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We thank A. Kohatsu-Higa for pointing us an error in the proof of [Theorem 2.5, GLOS§|.
The aim of this note is to correct it, the result statement is unchanged. Actually, our initial
proof gives rise to an extra log(/N)-factor in one of the upper bounds about the discretization
error, a factor which we have omitted: we provide here a slightly modified proof which gives
the announced statement. For the notation, we refer to [GLO08]. The result concerned by the
correction is the following one.

Hypothesis 1. o is uniformly elliptic, b and o are in C’l}’?’ and Oyo is in Cg’l.

Theorem 1. Assume Hypothesis 1. For any function f such that |f(z)] < c1e®®l, it holds
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Proof. The correction concerns the second result. The term E [ fOT < f(X g(s)) - f(X 5)> ds} is

split in two terms E [fOT <f(X£7(s)) — f(X@(S))) ds} and E [fOT (f (X)) — f(X5)) ds] The-
orem 2.3 in [GLO8] enables to bound the first term
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which readily leads to an upper bound as advertised.
To bound the second term, it remains to prove that
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Let us introduce I := E/ f(Xs)ds — —IE Z f(Xy,). Since |I —I| < el K(T )L, it

remains to bound |I|. To do so, we mtroduce u:s+— E[f(X;)]. We have
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where t; := 2L for all i € {0,--- , N} and 6;(s) belongs to [t;, s].
Before bounding I; and I, we recall (see [Proposition A.2, GLO08]) for any s €]0, T

[u(s) < K(Tere?™, | (s)] < KD T, (s)] < K(T) e (1)

Bound for I} := Zfi_ll tii“ u'(t;)(s — t;)ds. We have
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Using the first and third inequalities of (1) gives
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Then,

Bound for I := YV 1 tt;*l u”(@i(s))%d& Using the last inequality of (1) yields
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