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Abstract

In a complete market with a constant interest rate and a risky asset, which is a
linear diffusion process, we are interested in the discrete time hedging of an European
vanilla option with payoff function f. As regards the perfect continuous hedging, this
discrete time strategy induces, for the trader, a risk which we analyze w.r.t. n, the
number of discrete times of rebalancing. We prove that the rate of convergence of this
risk (when n — +00) strongly depends on the regularity properties of f: the results
cover the cases of standard options.

KEY WORDS:  Discrete time hedging, approximation of stochastic integral, rate
of convergence.

1 Introduction

To describe the price of an option at time t, we use a generalized Black and Scholes model
with a risky asset (a share of price X; at time ¢) and a non risky asset (which price is
SY at time t). The price X; is given by the following 1-dimensional stochastic differential
equation

dX; = p(Xy) Xedt + o(X;)XdBy,
with Xg = ¢ > 0, and the non risky asset by the ordinary differential equation
dsp = rSYdt.
The coefficients u, o fulfill the following assumptions:

(H1) g and o are bounded, twice continuously differentiable and the second derivatives
satisfy some Holder conditions. More precisely, if we set fi(z) = p(exp(z)) and
6(z) = o(exp(z)), we assume that there are § € (0,1) and K > 0, such that for
(z,2') € R%, we have

6" (z) — 6"(=")|

|z — 2|
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(H2) 3 09 > 0 such that |o(x)| > ¢ for z > 0.

Under these hypotheses, the process log(X;) has a smooth transition density p;(-,-) w.r.t.
the Lebesgue measure on R. It implies that the process X; has also a density ¢(-,-) given
by

pt(log(x),log(x’)) V(.’L‘ .’L”) € R x R*
’ + +

n
qt(iL',.’L' ) - .Z‘I

As usual, we introduce the process Wy = B; + f ! %s)rds which is a Brownian motion
under an appropriate probability, called the neutral-risk probability, denoted by P. Thus,
the risky asset satisfies a new stochastic differential equation:

dXt = TXtdt + U(Xt)Xtth.

In the following, we consider European vanilla options with payoff function f € L?(Xr).
Mathematically, the price of this option is given by

hf) = E(exp (=rT) f(X1) | Fo) -

If we set
u(t,z) = By (e*T(T’t)f(XT_t)), (1)
note that h(f) is equal to u(0,z) and that u solves the Cauchy problem:
2 t,2) = 202 @00* Dt 0) + ety ) — rultyz) with (t,2) € 0,T) x (0,00)
5 W6 2) = 507 (2)2% 5 5u(t,2) + reg ult 2) —ru(t @) wi , T , , 00
(2)
u(T,z) = f(x) for z € (0,00).

The well known option valuation formula is

e T f(X1) = h(f / ¢, dX,

where )?; = e~ "X, is the discounted price of the risky asset. It6’s formula implies that
the delta hedging strategy & is given by

ou
é}—a—x

In other words, to have a perfect hedging, the investor must trade at each time ¢ € [0, 7]
and hold &; units of the underlying asset. In practice, this is impossible.

An alternative solution is to hedge only at discrete times. In fact, assume that the investor
will trade at n fixed times in the period [0,T]. At each trading times defined by t; = kT'/n
(k € {0,... ,n}), the trader holds &, units of the asset X;. Hence, at maturity the investor
will be left with the difference:

(t’ Xt).

T 8y, ~
anlf) = 1) — (w00 + [ 00, X)X,

T oy ~ T ou ~
= (/0 %(taXt)dXt -/, %(‘P(t),Xgo(t))dXt> ;

2



where ¢(t) = sup{t; | t; <t}
Our purpose is to study some aspects of the convergence of A, (f) to 0 when n goes to
infinity.

2 Results

It is already known that

Proposition 2.1. (Revuz-Yor([2]) Proposition 2.13 p. 135)
With the above notation, A, (f) converges in probability to 0:

A .
) 25320
From now on, we are going to analyze the risk incurred by the trader by evaluating the
rate of convergence of the variance of A, (f). The main contribution of this paper is to
prove that the results strongly depend on the regularity property of the payoff function f.

e The case where f is absolutely continuous with polynomial growth (European call or
put e.g.) was studied by Zhang [5]: under technical assumptions, the error decreases
as 1/n. One has

e For an European call digital option with strike K > 0 and maturity 7' (a contingent
claim which pays 1 if the price of the underlying risky asset lies above K at maturity
and which pays nothing otherwise), the rate of convergence is 1/4/n.

3
eleo| T

 2n

EAZ(f) = EE (/OT e X ot (Xy) (%(t, Xt)>2dt> +0 (

We now focus on more irregular payoffs.

Theorem 2.1. Under (H1) and (H2), for the case

(Co)  f(z) =1a>k,

one has

EAZ(f) = ﬁ Ko (K)o, ) + 0 (1"%,5"))

where Cy is an universal constant, defined in lemma (3.4) below.
The same rate of convergence occurs for functions f which can be written as f(z) =

C 1;>k + g(z), for some constants C and K, and for some function g of class CI}
e.g. for the digital put 1,<x.

ol?

e Some intermediate rates of convergence (between 1/4/n and 1/n) can be achieved
with functions f satisfying a Holder condition i.e. with an intermediate regularity
properties between discontinuity and absolute continuity.



Theorem 2.2. Under (H1) and (H2), for the case

one has

1
T\2t® . 1
E'A?L (f) = (5) CaK1+2aU3+2a(K)672TTQT(xa K) to (n1/2—|—a> )

with

A too aw dw w2\
Ca:Ca/dé(/ e—7> ,
R —5 V2r(d +w)l-e

where Cy, is an universal constant, defined in lemma (3.4) below.

Note that these results are still available under the historical probability.

These previous results on the rate of convergence in L? norm might be surprising because
the weak convergence in the cases (Cp) and (C,) occurs at rate 1/y/n. This can be derived
from a general result of Rootzen ([4]) by hard checkings of the assumptions for some
particular models.

Theorem 2.3 (Rootzen ([4])). Let X; be a diffusion that solves the Black & Scholes
equation dXy = o XydWy, then if u is defined as in (1), it follows that

\/ﬁAn(f) —d WTa n — 00, (3)

2 .
where T = %fOT (gi%(t,Xt)) ot X}dt, and W is an extra Brownian motion independent

X
of T.

Note that this last theorem is not contradictory with the theorems 2.1 and 2.2 since we
cannot take the "expectation of the square” in the convergence equation (3). It is even
possible to check that for the cases (Cp) and (C,), one has E(7) = +oc.

3 Proof of theorems 2.1 and 2.2

3.1 General decomposition of the error

We are interested in computing

( /OT (%(t, Xi) — g—Z(so(t),X(p(t))) d)?tﬂ _

Since )Aft is a martingale under the neutral-risk probability, one has

E(A%(f) =E

ou ou

T 2
B(A20) =B | [ (GoX0) - S0, Ko Xe o (X

T
:]E[/ Mfdt],
0




where we denote

M= (52050 = 2000, X)) € "0 (X0 Xi

Itd’s formula for M7, between o(t) and t, yields

t t
M? =2 MydM, + / d(M,M),.
(1) o(t)

Put D, (t) = 3%(¢, X;) — (‘P(t)an(t)) (note that ¢(0) = ¢(t) VO € [p(t),t]), a straight-
forward calculation leads to

2y
e dMy = (aamat(G,x)xa(:v) — rDu(G):ca(x)) . do
2y
+ ( g +5(0,z)z0(z )+Du(9)(x0(x))')) . de
2,

+ (za( )(3 (0, 7)z0(w )+Du(9)(ma(m))')> AW,

=Xy

1 03u 82 , "
+ (37700 (G5 Omot@) +255 0 Do) + Do) ) )| o
and
2., 2
d{(M, M)y = ((g 5 (0, 7)z0(T )-I-Du(ﬁ)(:va(x))') 6_2T0.’L‘20'2(J))> de.
=Xy
The derivative of u w.r.t. ¢ can be rewritten using (2) :
2y U 2y, 2y
ST (1) = )T (40) + a0(a) o @) Tata) + v 2 (t,)
Consequently, we obtain, after some simplifications,
T t
= e 20 zo(z)d —2rD,(0)zo(x
_IE/O dt/tdel( D, (6)ao(x){ — 2r Dy (0)0(x)
+2reDy(0)(zo(2))’ +2%0% (2 )Du(9)(ﬁw($))”}
2
+ e 270 (2) D (0)[(zo(x))') + 26777 ng (t, ,7:)35303(:1:)Du(9)(ac0($))'>
z=Xpg
2 2
+ (g 5 (0, Xg)) e ot (Xp) Xy |
Therefore, we have
E(AL(f)) = A1+ Az + 43, (4)



with

T t 2u 2
A = IE/O dt md&(‘?’”e@(@,)@)) o*(X9) Xy, (5)
)
T t
Ay = IE/O dt (t)dee*QT"Dﬁ(H)XeQU(Xa)g(Xe)a (6)
7

= ' t _2”9@ z)z30%(x zo(z))
ay = [ [ an (G0 20D )

where the function g is defined by
g(z) = —2ro(z) + 2r(zo(z)) + (zo(z)) 2o (z) + [(wo(z))Po(z)
=220’ (z)(r + 0%(2)) + 220 (z)0?(2) + [(zo(z))' |20 (2),
and is bounded under assumption (H1).
The remainder of the proof consists in proving that A; gives the main term in the expansion

of E(A2(f)), whereas Ay and Aj are negligible. We first need some estimates to control
derivatives of u.

3.2 Preliminary estimates

From now on, K (7T') will always stand for a non decreasing, finite, positive map, which can
change throughout the calculus, but without numbering in a different way the functions
which will appear.

We put Y; = log(X;) and

26
by) =1 -~ (Qy);

Hence, obviously, the process Y; is the solution of the stochastic differential equation:

s(y) =o(e¥);  yo = log(xo).

Y, = yo + /0 (¥ du + /0 () dw,. (8)

Note that, under assumption (H1), the coefficients b and s belongs to CZ’LJ(]R, R). Hence,
we have

Proposition 3.1. (Friedman, [1], Chapter 6)
Under (H1) and (H2), for t > 0, the process Yi(y) has a smooth transition density pi(y,-)
w.r.t. the Lebesgue measure on R, which fulfills:

o Vt >0, pi(-,-) belongs to C*(R%,R)

e Vo, € N such as a+f < 4, there exist a function K(T) and a constant ¢ > 0, such
that:

V(t,y,y') € (0,T] x R x R ‘%( n< =)
7y7y b ayaay,ﬂ y7y




e pi(-,-) satisfies the Kolmogorov backward equation:

% N no_ 32(y)8_2 / 2 /
5 WY) =Ly y) = — 6yth(y,y ) +b(y) aypt(y,y ), (10)
and the forward equation:
Opy N T# N 0? 32(yl) / 0 / /
o W Y) = L'pily,y) = o\ 2 n(w:y) ) — 5 (@ )pely, ). (A1)

With the above notation, we define the function v by

v(t,y) = u(t,e¥) =, (G_T(T_t)f (GYT“)) =e "D /]R F(e)pr—i(y,y') dy',

which satisfies the Cauchy problem

2
— 5 0l6) = 3 W)55o(t) + B 5 o() —rolty) in (Ly) €DT) xR (12
v(T,y) = f(e¥) on R

Estimates from proposition (3.1) now enable us to establish some specific estimations on
the derivatives of v which are not given by standard results on PDE’s.

Lemma 3.1. Case (Cp)
Under (H1) and (H2), the function v belongs at least to C>* ([0,T) x R) and for (t,y) €
[0,7) x R and a < 4, the following inequalities hold:

0o K(T)
8—ya(tay)‘ < ma (13)
and
E(@(t y)>2 < _ K@) (14)
o2 ") Sy —pi

Lemma 3.2. Case (C,)
Under (H1) and (H2), the function v belongs at least to C>* ([0,T) x R) and for (t,y) €
[0,7) xR and 1 < a < 4 an integer, the following inequalities hold:

o ly]
0% y < K(T)e

a0 (19
and
v 2 K(T)ewl
B(ghwr) Ta;iﬂ2a (16)



Proof of lemma 3.1. Inequality (13) is easy to obtain, using (9), since we have

v, )\<e—’"<”> [ w.1)
oy~ 9= log(K) oy~ ’
too _C(y—y')2
. KM / et K(T)
1

a dy < ——%
ST -0 Jogry VTT (T -0)8

0%*pr—
pT t dyl

To prove estimate (14), we first use the backward equation (10) to obtain
0%v _ / 0? p
Gt = T [ ) Ty
o~ T(T—1) (y) Opr—t no_ 2 Opr— N do!
[ ) ( I ) = s A ) )

and then, the forward one (11) to evaluate the derivative w.r.t. the time, to get

0% o 2b(y) Ov
a—yg(tay) - _SQ(y) a_y( ay)

o0 [ e (o | 832 (Er 0. - L G pr-1t2)] )
(17)

v e T(T—) $2(y
MB_ ZW [b(y’)PT_t(y,yl) - aiy, ( (2y )pT—t(y,yl))]

bl

y'=log(K)
(18)

where we used an elementary computation of the integral. Using the estimates (9), it
readily follows that

gi;;(t,y)‘ < I;(:i)t [1+ Tl_t ( (y — log(K))” —:;05(151{))2” .

Hence, one has

£(2200) < KO 1 m( Lo (28]

To conclude the proof of estimate (14), it remains to show that

(e exp (2T B KOO

VT —1 Tt - VT
which is easily obtained using an upper bound (9) for the law of Y; and standard arguments
involving convolution of Gaussian kernels. O

We now intend to prove the equivalent lemma for the case (C,). The techniques are quite
similar.



Proof of lemma 3.2. For (15), if we remark that for a > 1, 9% [ pi(y,y')dy’ = 0, we are
able to write that

o0*v / 0%pr_
_ —r(T—t) _ Pr—t NN
G tu) = T [ (1) = pe) TP i

Now, applying the Holder properties for the function f and inequality (9), we get

! I N2 '
0% (t,y)‘ < K(T()I_a le¥ — eyla 6_8% dy .
oy~ (T —t)*z" Jr (T —1)2 Tt
The change of variable
y -y
z= 19
T (19)

yields (15). For the second inequality, if ¢ is small (¢ < 7'/2), (16) is an immediate
consequence of estimate (15). For ¢ large (¢ > T/2), we start from (17) (which is also
available in this case) and after an integration by parts, we obtain:

v, 2b(y) Iy
3—y2(t, y)=— 2(y) 8—y(t,y)
too 2 ! ! AN !
— e (Tt v g1y (5 Opr—t N 2b(y") —2s(y')s'(v) . ) /
e /lvog(K) € f (6 ) (32(,!/) ayl (yay ) 82(@/) prt(y,y ) dy .

(20)
To go on with the proof of (16), we admit the following lemma, which proof is postponed
in Appendix A.

Lemma 3.3. With the above notation and assumptions, for any bounded function g, for
B8 =0 or1l, one has

+oo / ! 8’317 — K(T 6‘y| 1
/ e/ (e )g(y, v )5 (v,9)dy'| < ( )ﬂ+1_a = (21
log(K) Ay (T—1) 2 1y |le®)y
VT

We apply (15) to upper bound the first term of (20) and the lemma above for the two last
ones. It follows that

82v > K(T)e2wl K(T) [t 2l dy!
E|—(t,Y; Y .
|:ay2 ( t):| = (T _ t)lfa + (T _ t)Q—a [og(K) pt(yO Y ) Ly log(K)—y' 2—2a
Tt
The change of variable z = Y =198(K) 16ads to

VT—t



0% 2
B[S L]
K(T)e2lvol K(T +00 2|2v/T—t+log(K)| 4
S (T( );1—(1 + (T (t)?i—a/ pt(yOaz T _t+10g(K))e 1V ‘Z|2—2a ©
_ _ e o v
K(T)eQ‘yO‘
T V(T —t)2°

where we use that p;(yo, 2v/T — t+log(K))e?#VT—tH108(K)! is bounded by K (T)e?%l /\/T,

uniformly in z (see inequality (9) with ¢ > 7'/2) and that the function T|z|12?23 is integrable

over R (a belongs to (0,1/2)). O

3.3 Upper bound of the terms A, and A3

Recall that we intend to prove that these terms are negligible w.r.t. the expected order of
the term A;.

3.3.1 Case ((p)
First, from v(t, ) = u(t,exp z), we easily deduce

ov 2 X; Ov 2 K(T)
E(X?D2(t,X;)) < 2E | =—(t, Y, 2E it Y, <=’
(xpie %) <28 (G0 + 28 (TP V) <50y,

-1

using (13) and some classical exponential estimates to control E(X? + X, 7).

Hence, one has
r b K(T 1
|A2\§/ dt/ deﬁzo(og(”)).
0 ©(t) T-06 n

To control A3, we combine the Cauchy Schwarz inequality with estimates (13) and (14)
to have

T t 1 1 1
|A3|§K(T)/ dt/ d0— x =0(—-),
0 oty Ti(T—-0)s (T -0)2 n3/

which proves that Aj is of order less than the required one, i.e. n~1/2. To obtain A3 =

0 (%), we need to apply Itd’s formula once again (this replaces the rough estimate

given by the Cauchy Schwarz inequality) and develop same arguments as above. We omit
the details.

10



3.3.2 Case (C,)

Analogous arguments apply to obtain

|As| S/OTdt /(pt(t)d(;%:O(%)

since a > 0, and

T t 1 1 1
|A3|§K(T)/ dt/ d9— x ——o(—2—).
0 oty Ti(T—0)i 2 (T —0) nl/2+a

3.4 Term A,

We first rewrite the term A; as follows, using the process Y;:

2
Ay = / dt / dO( (0,Yy) — a”(a,yg)) eI 54(1y).
o(t) dy

To obtain the expansion result of theorems 2.1 and 2.2, we first state an analysis lemma,
which proof is given in Appendix B.

Lemma 3.4. Let g: [0,T] — R be a measurable bounded function which is continuous in
T. Then, for all a € [0,1/2),

T s 1/2+a
[ fotgtom=enm () o)
too n1 s dt
where Cy := kz_l/o ds/o m € (0, 400).
Moreover, if |g(t) — g(T)| < M/T —t, then

/ ds/ i %_c g(T)\/%H)(@).

To complete the proof of theorems, the above lemma, (3.4) will be applied with the function
g defined by

2
For the case (Cy) ¢g(t) = (T — t)%e_QrtE ( (8—y2(t’Yt) - g—Z(ta Y;t)) 34(Y{5)> (22)

3 2 v 2
For the case (C;) g(t) = (T —t)2 % 2"'E ( (g—yQ(t,Y}) - g—y(t,Yt)) 34(“)) (23)

We now intend to prove that g is bounded and has a limit in 7" (which enables to extend
g as a continuous function in 7T'), limit which will give the main term in the expansion of

E(A(£))-

11



3.4.1 The function ¢ is bounded

For (Cyp), this directly comes from the inequalities (13) and (14), since

3 1 1
lg(t)| < K(T)(T —t)> 7+ < K(T).
(r—t)z T-—t
The same statement holds for (C,) using (15) and (16).

3.4.2 Calculus of lim; 7 g(%).

3.4.2.1 Case (Cy) Actually, our purpose is to prove a little more, i.e. |g(t) — g(T)| <

K(T)\/T —t, to ensure that the remainder term is a O (%). The definition of g (22)
and equality (18) yield:

g(t) = e*2rT(T — t)%E — QTg_Z(t’ Yt)er(Tft)

+ 2{b(log(K) — s(log(K))s'(log(K)) }pr—¢ (Y2, log(K))

—32(log(K)) (%(th(Y:fayl))> yl_log(K)] .

Thus, combining the estimates (9) and (13) with classical calculations involving convolu-
tion of Gaussian kernels, verify that

< @ T—1t. (24)
VT

To compute some accurate expansions of the derivatives of the transition density of Y; in

small time, we use the standard representation of the transition density of a 1-dimensional

diffusion involving some functional of a Brownian bridge. We refer to Rogers [3] for this

representation. If we put

2
g(t) — e~ T (log(K))(T — 1)°E (3%:1’”’5(“’ ¥)) ‘y’zlog(K))

s) = [+ s ﬂ(y)=(§—18’>051(y); wo) = [ plerts n =g + 5

s 2
_ .2
V(t’yayl) = (Zﬂt)ié exp (_%> :

P(t,y,y) =E [exp (—%/Otn <y+ g(y' —y)+ (Wa - th» dﬁ)] ;

then, we have

S(y")
pr—i(y,y") = v(T —t,8(y), S(y')) exp (—/S

ﬂ(z)dZ) P(T —t,5(y),S(y'))
)

12



If we differentiate the above expression w.r.t. 3’, the main term when ¢ is near T comes
from (¢, S(y), S(y")) and is equal to

DT —t,y,y) = —S'(y')w

S(y')
exp (—/ ﬁ(z)d2> Y(T —t,5(y),Sy")). (25)
S(y)

More precisely, since the functions 3, h,n and their derivatives are bounded, it is not hard
to show that

0

‘a—y,(pT_t(y, y')) —I(T —t,y, log(K))‘ < K(T)pr—i(y,9')- (26)

y'=log(K)
Combining (9), (24) and (26), we deduce that
l9(t) —9(t)| < K(T)VT —t,
where the function § is defined by
9(t) := """ (log(K)) (T — ) 3EL*(T ~ 1, Y;, log(K)).

Consequently, it remains to prove that §(¢) has a limit in 7' (which will be equal to ¢g(T"))
and that [§(t) — g(T')| < K(T)vT —t. We have

n o 2
g(t):/Rdylpt(yo’yl)SQ(log(K))e—QrT(S(y;ﬂ.(ﬁ(itg)(%[{)))

" — S(lo 2 S(log(K))
exp(JS(y) sq g<K))>)exp(_z /S g 5(%)

T—t ")
(T —t,5(y'), S(log(K))).

By the change of variables z = w, one has:

i) = /R dz s (5 (VT — 1+ 5(108(K)))) o1 (40,5 (=T 1+ S(log(K))) )

9 o’ 22 o 2V T—t+S(log(K))
s“(log(K))e ™ " 2—6 " exp —2/ B(&)d
™ S(log(K))

P2 (T —t,8(log(K)), 2T — ¢ + S(log(K))) .

By the Lebesgue dominated convergence theorem, it immediately follows that

lima(t) = pr(yo,log(K)) s*(log(K)) e / 27 dy
t—T R27r

= pr(yo, log(K)) s°(log(K))

13



Furthermore, basic calculations ensure that
1g(t) — g(T)| < K(T)VT —t.
Hence, by lemma (3.4), we deduce that

Co VT 4 —2rT log(n)
Ay = 20 V2 B(K)e2r log(K)) + O [ 28
3 4ﬁ \/ﬁO' ( )6 pT(yOa Og( )) + n )
which completes the proof of theorem 2.1, taking into account that pr(yo,log(K)) =
K x qT(.’E(),K).

3.4.2.2 Case (C,) From the expression of g, we substitute the derivative of second
order with the equation (20), and after some simplifications, g can be written as

g(t) = e T(T — )2 "E| - zr%(t, Y;)en(T=H

+OO 7 !
+/ &V F1(e ) (2b(y') — 25(')s' (o)) pr—1 (Vi )y
log(K)

2

+00 ! ! j—

_ / e¥ fl(ey )82 (y/) ang t(Yi,y')dy'] )
log(K) Y

Inequality (15) and lemma 3.3 leads to the fact that the main term in the above expression
when ¢ is near 7 is:

2
+00
e (T —1)2 °E / & ()52 ) L (Yt,y')dy’] :
1

og(K) oy

Keeping the same notation of the last paragraph to describe the representation of the
transition density of a 1-dimensional diffusion, we denote

+o00
upaw:/ & f( )2 )T(T — t,y,4)dy.
log(K)

Therefore, estimates (9), (26) and (21) yield

2T 3 o 1oy 201 OPT—t NS, ’ 2
lig e 2T - B| ([ o e ) B V)| - ()] =0
t—=T log(K) (9y
Consequently the limit of g when ¢ tend to T is given by the limit of § defined by
§(t) = 7" (T — 1)~ By, (V). (27)

14



Writing the above expression in terms of integral, we have

! 2
g(t) = e > (T - t)g_“/ dy pi(y0,y) /+oo ,Lyls?(y')T(T —ty,y)dy 5 .
R log(k) (¥ — K)t=@

With the following changes of variable and notation

ft(w) — S—l(s(log(K)) + wm); w = S(y,) — S(y); § = S(y) — S(]Og(K))’

g can be written as

“+00

a

~ _e—2rT _ 4\2—a s
a(t) = T =02 [ 5 o 5) (@(5)){ /. Ve

S (6w + )
(Jo s (€lrtw + 6))) exp (€ (v (w + 6)) )

Then, using the definition of I' (25) and lim;_,7 &(-) = log(K), one has

1—a Vv T—t F(T - t,ft((s),ft((s‘Fw)) dw} .

—Ww u.)2
lim(T — O)T(T — ¢,6(8),&(0 +w) = ———— ¢ 7.
Jim (7~ (T~ 16(0), 66 +4) = S
w2
Since the function jdoo %6_7 is square integrable w.r.t. ¢ (see estimate (28),

Appendix A), the Lebesgue dominated convergence theorem implies

+00 w2 2
i 9(6) = ¢ pr (o, log(K) K5 (1og(K) [ { / “’—d“’—}
R

t—=T 5 A /Qﬂ-(é' + w)l—a
= g(T) = g(T).
Finally, as in the preceding paragraph, we complete the proof of theorem 2.2. O

Appendix A Proof of lemma 3.3

Lemma 3.3. Under (H1) and (H2), for f(z) = (z — K)% (case (Cs)), for any bounded
function g, for 8 =0 or 1, one has

+oo ’ ’ a/Bprt K(T)e‘m
eV f'(e)gly,y Y,y )dy'| < —
L 0t ) e

(T 1)

1
1v log(K)*y‘lfa'

vI—t
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Proof. Estimate (9) combined with the change of variable (19) give:

+OO ! ! 3’3 _
/1 eV (e )g(y, ') 22t (y, o )dy'

og(K) oy’
< KO / - e,
(T —t)> i (ez‘/TTHy - K)
Note that
NT=y _ e ldy > K(2VT — t +y — log(K)),

log(K)

and e?VT—te=¢2" < K (T)e_clzz, where ¢’ is an other positive constant. This readily implies
that

+00 9B K(T) y +00 —c'z
’ ’ Pr—t (& (&
| e et o | < e iz
log(K) Ay )72 oK)y (Z_log<;(:y)
I(log(fzzy)

To complete the proof of lemma 3.3, it remains to prove that

VAER I()\) = / o _er iz < - Ce) (28)
N i AN

for some positive constant C(4 . In fact if A > 0, we have

2

+00 ,—c'(2+A)2 +oo ,—c'z
. e —C’)\2 e —C’)\2
I()\) = /0 i dz<e /0 A=a dz < Cg e ,

which implies (28). If X is negative, one has

/2 !,2

A
R to i Lo c
0= " gt [ otz < G T
2

(z —A) -\ A

This concludes the proof of (28) and therefore the proof of lemma (3.3). O

Appendix B Proof of lemma 3.4

Lemma 3.4. Let g : [0,7] — R be a measurable bounded function which is continuous
in 7. Then, for all a € [0,1/2),

T s 1/24a
0 (T) ( 1 )

d dti—2 =, 9(T) [ = +o|—s— 29

/0 ’ o(s) (T —1t)3 ¢ 9(7) n 2\ nifzta (29)

16



+oo
where C, := Z/ ds/ € (0, +00).

—t 2-a

Moreover, if |g(t) — g(T')| < M+/T —t, then

/OT ds /(:(s) dt% =0 Q(T)\/%—i— 0 (logyfn)> _ (30)

Proof. 1. Suppose first that g is constant.
We can assume g = 1 e.g. . A simple change of variables leads to

T s — tk+1
[of aiam-n [ e[ ot
0 (p()(T—t2 =0’ tk ty (T —1)2
T\ 2 n 1 S
:(—)2 Z/ dS/ 7dt3 .
n k=170 o (k—t)=7°

The series above is convergent because its terms decrease like n=3/21%: we denote by C,
its limit. This completes the proof of (29) in that case.

2. Suppose now that g is a bounded measurable function, continuous in T .
There’s no restriction to assume that g(7") = 0, up to replacing g by g — g(7') and applying
the first case. The proof of (29) now consists in showing that

1131((CF 1/2+a/ / dt p— ga> = 0. (31)

Fix 6 > 0. Since g is continuous in 7', there exists n > 0 such that V¢ € [T — n,T],
lg(t)] < C%. Thus, we deduce that
1/2+a
<9 (Z) ,
n

T s
/ ds / dtLt)s
T Jo(s) (T'—t)27"

and for 0 < s <T — 1, since T — s > 1, we obtain that

T—n s
0 @(s) (T — t) 270

Therefore, for n large enough,

1/24a [T 5
(ﬁ)/ / ds / g— 9
T o Jels) (T—t)2°

which completes the proof of (31) and consequently (29), when g(7T") = 0. To prove (30),

we simply remark that
T s T s 1
/ ds/ dtL)s SM/ ds/ i:O(Og(n))_
0 ©(s) (T - t)§ 0 o(s) T—-1 n
17

< T lglle

—a

< 26,




References

[1] A. Friedman. Stochastic differential equations and applications. Vol. 1. New York -
San Francisco - London: Academic Press, a subsidiary of Harcourt Brace Jovanovich,
Publishers. XIII, 1975.

[2] Revuz, D. and Yor, M. Continuous martingales and Brownian motion. 2nd ed.
Grundlehren der Mathematischen Wissenschaften. 293. Berlin: Springer, 1994.

[3] L.C.G. Rogers. Smooth transition densities for one-dimensional diffusions. Bull. Lond.
Math Soc., 17:157-161, 1985.

[4] H. Rootzen. Limit distributions for the error in approximations of stochastic integrals.
The Annals of Probability, 8(2), 241-251, 1980.

[5] R.Zhang. Couverture approchée des options Européennes. PhD thesis, Ecole Nationale
des Ponts et Chaussées, http://cermics.enpc.fr/theses/99/zhang-ruotao.ps.gz, 1999.

18



