al. (1997) that the solution (Y, Z, L) satisfies

T
E( max 3/3 +/ |Zt|2dt+ [L]T) < +o00. (27)

t€[0,T] 0
Then, from (1-2) we get Y; — VY = E, (Y, — YY) + By ft’:vﬂ
{f(s,Xs,Ys, Zs) = f(tr, X[\, YN, Z{})}ds. A combination of Young’s inequal-

ity (with a parameter v > 0 to be chosen later) and of the Lipschitz property
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of f gives

1 th+1
BIYi, = Vi < (14 9WBIE: (Vi = i, )P + O+ )E / 12, — Z)ds

thy1 ;
k

tht

E|Y, — VY |?ds). (28)

thy1

1 tet1
+C(h+;)(h2 +/ E|X, — XV |?ds +/

tr tr

Now define Ztk by

o tk+1 tk+1
hZy, = Etk/ Zsds = Ey, <{Ytk+1 —|—/ f(S,XS,YS,ZS)dS}AW,:) .

tr tr

Clearly

thot1 tht1 _ _
E/ Zs — Z] |Pds = ]E/ |Zs — Zy,|*ds + hE[Z,, — Z) 7. (29)

tr ik

The Cauchy-Schwarz inequality yields

|Etk ({}/tk+1 - YN

thy1

}AWl,k)|2 < h{Etk(|Ytk+1 - YN

thy1

|2) - |Etk (}/tk+1 - Y;tiv_,.l)|2}
and consequently

h]E|7tk - Zt]\k]|2 SCE{]Etk('}/tk+l - Y;ti\:_l |2) - ElEtk (Y;5k+1 - }/;]’:7+1)|2}

tet1
+Ch]E/ f(s, X5, Yy, Zo)?ds. (30)

ty

Plugging (29-30) into (28), we get:

E|Ytk - Y;tiv|2 < (1 + ’Yh)]EHEtk (Ytk+1 - YN

oyl

1 trt1 o

)2+ C(h+ —)E/ \Z, — 7, [2ds
0 tr

1 te41

th+1
+C(h+;)(h2+/ E|XS—X§Z|2ds+/ E|Y, — Y,

thy1
tr tr

*ds)

) = [Ee, (Ysn = Y, I}

th+1

1
+C(h+ ;)E{Etk (Yepyy — Yy

1 th+1
L+ Ch(h+ —)]E/ J(5, X0, Y, Z0)%ds.
0 tr
Now write E[Y; =YY, |* < 2E[Y; —Y;,,,[* +2E[V;,,, — V.Y, |* and analogously
for X, — X}, take v = C: for h small enough, it gives
E|Y;5k - Y;Ejkv|2 S(]- + Ch)]E‘Y;k-H - YN

NP+ Ch?+Ch Jax, E| Xy, — X|?
tk+1 _ tk+1
+OIE/ |ZS—Ztk|2ds+C’/ E| X, — Xy, |*ds
tr tr
thy1 thy1
+C ElY, — Y, [?ds + ChE/ f(s,X,,Ys, Zs)?ds

tk tk
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and by Gronwall’s lemma
max E|Y,, —Y;¥|* < Ch+C max E|X; — X[
0<k<N 0<k<N

N-1 thi1 .
+OZE/ {|Z5_Ztk|2+|X5_th|2+|}/5_nk+l|2}d8'
k=0 1

k

The contribution Y 3" [[*"*E|Y. — Y;,,,|%ds is a O(h): indeed it is
upper bounded by 3227:_01 ::“ ds(tper — 8) f;’““ Ef(u, Xu, Yy, Zy)?du +
3 s [ ds [ E|ZuPdu + 35000 [ dSE([L]y,., — [L]s), which
equals a O(h) owing to the a priori estimates on (Z,L) (see (27)). In the
same way, the contribution related to X; — X;, is of order O(h). Finally, it

gives

max E|Y;, —Y;¥|? < Ch+C max E|X, — X} |?
0<k<N

0<k<N
N-1 tet1 o
+C > E/ |Zs — Zy, |2ds.
k=0 th

Without extra assumptions, the above approximation’s error related to the pre-
dictable process Z converges to 0: combining this with (H2), we conclude
maxo<r<n E|Y;, — YV, '[? — 0.

In the Brownian filtration case (3 = 0) and when X is the Euler scheme of X,
clearly E| Xy, — X/V|* = O(h) uniformly in k. Furthermore, Zhang (2004) estab-
lishes that the error on Z equals O(h). Hence, maxo<p<n E[Y;, — VN[> = O(h).
U
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