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ABSTRACT. We study the weak approximation of a multidimensional diffusion (X;)o<i<T
killed as it leaves an open set D, when the diffusion is approximated by its continuous Eu-
ler scheme (Xt)ogth or by its discrete one (Xti)OSiSN’ with discretization step T7'/N. If we set
7:=inf{t > 0: X; ¢ D} and 7, := inf{t > 0: X; ¢ D}, we prove that the discretization error
E, []l T<#, f(X'T)] —IE;[1 7<; f(X7)] can be expanded to the first order in N}, provided sup-
port or regularity conditions on f. For the discrete scheme, if we set 74 := inf{¢; > 0: Xti ¢ D},
the error IF, []l T<#, f(f(T)] — IE, 1 7« f(X7)] is of order N=/2, under analogous assump-
tions on f. This rate of convergence is actually exact and intrinsic to the problem of discrete
killing time.
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1 Introduction

Let (X;);>0 be the diffusion taking its values in IR? defined by
t t
X, =g +/ B(X,)ds +/ o(X,)dW,, (1)
0 0

where (W;);>0 is a Brownian motion in R¥. Let 7 := inf{t > 0 : X, ¢ D} be its first exit
time from the open set D C IR%. We are interested in computing IE, [1 7, f(X7)], where T
is a fixed time and f a measurable function, using a Monte-Carlo method. In other words, we
focus on the law at time 7' of the diffusion killed when it leaves D. The results presented in
this paper were announced without proofs in Gobet (1998b and 1999).

It is of interest to know how to evaluate such expectations e.g. in financial mathematics.
Indeed, let us consider a continuous monitored barrier option on the d-dimensional assets X,
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with characteristics f, T' et D: it is a contract which gives to its owner the cashflow f(X7)
at time T if the prices have stayed in D between 0 and T (the option remains active) and 0
otherwise. When the market is complete, the price of this option is unique and is given by the
expectation under the neutral-risk probability of the discounted cashflow at time T: it leads
to the computation of E,[1 7« f(Xr)] (see Musiela and Rutkowski, 1998). The results we
prove in this paper also enable us to approximate a continuous monitored barrier option by a
discrete monitored one, and conversely (see Broadie, Glasserman and Kou, 1996).

Our approach is to evaluate IF, [1 7, f(Xr)] with a Monte-Carlo algorithm. Whenever
this expectation can be viewed as a solution of a parabolic partial differential equation, we
might prefer a Monte-Carlo method to a deterministic algorithm issued from numerical analysis
if the dimension d is large (d > 4), if the operator is degenerate or if we need to compute
FE,[1 7« f(X7)] only for a few z and T (see the discussion in Lapeyre, Pardoux and Sentis,
1998).

To evaluate the expectation of the functional of the diffusion, the simplest way to appro-
ximate the process is to use its discrete Euler scheme (Xti)ofif ~ with discretization step T'/N,
defined if t; = ¢ T/N is the i-th discretization time by

o=z : @)
Xti+1 = Xti + B(Xti) T/N + U(Xti)(WtH—l - Wti)'

Let 74 := inf{t; : X;, ¢ D} be its first exit time from D. We study in this paper the discretization
error obtained by replacing IF; [1 7« f(Xr)] by I, [] T<#, f(XT)].

A more sophisticated procedure consists in interpolating the previous discrete time process
(2) into a continuous Euler scheme (X;)o<;<T by setting

fort € [ti,tz‘+1) Xt Xt + B(Xt )( ) + O'(Xt )(Wt — Wtz) (3)

Note that the continuous Euler scheme is an 1t6 process verifying

~ t ~
0

where ¢(t) := sup{t; : t; < t}. Let 7, := inf{t : X; ¢ D} be its first exit time from D. We are
also interested in studying the approximation of I, [1 r«, f(Xr)] by IE, [] T<7, f(X'T)]

Monte-Carlo simulations 3
From the simulation point of view, the evaluation of IF, []l T<z, [(X )} by a Monte-Carlo

method works as follows: if (Y, )m>1 is a sequence of 1ndependent coples of the random variable
Yd.=1 T<7y f(X7), we approximate IF, []l T<#, f(XT)] by — Z , for M large enough.

The simulation of Y is straightforward whatever the dlmensmn d 1s, because we only need
realizations of (X} )o<i<n, which can be easily obtained using the simulation of N indepen-
dent Gaussian variables for the increments (W, — Wy, )o<i<ny—1. For the continuous Euler
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scheme, the simulation of Y¢:=1 77 f ()Z'T) requires an additional step, because the process
(Xt)tiftfti +, may have left D even if Xti € D and X}i +1 € D. We first obtain realizations
of (Xti)OSiSN as before. Then, conditionally on the values (Xti)lfiSN’ (Xt)tjftftj+1 has the
law of some Brownian bridge. Using N extra independent Bernoulli variables, this enables us
to simulate if (Xt)ogth has left D between two discretization times or not. Each parameter
involved for the simulation of the Bernoulli variables is related to the quantity

P (Vt € [ti, tit1] X,eD / Xti = zl,XtiH = 2:2) = p(z1,22,T/N).

In the 1-dimensional case, p(z1,z2,A) is the cumulative of the infimum and supremum of a
linear Brownian bridge and has a simple expression (see Revuz and Yor, 1991, p.105):

1. if D = (—00,b), we have p(z1,22,A) =1 psz 1 p>s (1 — exp (—2%));
2. if D = (a,+00), we have p(z1,20,A) =1 , 5, 1 ,,5,4 (1 — exp (—2%));

3. if D = (a,b), we have

p(21,22,8) = 1psz5a 1 pm>a (1 - k:zoooo eXp <_2k(b - a)(lfy(f(g;l)A—i_ — zl))
(O )

For higher dimension, in the case of a half-space, p(z1, 22, A) has also a simple expression (see
Lepingle, 1993). But for more general domains, as far as we know, there are no tractable
expressions for p(z1, 29, A). Nevertheless, the probability p(z1, 22, A) can be accurately appro-
ximated using an asymptotic expansion in A (see Baldi, 1995): this may be an appropriate way
to evaluate p(z1,29,A). So, in short, the discrete Euler scheme is very easy to implement for
any dimension d > 1, whereas for the continuous Euler scheme, the simulation is simple in the
1-dimensional case and more delicate in higher dimension.

Convergence results
Now, our main objective is to analyze the two errors

5c(fa T,x,N) = Ex []l T<7c f(XT)] - Ew []l T<T f(XT)] (5)

and
Ea(f,Ty2, N) = By [V 75, F(Xr)] = o[V 7<r f(X7)] (6)

as a function of N, the number of discretization steps. We first state an easy result, which
shows that both errors tend to 0 when N goes to infinity under mild assumptions.
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Proposition 1.1 Assume that B and o are globally Lipschitz functions, that D is defined by
D={ze€R?: F(z) >0}, 0D = {z € R?: F(z) =0} for some globally Lipschitz function F.
Provided that the condition (C) below is satisfied

(C): P, (3t [0,7] X, ¢ D; ¥t €[0,T] X, € D) =0,
for all function f € CP(D, R), we have

Nl_l)lleOOEC(f,T,x,N) = Ngrfoogd(f’ T,z,N) =0.

Remark 1.1 Condition (C) rules out the pathological situation where the paths may reach 0D
without leaving D. An simple exzample of non convergence in this situation is the following: take
d=1,D = (—0,exp(l)), Bly) =y, o(y) =0, Xo=1, T =1 and f = 1. In this deterministic
situation, on one hand, we have T = 1 (condition (C) is not fulfilled) and on the other hand,
X; is an increasing function with X1 = (1 + N~Y)N < exp(1), so that 7. > 1 and 74 > 1: thus,
E(f, T,z,N)=E4(f,T,z,N) =1 for all N > 1.

Remark 1.2 If D is of class C? with a compact boundary, the existence of such a function F
holds. Indeed, on a neighbourhood of 0D, let F(x) be the algebraic distance between x and 0D:
this is a locally C? function, which we can extend to the whole space with the required properties
(see Property 3.1 in section 3).

Remark 1.3 Assume moreover that D is of class C3 with a compact boundary. Then, we
note that an uniform ellipticity condition on the diffusion implies condition (C). Indeed, from

the strong Markov property, we have IP, (Elt €[0,T] X¢ ¢ D; Vte[0,T] Xy € E) = IPy(7 =

T)+ E, (]l r<7IPx, [Vt €0,T—-71] X; € E]) The first term in the r.h.s. equals 0 because T
has a density w.r.t. the Lebesque measure. The second term in the r.h.s. also equals 0 using the
0-1 law to show that IP, (Vt €10,s] X; € E) =0 for z € D and s > 0 (see Friedman, 1976).

Remark 1.4 For d =1 and D = (—o0,b), condition (C) becomes IPy ( sup Xy = b) = 0.
t€[0,T]
Thus, condition (C’) below implies condition (C):

(C): 3y € (z,b) such that o(y) # 0.

This can be justified using the Nualart-Vives’s criterion for absolute continuity w.r.t. the
Lebesgue measure of the law of the supremum of some process (see Nualart, 1995, Proposi-
tion 2.1.4); we omit the details. Condition (C’) shows that, in some sense, condition (C) is
weak (much weaker than an uniform ellipticity condition e.g.).
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Proof of Proposition 1.1: for the continuous Euler scheme, it is well known that
limn_,+oo)z' Px uniformly on [0,7]. It easily implies limy, 4001 7<7, f(X'T) Z1 r<r f(X7T)
since one has {T" < 7.} = {infte[O,T]F(X't) > 0} and the condition (C) is equivalent to
IP(inf,c 1 F(X;) = 0) = 0. The result for &(f,T,z,N) follows. For &y(f,T,x,N), analo-
gous arguments apply.

O

We now focus on the rate of convergence of the errors under stronger assumptions. Our
main results state that under regularity assumptions on B, o, D and an uniform ellipticity
condition, one has

e for the continuous Euler scheme:
Ec(f,T,a,N) = C N1 +o(N71),

provided that f is a measurable function with support strictly included in D (Theorem
2.1). The support condition can be weakened if f is smooth enough (Theorem 2.2).

e for the discrete Euler scheme:
5d(f7 Ta Z, N) = O(N_1/2)a

for functions f satisfying analogous hypotheses as before (Theorem 2.3). The rate N —1/2
is optimal and intrinsic to the choice of a discrete killing time (Theorem 2.4).

Background results

Known results about the Euler scheme (4) concern the approximation of E,[f(Xr)]: the
error can be expanded in terms of powers of N~! (see Talay and Tubaro, 1990, if f is smooth
and Bally and Talay, 1996a, if f is only measurable with hypoellipticity conditions). A different
point of view is to study the convergence in law of the renormalized error (v N (XN — X1))e>0
(see Kurtz and Protter, 1991).

When we consider the weak approximation of killed diffusion, we know from Siegmund and
Yuh (1982) that the error £4(f,T,z, N) can be expanded to the first order in N=1/2 in the case
of a Brownian motion in dimension 1, for f equal to a characteristic function of an interval
strictly included in D (this implies in particular that f vanishes on a neighbourhood of the
boundary dD):

gd(faTa-’L';N) :CN_1/2+0(N_1/2)_

Their proof uses random walk techniques and can not be adapted to others situations. For a
more general multidimensional diffusion, Costantini, Pacchiarotti and Sartoretto (1998) prove
that, for all n > 0,

(Ea(f, T, 2z, N)| < C, N~V

provided that the domain is bounded, smooth and convex and that the function f € C3#(D, IR)
(ie. fis C3(D,R) with third-derivatives satisfying 8-Holder conditions with 8 € (0,1)) with
some conditions of vanishing on dD. Our results improve theirs since we show that
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1. the convergence rate of Eq(f,T,z, N) to 0 is in fact of order N—1/2,

2. the domain needs not be convex;
3. provided a support condition, the function f needs only be measurable.

Outline of the paper

To derive the estimates of the errors, following the approach of Bally and Talay (1996a),
we transform both approximation errors (E.(f,T,z, N) and Eq(f,T,z, N)) using the parabolic
PDE satisfied by the function (T, z) — IE;[1 i<, f(X7)], so that the global errors will be
decomposed in a sum of local errors: in section 2, we first recall some standard regularity
results concerning the associate PDE and then, we state the main results of the paper.

Their proofs are given in section 3: for the continuous Euler scheme, the analysis of local er-
rors involves standard stochastic calculus. But to handle the case of measurable functions f, we
need some crucial controls on the law of killed processes, which are given in Lemma 3.1. Their
proofs use Malliavin calculus techniques and require some particular and careful treatment due
to the exit time: they are postponed in section 4. For the discrete Euler scheme, additional
techniques are needed: in particular, we project orthogonally on D the Euler scheme, to obtain
a non standard It6’s formula. It involves a local time on the boundary which we accurately esti-
mate using a exterior cone condition on @D. These boundary estimates are exposed in Lemmas
3.6 and 3.7, but their proofs are given in section 5. Section 6 deals with some extensions.

General notation.

We consider a domain D C IR? i.e. an open connected set, with a non empty boundary
0D. We assume that Xo =z € D. For s € 0D, n(s) denotes the unit inner normal at s, when
it is well defined.

For (t,) € [0,T] x IR%, we set

v(t,x) ;== By [1 7 <7 f(XT 4)], (7)

where 7 := inf{t > 0: X; ¢ D} (with the convention 7 = +o00 if V¢ > 0 X; € D).

For sets A and A’ in IR?, for z € R% d(z,A) stands for the distance between z and A,
d(A, ') for the distance between A and A'.

For r > 0, set Vap(r) := {z € R% : d(2,0D) < r} and D(r) := {z € R%: d(z,D) < r}. We
also introduce the stopping time 7(r) which will permit to localize (X;)o<¢<7 near D:

7(r) ;= inf{t > 0: X; ¢ D(r)}. (8)

We will keep the same notation K (T') for all finite, non-negative and non-decreasing func-
tions, independent of z, N or f, which will appear in proofs (i.e. they depend on D, the
coefficients B(.), o(.) of (1) and so on).

For smooth functions g(¢,z), we denote by 0%¢g(¢,z) the derivative of g w.r.t. z according
to the multi-index «, and by |a| the lenght of .

If (Vi)e>0 is a process taking its values in R4, (Vit)t>0 will denote its d coordinates.
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2 Hypotheses and results

From now on, we assume that the three following assumptions are satisfied. The first one con-
cerns the regularity of the coefficients of the diffusion process:

(H1) B(.) is a C°(IRY, R?) function and o(.) is a Cf°(R?, R ® IR function.
The next assumption is an uniform ellipticity condition on the diffusion:
(H2) there is o9 > 0 such that V2 € R? o(z)0*(z) > 08 Ipigma-

Moreover, we require that D is smooth enough. Let us recall

Definition 2.1 (Gilbarg and Trudinger, 1977, p.88-89)
For d > 2, the domain D is of class C* (k > 1) if for each point s € 0D, there is a ball
O = O(s) and a one-to-one mapping 1 of O onto O' C IR® such that

Yp(OND)C RY ={yecR:y >0},
»(0NoD) C ORE = {y € R*: y, = 0},
Y € CK(O) et 1 € CHO).

For d > 2, we assume that
(H3) The domain D is of class C* and 0D is compact.

For some of the next results, hypotheses (H1), (H2) and (H3) may be weakened (see section 6).

Under assumptions (H1), (H2) and (H3), we know that the function v(¢,z) (defined in (7))
is related to the transition density at time 7' — ¢ of the killed diffusion, denoted by ¢r_¢(z,y),
by the relation

o(t,z) = /D a7 o(=,) F(y) dy, (9)

for a bounded measurable function f. Moreover, if we fix y, gs(z,y) is a C*°((0,T] x D, IR) func-
tion in (s, ), vanishing for z € dD. It satisfies Kolmogorov’s backward equation. Furthermore,
for all multi-index «, there are a constant ¢ > 0 and a function K (T), such that

- K(T y — x||?
V(s,z,y) € (0,T] x Dx D |02¢s(z,y)| < LJ exp (—c%) . (10)
s 2
These classical results can be found in Theorem 16.3. p.413 of Ladyzenskaja, Solonnikov and
Ural’ceva (1968), chapter 3 of Friedman (1964) (see also Cattiaux, 1991, for hypoellipticity con-
ditions). Thus, v(t, ) is of class C*([0,T) x D, IR) and satisfies a parabolic partial differential
equation of second order with Cauchy and Dirichlet conditions, i.e.

ow+Lv=0 for (t,z)€[0,T)x D
v(t,z) =0  for (¢t,z) € [0,T] x D (11)
v(T,z) = f(z) forzeD
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where L is the infinitesimal generator of the diffusion:

d ou 1 LG %u

In(e) = 3 Bia) g (@) + 5 3 30 (@)o iy, (@)

Remark 2.1 Note that v € C*([0,T) x D,IR) N C°([0,T) x IR%, IR): spatial derivatives of v
have jumps at the boundary. This simple fact will lead, for the analysis of the discrete Euler
scheme, to technical difficulties for writing some Ito’s formula: to solve this, we will orthogonally
project the process on D.

We analyze the discretization errors E.(f, T, z,N) and E4(f, T, z, N) for two classes of func-
tion. This corresponds to the following assumptions.

(H4) f is a bounded measurable function, satisfying d(Supp(f),9D) > 2¢ > 0.

(H5-k) (k € IN) f is a C™P(D, IR) function with m > 2k, 8 € (0,1), satisfying the follo-
wing condition of vanishing on 8D: Vz € 0D f(z) = Lf(z) =--- = L®) f(2) = 0.

We recall (see p.7-8 of Ladyzenskaja, Solonnikov and Ural’ceva, 1968) that for (m,f3) €
IN x (0,1), C™#(D, IR) is the Banach space whose elements are continuous functions u(z) in
D having in D continuous derivatives up to order m and a finite value for the quantity

]| 57 = zzsupw 2+ > sup

! xr —
§=01j'|=5 7P jm |=m s €D |

105" u(z) — O u(a")]
«'||? ’

i.e. the norm on C™#(D, R) (the summation >_|j7/—; is taken over all multi-index j' of length
7)-
Denote by £,, the operator on C? functions defined by

Loule) = 3" Bl 2 1if Nig = () 12)
dUE _i:1 Bmz 2 P et ’]835183:] v

(for ¢ € [ti, ti41), L, is the infinitesimal generator of X;). For (t,z) € [0,T) x D, set

Ot z) = % (L?0(t, ) — 2£.Lo(t, ) + L2o(t,2)) (13)

2=T

2.1 Analysis of the continuous Euler scheme

We first state the expansion result for bounded measurable functions f, with support strictly
included in D.
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Theorem 2.1 Assume that assumptions (H1), (H2), (H3) are fulfilled and f satisfies (H4).
Then, there is a function K(T) such that

(s Toa, V)| < k() Lee v, (14)
1ANe
Moreover, we have
T
5C(f,T,(E,N) =T / dt Ew [] t<T G(taXt)] N_1+0(N_1)’ (15)
0

with |T [ dt By [1 1<r O, X,)]| < K(T) Llg.

The support condition on f can be weakened to vanishing conditions on 0D if f is smooth
enough. This is the statement of following Theorem.

Theorem 2.2 Assume that assumptions (H1), (H2), (H3) are fulfilled and f satisfies (H5-2).
Then, there is a function K(T') such that

(£, T, 2, N)| < K(T) | £II57 N1 (16)
Moreover, we have
T
E(f. T2, N) =T / dt By [1 1<y O(t, X)) N\ 4+ o(NY), (17)
0

with |T [T dt By [1 <y O(t, X,)]| < K(T) || £,

The existence of the expansion of the error enables to reach a higher rate of convergence us-
ing linear combinations of results obtained with different step-sizes (Romberg extrapolation
technique: see Talay and Tubaro, 1990).

2.2 Analysis of the discrete Euler scheme

Theorem 2.3 Assume that assumptions (H1), (H2) and (H3) are fulfilled.
If f satisfies (H4), there is a function K(T) such that

[fllo 1
< —_—.
|Ed(faT7~'E7N)‘ = K(T) 1A el \/N (18)
If f satisfies (H5-1), there is a function K(T) such that
(m.g) _1
|€a(f, Tz, N)| < K(T) || flIp : (19)

VN
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The rate of convergence N~1/2 is the best we can obtain in a general situation because we

know this rate is achieved in the special case of a linear Brownian motion (see Siegmund and
Yuh, 1982).
Moreover, if we set
74 := inf{t; : X, ¢ D},

we have

Theorem 2.4 Assume that assumptions (H1), (H2) and (H3) are fulfilled.
If f satisfies (H}), there is a function K(T) such that

B2 1 rer £00r)] - B2 e, 6] < KCD) 1212 (20)
If f satisfies (H5-1), there is a function K(T) such that
B 1 1r £(X0)] — By (1 1<, £(Xr)]| < K(T) 1£157 —. (21)

VN

Theorem 2.4 shows that the rate N—1/2 is intrinsic to the problem of discrete killing time:
even if there is no approximation of the values of the process at discretization times, the error is
still of order N~1/2. This fact will appear more clearly in the proof of these results (see Remark
3.5): we will see that the global error £4(f, T, z, N) can be separated into two contributions,
the first one coming from the approximation due to Euler scheme of the infinitesimal generator
L, the second one coming from the approximation of the ”continuous” exit time by the discrete
one.

Note that Theorems 2.3 and 2.4 deal with the case of functions f vanishing on the boundary
(as for Siegmund and Yuh, 1982, and Costantini, Pacchiarotti and Sartoretto, 1998). Ne-
vertheless, presumably, the approach we develop in this sequel may be the appropriate one to
prove that the rate of convergence N /2 remains true for a function smooth near D (without
conditions of vanishing on 9D).

3 Proof of Theorems 2.1, 2.2, 2.3 and 2.4

To begin, we state a technical Lemma, involving controls on the law of some killed processes:
this result is crucial to handle the case of measurable functions f for the analysis of the errors.
Its proof based on Malliavin calculus techniques is given in section 4.

Let 9 € Cs°(IR%, IR) be a cutting function near 0D verifying 1 Von(e/2) S1 =% <1y 0
and || 994 [|oo< —2L for all multi-index a (¢ > 0 is defined by (H4)).

= 1Aelel
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Lemma 3.1 Assume that (H1), (H2), (H3) and (H4) are satisfied.
Then, for all multi-indez «, there is a function K(T), such that

V(s,z) € [0,T) x Vap(e) |O5v(s,z)| < K(T) (22)

Moreover, for R > 0, for all multi-indices a and o', for all g € C’ILQ‘(Rd, IR), there is a function
K(T') (depending on ||g| ;a1 ), such that for 0 <t <T and 0 < s <T', we have
b

o | £l K(T)
By 1,0 g(Xy) 8%(s, X,)]| < . 23
‘ [ <7 9(Xt) Ogv(s )” 1A el T% (23)
o K
a1 scr 9(X0) 3005, X)) < 1L Lo KCD) (24)
€ T3
Ba [V scnnom 9% 92 02 )(s, X)]| <« Ll KO (25)

1 A elel+le] T% ‘

The constant R introduced in Lemma above will be defined later in the proof of Theorems
(see Property 3.1).

We first address the analysis of the continuous Euler scheme, which is more easy that the
discrete one.

3.1 Continuous Euler scheme
3.1.1 Proof of Theorem 2.1

We have
ElfsTya,N) = By [Vres, f(X0)] = By [v (T = T/N) Aoy Xir—ynyns, )|
+IBy [v (T = T/N) A e, Xr—1ymons, ) | = B [v (0, X0)]
= C)(N) + Cy(N). (26)

It results from Lemma 3.2 below (which proof will be given at last) that C; (V) yields a negligible
contribution:
1/ lloo

1A et

|Cy (V)| < K(T) N7, (27)

Lemma 3.2 Assume that (H1), (H2), (H3) and (H}) are satisfied. Then, there is a function
K(T), such that

B [ s, F(R2)] = By [o (T = T/N) Ao, Rirzpns, )| < K (D) % N2 (28)
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To transform Cy(N), apply It6’s formula to v € C12([0,T) x D, IR), between times 0 and
(T —T/N) A 7.. Using the notation (4) and (12), it readily follows that

IN—1/ATe ~
G(N) = B, [ /0 ds O+ Lv)|,_z (s,Xs)]
tnN—1 ~
= /0 ds IE, [] s<i, (L0 — Lv)|z:)~(¢(s) (s,Xs)] )

where we used 0;v = —Lv in [0,7) x D. Since spatial derivatives of v have jumps on 4D (see
Remark 2.1), we may stop the paths at time 7. to avoid some discontinuity problems. Using

1scr =1 o(s)<Fe — 1 p(s)<Tc<sy W€ obtain
tN -1 .
C2(N) = /0 ds Iy [] p(8)<7e (Lrv — L'U)‘z:f(v(s) (sA TC’XS/\‘T'C)]

in—1 ~
- /0 ds By [1 (o) crocs (Lo = Lo)|,_g (5 A Fe Xonr,)]
1= C3(N) — Cy(N). (29)

When we explicit £, — L, we can assert that for g, = B; or (00%); j, we have

(Lov = Lo)l g (5AFe Kopz) = 3. ca 020(s AFe, Xone) [ga(Kion) = 9alXp(s))] -
1<|a|<2

On the event {¢(s) < 7. < s}, the involved derivatives of v are computed on dD: so, using the
estimates (22), they are uniformly bounded. Using Lemma 3.3 below (proved later), it readily
follows that

K(T) | flle N~ [h+ oo
< /M s %
|ICa(N)| < N Z /tz ds Ey |1 c5.<s 05];%%(—1%;25“]“)(” X, || e
K(T) [I£1loo " N‘Q/tm
< ———F Xy — Xy, ds 1 ¢z <y,
S TIhe @ 051%%(—1%325“]” uw = Xi; || ma ;:o o ds T ycrcin
- 1A€ N3/2 7

where we used Y1V 0?1 4, <z, <t;,, < L.

Lemma 3.3 Assume that (H1) is satisfied. Then, for p > 1, there is a function K(T), such

that
<KT) N2 fogN+1).  (31)

S|

P
E max sup || Xy — Xy, || e
[ : (095]\7_1 seltitin] '
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For the term C3(N), apply once again It6’s formula on the event {¢(s) < 7.}, between times
¢(s) and s A 7, to obtain

tn— S
C3(N) = /0 " ds /¢ o dt IE, [11 1<, (L2 — 2L, Lv + L)

. (X ] ,
=Xp(t) %)
where we used the PDE satisfied by v (the term from It6’s formula corresponding to ¢(s) equals
to 0 because L,v(s, z) = Lv(s, z)). Applying the estimate (23), we immediately obtain
K(T) |Iflloo
< —- .
Gl < =~ Tha
We complete the proof of (14) by combining this last estimate with (26), (27), (29) and (30).
Now, note that to obtain (15), it is enough to prove that

C3(N) = % /OTds Ey[1 s<r O(s, Xs)] +o(N 1),

We proceed as follows:

i (t,Xt)] (Step 1)

=Xy 1)

tN— s
Cy(N) = /ON " ds /( i []l rer, (D20 — 2L,Lo + L20)
(s

Q

tN—1 s >
/0 s /go(s) dt 2 By (1 yyer, O(0(t), Xopr))]

T N-2 i1 5
> /t ds By [1 1<, ©(t:,%,,)]  (Step 2)
=0 "
7 NZL rtia ~ T T ~
~ = Z/t ds 2, [1 1z, ©(5,%,)] ::N/o ds I, [1 e, ©(5,X,)]  (Step 3)
=0 "
T T
~ N/o ds E;[1 s<r ©(s,X,)] (Step 4),

where the symbol ~ means that the remainder term is an o(IN !) (recall that the function
O(t,z) is defined by (13)).

To obtain Step 2 from Step 1, proceed as for the analysis of Co(N) by applying It6’s formula
between ¢(t) and t A 7., using estimates (22) and (23). Very similar arguments apply to the
passage from Step 2 to Step 3. The last step consists in proving that

/0 ds IE, [] 5<7e Q(SaXs)] _/0 ds Ey (1 5<7 ©(s, X5)] = o(1).

This directly follows from the Lebesgue dominated convergence Theorem by noting that on
one hand, each integrand is bounded, using the estimates (23) and (24) from Lemma 3.1. On

the other hand, for s € [0,T"), we have limy_, o [Ey [] s<is @(s,f(s)] = IE;[1 5«7 O(s, X)]
applying Proposition 1.1 with f(z) = ©(s, z). This completes the proof of Theorem 2.1.
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It remains to prove Lemmas 3.2 and 3.3.
Proof of Lemma 3.2: using the properties (11), note that

E, []l T<7, f(XT)] - E, [U ((T —T/N) A %caX(T—T/N)/\?C)]
= B, [v(T A, Xrpe)| = Ba [0 (T = T/N) A s Xir—ywing, )| -

The reason why we treat this term apart from Co(N) in (26) is only technical. Since v €
CY2([0,T) x IR% IR), we may apply Itd’s formula between (T' — T/N) A 7. and (T — §) A 7.
and take the limit when § — 0: this last step is difficult to prove because v(¢,z) may not be
continuous in ¢ = T if f is only a measurable function. To solve this difficulty, we approximate
f by some continuous functions, using a density argument.

1 - Assume that the function f is continuous and satisfies (H4). Then, we have . ljlm v(t,y) =
—1,Yy—T

v(T,z) = f(z) for x € D. Fix § € (0,7/N). The term to estimate can be rewritten as

B, [1 r<r, f(Xr)] = By [v (T = T/N) A e, e 1ywyns. )]

= Ik, [’U (T/\ 7~'07XT/\'FC)] —IFE, [’U ((T — (5) N %C,X(T,(;)/\,;C)]

+IBy [0 (T = 0) A e, Xi—gynz, )| = B [0 (T = T/N) N e, Ri—ymynz, )| -
= E1(6,N) + Es (6, N). (32)

A very similar computation as the one made to estimate Co(N) from (26) leads to

|| f ||oo —3/2

E(8,N)| < K(T) L2112 N3/ 33
(6, N)] < K(1) Lo oz, (33)
uniformly in . Using the continuity of v(¢,z) and Xt/\%c, we conclude by the Lebesgue domi-
nated convergence Theorem that lims_,g E1(d, N) = 0. Combining this fact with (32) and (33),
the required estimate (28) is proved for bounded continuous functions f with d(Supp(f),0D) >
2e.

2 - Assume now that f is only measurable and satisfies (H4). Denote by fi; and fi2 the two
measures defined by IE, []l T<#, f(X'T)] := [ f djs; and

E, [’U ((T— %)/\’FC,X(T%)MC)] - E, []l rzen By 1z, f(X%)H = /f djis.

r%
By a density argument, f can be approximated in L!(fi; + ji2) by a sequence of continuous
functions denoted by (fp)p>0: moreover, there is no loss of generality in assuming that each
function f, satisfies || fp|loo < || flloo and d(Supp(fp, dD)) > 2¢, so that the result for continuous
functions applies, uniformly in p. This completes the proof.

O
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Proof of Lemma 3.3: in fact, we prove that Lemma 3.3 holds for any It6 process (Y;)i>o,
defined by dY; = b; dt + oy dW;, with adapted and uniformly bounded coefficients.

Without loss of generality, we can assume that Y; € IR, (W});>¢ is a linear Brownian motion
and by = 0. Since supyep, 4. 111Ys — Yo | < suPgepy; 4,01 J5 0w AWy — infoepy, 101 7 0w AWy, it is
sufficient to prove the estimate for supsep; 4,11 ftl ou dW,, (the other one will follow by replacing
o by —o). The Bernstein exponential inequality for martingales yields

s 252
P sup / Oy dWy > 2 | Fiy_, | < exp (—N 7) )
l M 2[jo?||c T

SE[EN—1,tN] tN -1

Hence,

S
P, max sup / oy dW, < z
<0<Z<N1 $€[titiy1] Yt

s 22
> P max su / o, AW, < z l—exp| —-N —+——
- r <0<Z<N 2 se[t,,tI;_l] ti “ = ) < p( 2“0'2”00 T))
> (1 N2 3
> |Ll—exp| =N o]
2(|0?[|c T

where we have iterated the conditioning. It follows that

2

S p VA N
E max su / oy dW, </ dzp2' [1-(1—exp(-N —=—— .
””(ogswl el > < Jr P XN ST

Cut the integral at the point £(N) = 2||0||ec VT N~'/2? \/log(N +1). The first term corre-
sponding to the integral between 0 and (V) is obviously bounded by ¢P(N). Using that 1—(1—

u)N < N uforu € [0,1], the second one can be easily bounded by K (T)) N~P/2 exp(—N ﬁ#) =
K(T) N~?/2 (N +1)"!. This leads to the required estimate and completes the proof.

3.1.2 Proof of Theorem 2.2

We mimic the arguments of Theorem 2.1: in that case, the fourth spatial derivatives of v are
uniformly bounded with Holder conditions for the fourth ones (see Lemma 3.4 below). This is
enough to obtain the expected results: we omit the details. The estimates (22), (23) and (24)
used under assumption (H4) have to be replaced by those given by

Lemma 3.4 Under (H1), (H2), (H3) and (H5-2), v is at least a C>*([0,T] x D, IR) function,
and there is a function K(T), such that for all multi-indezx o of length |a| < 4, we have

V(t,e) €[0,T]xD |9%(t,z)| < K(T) If 157 (34)
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Moreover, for all multi-indez « of length |a| = 4, we have

1o’ _ An ! 1o’ _ An !
. 0g0(t,z) = Oo(t,2")| | |5u(t,2) = O5u(t', )

)
< .
(t.2) (¢ ' )€[0,1]x D ( |z —2'|| |t —1/|P/2 ) < K 1l (3)

This is immediately derived from classical results for linear equations of parabolic type:
we refer to Ladyzenskaja, Solonnikov and Ural’ceva (1968), Theorem 5.2. p.320, for fuller
statement.

3.2 Discrete Euler scheme

Because the case d = 1 masks some problems, we focus in the following on the case d > 2.
First, for the convenience of stochastic calculus for continuous-time processes, we consider, in
all the sequel, the continuous Euler scheme (4) killed at the discrete time 74 := inf{#; : X’ti ¢ D}:
this new point of view does not change of course E4(f, T, z, N).
The first stage for the proof of Theorems 2.3 and 2.4 (and analogously to the analysis of
E(f,T,z,N)) is to note that, from properties (11), we have

Ea(f, T, 2, N) = B, [v (T A7, XTW) _ (0,5(0)] . (36)

Then, we would like to apply It6’s formula to explicit v (T A 7, Xras d) —v (0, )N(O). Unfor-
tunately, the situation is not classical at all because spatial derivatives of v are discontinuous
at the boundary (see Remark 2.1) and the process (Xjaz . )i>0 probably crosses 0D. Intuitively,
if such a decomposition exists, it should involve a local time on the boundary (note that for the
analysis of &.(f,T,z, N), (Xt/\%c)tzo has been stopped just before crossing 0D, so that we only
need classical Ito’s formula).

To solve this problem, our approach is the following. Consider Z; := Projﬁ()zt), the orthog-
onal projection on D of X;: this process takes its values in D. As v vanishes outside D, we have
o(t, Xy) = v(t, Z;). If (Zt)¢>0 remains a continuous semimartingale, then classical It6’s formula
can be applied to v(t, Z;) because v € CH2([0,T) x D, IR). So, the main task is to show that Z,
is still a continuous semimartingale and to obtain a tractable decomposition for it. In the case
of a half-space D = {z € IR : z; > 0}, this fact is clear because Z; = ((let)’L,X'g,t, e ,X'd,t)*
and we conclude using Tanaka’s formula. For a general domain, by an appropriate mapping,
we can transform D locally near 0D in a half-space and thus, apply the arguments of the first
case. Actually, the orthogonal projection is not uniquely defined on the whole space (except if
D is convex), but only near D: so, we will use localization arguments, thanks to the stopping
time 7(r) (introduced in (8)).

We now bring together in Property 3.1 below few basic facts from differential geometry
about the functions ”distance to the boundary” and ”orthogonal

projection on D” (for the proofs, see e.g. Appendix p.381-384 of Gilbarg and Trudinger,
1977).
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Property 3.1 For a domain D of class C* with compact boundary 0D, there is a constant
R > 0 such that the three following properties hold.

1. Local diffeomorphism (which locally maps the boundary into a half space).
For all s € 0D, there are two open bounded sets U* and V*, a C?-diffeomorphism F*
(G* = (F*)~!) from U® (s € U®) into (—2R,2R) x V*, such that

g, UC RY — (—2R,2R) xV*®C R x R*!
’ z — (21,2) := (21,22, , 2q) such that z = ¢°(z) + 21 n(g°(2))

where g° is a mapping of 0D in a neighbourhood of s.

2. Distance to 0D.
Let s € OD. On U?, the function F{(.) is the algebraic distance to 0D (thus it does
not depend on s and we denote it by Fy), i.e. |Fi(z)| = d(z,0D) and Fi(z) > 0 (resp.
Fi(z) <0)ifx € DNU® (resp. x € D°NU®). It is a C* function on Uscogp U° =
Vap(2R), which we extend into a Cp(IR%, IR) function, with the conditions Fi(.) > 0 on
D and Fi(.) <0 on D°. Note that 0D = {z € R? : Fi(z) = 0}.

3. Orthogonal projection on D.
Let s € OD. For x € U®, the orthogonal projection on D of x is uniquely defined by

Projg(z) = G*([F1(2)] ", F5 (2), -, Fi(@)). (37)

Since 0D is compact, there exists a finite number of points (s;)1<i<x in 0D (we associate
to them G, F*, U* and V" respectively) such that Vyp(3R/2) C U;<;<i U'. Consider an open
set U with d(8D,U°) > 0, such that D(3R/2) C Uy<;<x U’- Now, we construct a partition of
unity, subordinate to the cover (Ui)ogigk, i.e. non-negative Cy* functions (¢i)05i§k verifying
Supp(¢’) C U* and Y-F ; ¢* = 1 on Dg. So far, functions F? (resp. G*) have been well defined
only on U’ (resp. (—2R,2R) x V*%): we extend them in smooth functions on IR?.

We now can state

Proposition 3.1 Consider a domain D of class C® with compact boundary (with the constant
R > 0 defined in Property 3.1). Let (Y;)i>0 be a continuous semimartingale, taking its values in
D(R) (with Yy € D). Then, the orthogonal projection of Y; on D denoted by Proj;(Y;) defines
a continuous semimartingale, which decomposition is

. 1
d(Proj5(Vy)) =1 viep dYs + 1 y,¢p dYP + 5 (Yt) ALy (Fi(Y)),

where

. Y;aD is a continuous semimartingale with YOOD = 0, with decomposition

1P =Y 45 (G (0, Fi(YD. - Fi(v)).
1=1
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o LY(F(Y)) is the I-dimensional local time of the continuous semimartingale Fy(Y) at
time t and level 0.

Proof : according to Property 3.1 and using the partition of unity above, we have for
z € D(R): Projg(z) = %) z + X5, ¢'(z) G* ([Fi(2)]t, Fi(z),---,Fi(z)). Since F* are
C? functions, (F;(Yé))tzo (2 < j < d) and ([F1(Y})]")e>0 remain continuous semimartingales

thanks to Ité’s formula for the first ones and Tanaka’s formula for the latter: because G*
are C? functions, we deduce that Proj5(Y;) is a continuous semimartingale. To obtain its
decomposition, we study coordinatewise. Denote Z; := Proj;(Y;) and fix j € {1,---,d}. First,
we have

k

iZjy = ¢°(%) dYe+ 3 ¢ () d(GL ([F()]F, Fi(Ya), -+, Fi(%y)))
=1
+Zz,td¢z Y2)) +Zd<¢’ ), Zj. >t
=0 =0
k
= $"(%) dYju + Y ¢ (V) d (G (R (O], FA (V) -, Fi(%2))) -
=1

since ¥ # =1 on Dg. Using d([F1(Y;)]T) =1 i (v)>0 A(F1(Y3)) + 5 dLY(F1(Y)) (see Revuz
and Yor, 1991), a straightforward computation with It&’s formula for C2 functions leads to

i

iz - zqsz S2OF(Y), - Fi¥) 5 dL(F(Y))

k d )
1 viep $00) Y41 ven 100 (3 G000 )

AR
— F'L Y F'L Y Fz Y
+2 lzzlm 1azlazm( (V1)) d < F{(Y), Fip (Y) >

j(o,Fé(n), o Fy(Yy) d(F/ (VL))

d d i ) . . .
2SS T (0, B, Fi(Y) d < (Y, (Y) >t> |

where we used that {F(Y;) <0} = {Y; ¢ D} and ¢°(V3) = ¢°(Y3) 1 y,ep-

The terms involving dLY(F,(Y)) can be identified with 1 n;(Y;) using Property 3.1. For
terms corresponding to 1vy,ep, we obtain dYj;, combining the simple fact that Y;; =
S ¢1(Y) Vi = 90(¥5) Vb Sy ¢°(¥0) G (Fi(Y2), F(Y¥2), -, Fi(Y¥s)) and a computation as
before. Terms with 1 y,¢/, can be rewritten vectorlally as YF 1 ¢'(Vy) d(G* (0, F3(Yy),- -+, Fi(Y2)))
= dY,?P. This completes the proof.



3 PROOF OF THEOREMS 2.1, 2.2, 2.3 AND 2.4 19

O

Remark 3.1 The restriction to some set D(R) is necessary to have Proj5(.) well defined. If
D is convez, R = +o0.

Remark 3.2 An other way to proceed is to show that the function z — Projp(z) is locally
the difference of convex functions: it is well known that these functions preserve continuous
semimartingales (see e.g. Bouleau, 1984). Rather than its semimartingale character, what is
of interest for our objective is to obtain a nice decomposition of Proj5(Y;). From this point of
view, the approach we had is simpler and has the advantage that we are able to interpret and
control quite easily the terms of the decomposition.

We now are able to deduce how to explicit (36).

Corollary 3.1 Consider a domain D of class C® with compact boundary (with the constant
R > 0 defined in Property 3. 1). Let (Yi)i>o0 be a continuous semimartingale, taking its values
in D(R) (with Yy € D). Let u(t,z) € C°(IRT x R%, IR) N CY?(IR* x D, R). We assume that
for t > 0, the support of u(t,.) is included in D.

Then, (u(t,Y:))i>0 is a continuous semimartingale, with decomposition

d
dw(t,Y) = 1viep oo, ¥) dit Zg—j(t,m ni(Ys) dLY(F (V)

d
ou
1 —(t,Y}) dY; Y: Y, .Y,
+1 viep <§8 (t,Y:) dYi i + 5 Zzawlé)xmt ) d<Y, m,.>t>
4 du
+1 y,¢p <Z 8—(t Proj;(Yt)) dY
=1
1 o
t (t, Projp(¥) d < Y22, Y, )
2 = = 0z

Proof : since u(t,.) vanishes outside D for all ¢ > 0, we have u(t,Y;) — u(0,Y)) =
u(t, Proj5(Y;)) — u(0,Proj5(Ys)). Now, combine Proposition 3.1 and classical Ito’s formula
to complete the proof.

O

Remark 3.3 If d = 1, Corollary 3.1 reduces to Ito-Tanaka’s formula (see Revuz and Yor,
1991).

Before proving Theorems 2.3 and 2.4, we state three technical Lemmas, the two last will be
proved in section 5.
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Lemma 3.5 Under (H1), (H2), (H3) and (H5-1), v is at least a CY2([0,T] x D, IR) function,
and there is a function K(T), such that for all multi-indezx o of length |a| < 2, we have

V(s,2) €[0,T]xD  |9%v(s,z)| < K(T) | £]I%"". (38)

Proof: apply the same arguments as for Lemma 3.4.

Lemma 3.6 Under (H1), (H2) and (H3), there is a function K(T), such that, for s € (0,T]
and ¢ € D, we have
K(T)

and Py (Xy) €D, X, ¢ D) < =

) K(T)
)< Ux

P, (Xg,(s) €D, X,¢D

o=
o=

Lemma 3.7 Under (H1), (H2) and (H3), there is a function K(T), such that, for z € D, we
have

By [LY s, (F1(X))] s% and By [LY,,, (Fi(X))] <

K(T)
—
We now are able to prove Theorem 2.3.

1 - Suppose first that f is continuous on D and satisfies (H4). Fix § > 0. Considering (11), we
obtain easily:

&q (f, T,z, h) = E, [] (R)<T<7y (XT)]
+ E; [U T A 73 ANF(R), Xrproni(ry) — v((T — 6) AFa AF(R), X(de)/\%d/\f(R))]
+ E, [’U T — 8) N Ta ANF(R), X(r—s)ntani(R)) — IU(OaXO)]
.= E\(N) + E2(65,N) + E3(6,N).

Observe that FE;(N) is exponentially small and is bounded by K (T') N~1/2 || f||s. For this, use
classical upper bound for large deviations probability (see Lemma 4.1 in section 4)

2

X, — XSH >77) < K(T)exp (—c%),

VzeRYy>0 ]Pw<sup |
t€[S,9']

for S and S’ two stopping times, bounded by T, such that 0 < §' — S < A. 3
From the continuity of v at ¢ = T (because f is continuous) and the continuity of X rz,1#(r),
we prove that lims_,o F2(d, N) = 0 using the Lebesgue dominated convergence Theorem.
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To complete the proof, it suffices now to show that

fllee 1
Yokt (39)

uniformly in §. For this, we apply It6’s formula from Corollary 3.1 with u = v, ¥; = Xt,\;( R)
between times 0 et (T" — §) A 74 A T(R). If we introduce the operator £, (see (12)) and if we
take into account that d;v + Lv = 0 in [0,T) x D, we easily obtain

|E3(5, N)| < K(T)

(T—=0)ATgNT(R) ~
E3((5, N) = Em l/() dt ]l XteD (L:Z’U — L’U)‘z:f(g,(t) (t, Xt)]

(T—0)ATgNT(R) 1 d ov ~ 0 oy
I, l/ 7 2 g X0 mlX) AL (X))
0 =1
ov
+Ea: 3

/(T—J)/\fd/\T( )

A (6, Projp(Xe)) 1 g,4p dX7/

. % vOD 0D
+ Z Z axla (t, Projp(Xe) 1 5,4p d < X2V, X050 >
= E4((5,N)+E5(<5,N)-|—E6(<5,N). (40)
Since dLY(F; (X)) is a non-negative measure, using inequality (22) and Lemma, 3.7, we deduce

1506, 3)) < <) Vo= g [y ()] < KB

(41)

uniformly in 4. Since X is an It6 process with adapted and bounded coefficients, X?P has the
same property (see Proposition 3.1). Hence, by using inequality (22) and Lemma 3.6, we have

17110 E, V(T_zs)mmm

‘E6(57N)| S K( )1/\62 0 ]thD dt

1/ lloo T K(T) ||flleo
1A €2 EZE /0 1 X o(t)ED thD dt \/N 1/\62’ (42)

uniformly in §. It remains to control E4(d, N). If ¢ is the cutting function introduced at the
beginning of section 3, we have

IN

K(T)

(T-6) -
Bi(6N) = I, [/ A1 5ep Vicrnrmy (Lo— Do, [(1-9) v](t,Xn]

+IE;

(T—6) -
/0 At g,ep 1 i<rini(r) (L; - L)|z:)2¢(t) [ v](t, Xt)]

= E:(6,N) + Es(6,N). (43)
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When we explicit £, — L, we can assert that for g, = B; or (00%); j, we have

(L:=D)l,ox,, (A=) o), X) = Y Ca d2[(1 =9 )o](t, Xe) [ga(Xe) — ga( X)) -

1<]al<2

Since (1 — 1) has support included in Vyp(e), derivatives of [(1 — 1 )v] are controlled by (22),
whereas the increments of X are estimated by ||| X; — (p(t)” rillzr < K(T) N=Y2, Tt readily
follows that

|E7(6, N)| < (44)

uniformly in §.
To control Eg(d, N), we need to transform its expression. Since Supp(¢y v) C D, we have

1 gep Viciunamy (Lo = Dl,_g , [ ](8, X))
= 1 p(t)<TyNT(R) (ﬁz - L)|z=)~(¢(t) W U] (t ATg N\ 7~'(R)a)zt/\fd/\%(lz))-

Hence, FE3(d, N) can be rewritten as
T—6 o .
Eg(6,N) = /o dt IEy []l o) <ini(R) (L2 — L)‘zﬂ?wm [¥ v](t ATa AT(R), Xt/\v'-d/\%(R))]

) tAT4AT(R) ~
-[ Cam [1 sty [ st L (L 0] = LY o (o Xs>] ,
7

by an application of Itd’s formula to X, between times ¢(t) et ¢t A 75 A 7(R), to the function
(L,[¢ v] — L[y v])(s,z) € CY2([0,T) x IR? IR): note that the term corresponding to ¢(t)
vanishes because L,u(z) = Lu(z). Since the coefficients of L and £ do not depend on ¢, we
obtain

T—6 t
Bs(5,N) = /0 a [, ds

P (1 scrnatmy (L0 Dol = LL06 o) + 9 Dol + L2 o])| (5. %)].
exploiting again 0yv + Lv = 0 in [0,T) x D. Verify that
(L[t Lv] — L2[L(3 v) + 4 L v] + L2[ v])(s,7) = 3 Jao ()02 v 03 (s, ),
laf < 4,lal + || < 4,
Yy=x,y==2

where the functions g, /(y) depend only on B;, (00*);; and their derivatives up to 4 — |a|.
From inequality (25) of Lemma 3.1, we deduce that

I flleo K(T)
1Aet T2

By |1 cni(r) (—L{ Lo] + L[L(3 v) + ¢ L v] — L[4 v])

. (s,X’s)] <

2=Xy (1)
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hence

[ fllse K (T)
1Nt N 7 (45)
uniformly in §. Combining estimations (41), (42), (44), (45) with (40) and (43), we prove that

estimate (39) holds: this completes the proof if f is continuous in D.

|Es(9, N)| <

2 - Suppose now that f is only measurable and satisfies (H4). Denote by u and [ the two
measures defined by IE;[1 7«, f(Xr)] := [f dp and IE, []I T<#, f()Z'T)] = [ f di. By a

density argument, f can be approximated in L'(x + i) by a sequence of continuous functions
denoted by (fp)p>0: moreover, we can impose that each function f, satisfies ||fplloo < [|f]]oo
and d(Supp(fp,0D)) > 2¢, so that the result for continuous function applies, uniformly in p.
This finishes the proof.

3 - Suppose that f satisfies (H5-1). In that case, the first and second spatial derivatives of v
are uniformly bounded (see Lemma 3.5). This enables us to proceed analogously to the case
1 (in this simpler situation, E4(d, N) can be directly bounded with the same arguments as for
E?(éa N)) :

O

For the proof of Theorem 2.4, the same reasoning applies. Note that F4(d, N) = 0 because
there is no approximation of the infinitesimal generator of the diffusion.
O

Remark 3.4 Actually, a slight change in the proof shows that the error corresponding to the
approzimation of L is negligible w.r.t. N—'/2: E4 (6, N) = o(N~/2). For this, consider the
cutting function 1 such that 1 v, (ean-+)72) S 1 =% <1y, ean-n). By writing (L,v — Lv) =
(1—14) (Lov — Lv) + 9 (L,v — Lv), show that the first contribution (corresponding to E7(d,N)
in the proof) is of order O(N(*"/2) whereas the second one (corresponding to Eg(6, N)) is of
order O(N'=87). The choice of v € (0,1/16) leads to the required estimate.

Remark 3.5 The analysis of the error presemted in the proof of Theorem 2.3 makes two
different type errors appear, which have interesting interpretations. On one hand, we make
an error by approzimating the diffusion process by its Euler scheme (term E4 (6, N)), but this
error is smaller than N~1/2 (see the previous remark). On the other hand, we make an error by
considering a discrete killing time instead of a continuous one (terms E5(6,N) and Eg(§, N)):
these terms give the rate of convergence N=Y2. In this sense, N~Y/2 is intrinsic to the problem
of discrete killing time.

4 Proof of Lemma 3.1

From the equality (9) and the estimate (10), we deduce

(s s K(T) dy oo Jy=al?Y (=l
B0(e.0) < S llo = /Supp(f)(T_S)% p( Z(T_S)) p( 2(T_8)>
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2 u T
< f e (Ki)laexp (—%) , (16)

— 35z
where we used for one of the two exponential terms that for y € Supp(f), we have ||y — z|| >
d(Supp(f),z). Hence, inequality (22) easily follows using d?(Supp(f),z) > €2 for z € Vyp(e)

2
and supy (%) “ exp (—c %) < 400 uniformly in e. Obviously, from (46), we also deduce

K(T)

V(s,2z) €[0,T) x D [95v(s, )| < f llo (47)

T—-3s 5

It now remains to prove the estimates (23), (24) and (25): actually, for s < T'/2, they are
obvious using (47). The difficult case is for T'/2 < s < T'. To handle this, following the approach
of Bally and Talay (1996a) for the approximation of IE,[f(Xr)], we use Malliavin calculus: it
needs particular treatment because of the characteristic function with the exit time. For this,
we adapt some techniques from Cattiaux (1991), Theorem 3.3. Furthermore, we need some
results concerning Malliavin calculus for elliptic It0 processes: they are proved by Kusuoka and
Stroock (1982). First, we briefly introduce the required material for the sequel (for a detailed
exposition, see Nualart, 1995).

4.1 Basic results on Malliavin calculus for elliptic Itd processes

Fix a filtered probability space (2, F, (F;),IP) and let (W;);>0 be a d'-dimensional Brownian
motion. For h(.) € H = L2([0,T], RY), W (h) is the Wiener stochastic integral fOT h(t)dW; .
Let S denote the class of random variables of the form F = f(W(hy),...,W(hy,)) where
f € CP(R"), (h1,...,hy) € H" and n > 1.
For F € S, we define its derivative DF' as the H-valued random variable given by

DF = zf: %(W(hl), o W (hn))hs.

The operator D is closable as an operator from LP(Q) to LP(2; H), for p > 1. Its domain is
1
denoted by ID'? w.r.t. the norm ||F|,, = [E|F|P + E(||DF|%)]? .
We can define the iteration of the operator D, in such a way that for a smooth random

variable F, the derivative D*F is a random variable with values on H®*. As in the case k = 1,
the operator D¥ is closable from S C LP(Q) into LP(Q; H®¥), p > 1. If we define the norm

k
; 1
IF Ik = [BIFPP + ) E(|DFllje,)]7,
j=1
we denote its domain by ID*P. Set D> = Np>1 Ni>1 Dk».
We associate with F' = (F1,...,F™) € (ID*®)™ its Malliavin covariance matrix, denoted by

YF = (’va’j)lgi,jgm, which is defined by 73/ =< DF',DFJ >p. A crucial tool of the theory is
the following integration by parts formula.
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Proposition 4.1 For F € (ID*°)™ such that its Malliavin matriz satisfies 'y;l € Mp>1 LP.
Let f € C°(IR™) and G € ID*. For any multi-index «, there is a random variable
H(F,G) € Np>1LP such that:

E[G 03 f(F)] = E[f(F)Hu(F,G)]. (48)

Now, we intend to apply such a result for F' = Y;, some It process (e.g. F' = Xy or F = X’t).
We restrict our attention on a specific class of elliptic Itd6 processes defined in the following
Proposition.

Proposition 4.2 Assume that assumptions (H1) and (H2) are satisfied.
Consider v, a map from IRY into IR™, satisfying the non-anticipative condition: 0 < v(s) < s
for any s. Let (Y}")i>o be the d-dimensional Ité process defined by

t ¢
V) ==z —I—/ B(Y(5) ds —I—/ o(Y(s)) dWs.
0 0

Then, fort > 0, Y} € ID* and for k > 1, p > 1, there is a function K(T') (which does not
depend on v), such that

sup || V() [lkp< K(T) (14 [|l]).

t€[0,T
The Malliavin covariance matriz of Y} is invertible a.s. and its inverse, denoted by '} belongs
to Nps1 LP. Moreover, we have

Il < (49)

uniformly in x and v.
Integration by parts formula : for all p > 1, for all multi-indez o, for s € [0,T] and t €
(0,T], for f and g any C,La|(ﬂ%d,ﬂ%) functions, there are a random variable Hy(g(Y), YY) € LP
and some function K(T) (uniform in v, z, s, t, f and g) such that

E. (07 f(YY) 9(Yy)] = B, [f (V) Ha(9(Yy), Y], (50)
with
B Holo(0), YIS < 50D gl 1)

Proof: these results are derived from Kusuoka and Stroock (1982). The estimates of
Sobolev norms || ||, are given in Theorem 2.19 and the inequality (49) is stated in Theorem

3.5. To obtain (51), combine Theorem 1.20 and Corollary 3.7.
O

Remark 4.1 Note that the choice v(s) = p(s) = sup{t; : t; < s} corresponds to Y = X;,
whereas v(s) = s corresponds to Y} = X;. Obviously, for the latter, to obtain (50), assumption
(H2) can be considerably weakened to some hypoellipticity conditions.

We now come back to
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4.2 Proof of the estimates (23), (24) and (25) for s > 7/2

We first prove the estimate (25). Let s > T/2. Set 7/ = 74 A 7(R). Since 1 ;o5 = 1 —
1 57 1 4557 — 1 55754, the term to estimate can be rewritten as

By (1 scrnemy 9(X0) 020 02915, Xs)| = BB, [9(Xy) 02w 029 (5, X,)]
~Ey [1om 1 i 9(%0) 03[0 02 )(s, X,)]
— By [1 51 (K1) 03[ 02 9](s, X))
.= By — By — Bs. (52)
Term Bi. Applying Proposition 4.2, we immediately obtain

[fllo BE(T) _ || fllo K(T)
LA o] slel/2 = 1A ¢le Tlal/2’

using estimate (51) and taking into account that s > 7'/2.

|Bi| = | B, [v(s, X,) 0 9(X) Ha (9(X0), X, ) || < (53)

Term By. Denote s’ = s — 75t =t —75t; =sup{t; 1 t; <7}t =0,t =tj31 —7 >0
and tg41 =ty + T/N for k > 1. Now, apply strong Markov property on (W;);>o at time 7/
((W,, = Wyys — Wi)y>0 is a new Brownian motion, independent of Fz/) to obtain

Bo= B, V3o 130 By, 5, ayw {90Y0) 0210 02 w6, o)}
where the index (X}:,X}j .11, T/N) refers to the law of the process (Y,)y>0 defined by

{ 0<u<it Yy=Xo+ [ BXy)dr+ [ o(Xy,) dW!,

> 4
u >t Y, = Y%I + jg: B(Yu(’r)) dr + fqu U(Yu(r)) dW; 3 (5 )

with v(r) := sup{# : & < r}. In other words, (Y4 ),>0 is an Itd process as defined in Proposition
4.2 (except that on [0,%;), the coefficients depend on F;_, but this slight modification does not
change the results). Hence

By, %, 5w 1900) 8l 8791 Ye) ) = By, 5, 5, myn {lv 0916, Ye) Halg(Ye), Yo) |
(55)
On one hand, using (51), there is a function K(T') (uniform in 7, X;;,%; and T/N) such that:

K(T
VR %, iy HHa(9(V0), Ye)} < S/ivg'

On the other hand, since v(t,.) 8% 4(.) vanishes on D¢ U Vyp(e/2) and Yy = Xz € D¢, we
deduce

\/EX%’ ’th Jt1,T/N {[U a%IQp]Q(ta YS’)}

[ £lloo
1A el

Il f 1l oo €?
LA el K(T) exp —CQ ,

IN

Clor, \/PX;'jtj,fl,T/N {IIYy — Yol > €/2}
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using the large deviation estimate from Lemma 4.1 below. By applying the Schwarz inequality
in (55), we conclude that

2

00 € 1 00
[B| < B 1H/]\c!a'| K(T) exp (“’8(3 —%/)> s —%’)|a|/2] < 1/|\|ga|||+a'| K(T). (56)

Term Bs. Analogous arguments apply and enable us to show

[
< _MJ loo
|B3| = 1A ela[+e] K(T)a (57)
which details we omit. Substituting (53), (56) and (57) into (52), this completes the proof of
(25) for s > T'/2.
For the proof of estimate (23), we note that for R = 0, one has 7(R) = 7. < 74, so that
estimate (25) with o/ = () can be rewritten as

I f lloo K(T)

1/\6'0‘ T% '

B, [1 o<, 9(X0) 320 (s, X)) | < (58)

On the other hand, using the definition of 1) and the estimates (22), we easily derive the following
upper bound

B, 1 scr. 9% 910 (1 — ), X)) < Lo Do ey, (59)

Now, estimate (23) obviously results from (58) and (59).
For (24), same arguments apply, we omit the details. Lemma 3.1 is proved.

Lemma 4.1 Let (Y;);>0 an Ité process defined by dY; = by dt + oy dWy, with adapted and
uniformly bounded coefficients. Let S and S’ be two stopping times upper bounded by T, such
that 0 < S' — S < A <T. Then, there are a constant ¢ > 0 and a function K(T), such that

2
Vn>0 1P| sup [|Y;—Ys|pa>n| < K(T)exp —.
te[S,5"] A

Proof: this Lemma deals with some classical estimates for large deviation probabilities.
There is no loss in considering that Y; € IR, up to dividing n by d.

Then, if n < 2 ||b]|c A, the estimation is obvious, since IP, (supte[s’sf] |Y; — Yg| > n) <
exp (c% — c%) <exp(4c|b|? T) exp (—C”A—Q) .

Ifn > 2 ||b|ec A, then IP (supte[sysl] |V — Y| > 77) <P (supte[sysf] fg os dWg| > 77/2) .
Apply the Bernstein exponential inequality for martingales (see Revuz and Yor, 1991, p.145)

to My = [} 1 S<u<s'0u AWy satisfying < M >p< “HUH%N’ lloo A to complete the proof.

O
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5 Proof of Lemmas 3.6 and 3.7

5.1 Proof of Lemma 3.6

Because the arguments we develop can also apply to X, we only sketch the proof for X , i.e.

V(s,z) € (0,T] x D IP, (X'w(s) €D, X, ¢ D) < % % (60)

If ¢(s) = 0, estimate (60) is obvious because IP, (Xs ¢ D) <1< \/%.
If ¢(s) > 0, we apply Markov property in ¢(s) and we directly obtain
v/ v/ v/
L2 []l Zomen Px,q, (HXS—‘P(S) — Xof| 2 d(XO’aD))]

d*(X y(s),0D) ) ]
5 —¢(s) ’

P, (X

IN

w(s)ED,X5¢D)

IN

K(T) E, l]l KpeD OXP (—c (61)

using Lemma 4.1 with A = s — ¢(s). To evaluate the last expectation, we exploit that the law
of X;(x) has a density p;(z,y) w.r.t. the Lebesgue measure on IR? and that moreover, there
are a constant ¢ > 0 and a function K(T'), such that

a2
Y(t,z,y) € (0,T] x R x R py(x,y) < I;SZ;) exp (—c’M) (62)

(see Kusuoka and Stroock, 1982, or Bally and Talay, 1996b).
In the case of D = {y € IR : y; > 0}, a straightforward computation involving Gaussian
densities leads to

B . dQ(Xw(s)aaD)>] K(T) (_ /Hx_yH2 _ y% )
= l] XoweD exp( = o(3) e R W= ielrmer

K(T) w exp (—(c/\c')x—%> ,

IA

S

which completes the proof in this case, taking in account (61) and that s — (s) < T N1

For the general case, we use Property 3.1 to map locally D as a half-space: in these maps,
d(y,0D) has a simple expression and this enables us to reduce to the first case. We omit the
details (see Lemma 3.4.5 in Gobet, 1998, for a detailed proof).

5.2 Proof of Lemma 3.7
We first prove the estimate for IF, [L‘% a7y (F1 (X ))] Tanaka’s formula yields

- - TATg -
3 Bhaa(B) = (B (Frasy )™ = (B@) ™+ [ 1 g0 dOR(RD)



5 PROOF OF LEMMAS 3.6 AND 3.7 29

Recall that {F(y) < 0} = {y ¢ D} (see Property 3.1). Since Fy(X;) is an Ité process with
bounded coefficients, by using Lemma 3.6, we easily deduce

By (L, (FL(X)] <2 By [(F1(Rraz,)) | + %

Now, it remains to bound IE, [(Fl (Xrps d))_]. Obviously,
~ N ~
B, [(Fi(Xrnz) 7| = 3 B [1 1=, (Fi(X))7]. (63)

i=1

Using {t; = 74} = {ti_1 < 74} N{Xs, ¢ D} and F; > 0 on D, we deduce
B [1 sy (R K)) ] = 2 [1 o, 5, [(RR2)) )] (64)
If we set 7, = inf{t > 0: X; ¢ D}, simple computation yields

D] = By, |1z (RX ))—}

-1 [] Fe<yyr

IN
N
g\x
A

2|8
Q
2| N

<yl @)

using classical estimates on the increments of Itd process with bounded coefficients. At last, we
state a technical (and interesting for itself) Lemma: we will prove it finally.

Lemma 5.1 Under (H1), (H2) and (H3), there is a function K(T), such that

P, (7. < u)

V(u,z) € (O %] x D IS]PZ(X'ugéD)

< K(T). (66)

Hence, using (64) and (65), we have IF, []l ti=7, (F (Xt,-))_] < N2 K(T) IPy (t; = 7a)

and by substituting into (63), we conclude that I, [(Fl (XT/\%d))_] < K(T) N~'/2 and the
proof is complete.
O



5 PROOF OF LEMMAS 3.6 AND 3.7 30

Proof of Lemma 5.1: this Lemma states an approximated reflexion principle (indeed, if X is
a linear Brownian motion and D = (—00,b), IP, (7. <u) =2 IP, (X'u ¢ D) for z < b).
Note that the lower bound in (66) is obvious. Let z € D and 0 < u < T//N. First, we have

PZ(%C<IU’):EZ(] ?c<u1P[Xu¢D/f7’c])+Ez (]l ’Fc<uP[Xu€D/~7:7’c])' (67)

Now, we observe that it is enough to prove that on {7. < u} we have

- 1
) > ——
P(X,¢D/F) > R (68)
for some function K(7'), which does not depend on F; and u. Indeed,

N i ~IP(X,¢D/F;,
P(%.cD/F) =P (% ¢ D) F) [1P(}§ ;/;))]

<K P(Xu¢D/Fr),

and by substituting in (67), this ends the proof of (66), noting that IP, (Tc <u, X, ¢ D)
P, (X'u ¢ D).

To show that (68) holds, the basic idea is to bound from below P (X'u ¢ D/ .7-";6) by IP (X'u ek/ .7-";0),
where K is a truncated cone included in D¢: this technical fact is used to prove Zaremba’s cone
condition for the Dirichlet problem (see e.g. Karatzas and Shreve, 1988, p.250).

Let us define the cone K(s,w,6) with origin s € IR?, direction w € IR*\{0} and aperture
0 € (0,7) by K(s,w,0) :={y € R* : (y—s).w > |y — s|| [[w|| cos(6)}. Let B(s,r) be the ball
with center s € JR? and radius r > 0. Since D satifies an uniform exterior sphere condition, it
satisfies also an uniform truncated exterior cone condition, i.e. for all 8 € (0,7/2), there is a
radius R(6) > 0 such that

Vse dD K(s,—n(s),0) N B(s,R(0)) C D¢

(recall that n(s) is the unit inner normal at s). Set § = 7/3 et denote R’ = R(7/3). Using an
explicit lower bound for the Gaussian density of X, conditionally on F; , we easily obtain

P(X,¢D/F,) > P(X €K (Xn,—n(Xz),7/3) N B (Xx,R) | Fz,)
1
K(T)

1 - - - Y. 2
{(y—X2.)-(—=n(X5,))>|ly— Xz, || /2} ly — Xz||

> C C c - @@= =
- K T) / X'r aR,) dy (u - %C)d/2 exp ( c (u - ;fc)

> et oo e W s oo (121
= K@) Jpoz) ™ W&z ) c )

using a simple change of variables. To conclude, use the spheric symmetry and v — 7, < T'.
O
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To estimate IF, [LOT/\Td (F1 (X ))], we proceed in a very similar way. To prove analogous

estimate to (68), we use the following lower bound for the density p,(s,y) of the law of X, (y)
(see Aronson, 1967):

1 Is —ylI*
puls,y) > K@) aiiz P (— u )
O

Remark 5.1 If we think of local time in terms of the number of crossings, the statement of
Lemma 3.7 IE, [LOT/\%d (Fy (X'))] o« N~1/2 is not surprising. Indeed, for some process, we know
that its number of crossings of level 0 renormalized by C N~Y/2 converges in probability to its
local time at 0, under some conditions (see e.g. Azais, 1989). Here, the number of crossings of

F1(X) at time T A 74 equals 0 or 1: hence, heuristically LOT,\;d (F1(X)) is of order N='/2.

6 Extensions

Some interesting situations are not covered by the compactness assumption on 0D in (H3).
In fact, this is a technical hypothesis which we use to go from a local description to a global
one. It can be relaxed if D is limited by one or two parallel hyperplans, for example.

The boundedness hypothesis on f in (H4) can be weakened to |f(z)| < Cexp(c|z|): since
the coefficients of (1) are bounded, classical exponential estimates enable us to replace ||f |00
by C exp(c|z|)-

For each Theorem of this paper, the C* assumptions on B, o and D can be weakened to
Cf on B, ¢ and C* on D, for suitable integers k and k’. Being a little careful, we can show
that Theorem 2.1 holds with k = k' = 7, Theorem 2.2 with k = 3 and k' = 5, Theorems 2.3 and
2.4 for f satisfying (H4) with k = k' = 5, Theorems 2.3 and 2.4 for f satisfying (H5-1) with
k=2and k' = 3.

In the 1-dimensional case, to obtain Theorem 2.2, it is sufficient to assume that f|sp =0
and f € Cg’(ﬁ, IR), instead of slightly stronger vanishing conditions for f at the boundary
under (H5). Because d = 1, the estimates we can derive for the explosion of derivatives of v
when t — T are more tractable than those derivable in higher dimensional cases (see Gobet,
1998, for details). These techniques enable us also to prove that & (f,T,z, N) = O(N~/?) if
f € CL(D, R) without conditions on dD.

Instead of (H2), we can also consider hypoellipticity assumptions on L, with a non-characte-
ristic boundary condition: in that case, we may extend Theorems for measurable functions with
support strictly included in D. Indeed, estimates like (10) remain valid (see Cattiaux, 1991).
Actually, the main difficulty comes from the proof of Lemma 3.1, because the law of X; may
be degenerate (i.e. we can not directly apply the integration by parts formula): nevertheless, it
is possible to handle this case, using perturbation and localization on the Malliavin covariance
matrix of X; (see Bally and Talay, 1996a).

Following the approach of Bally and Talay (1996b), the choice of f as an approximation
of the identity permits also the analysis of the approximation between the transition densities
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of the two killed processes. An adaptation of Lemma 3.1 (to obtain estimates involving ||F||so
instead of || f||oo, where F' is the cumulative of f) proves that

i 1 K(T z —y)*
V(z,y) e DX D |gr(z,y) — ¢r(z,y)| < N T2 i /\(d;D(y))q exp (—c%) ;

for some positive constants ¢ and ¢, where ¢r(z,y) is the transition density of the killed con-
tinuous Euler scheme. The term (1 A dyp(y))? is related to the condition d(Supp(f),dD) > 2¢
from Theorem 2.1.
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during the preparation of this work.

References

[1] D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bulletin of the
American Mathematical society 73 (1967) 890-903.

[2] J.M. Azais, Approximation des trajectoires et temps local des diffusions, Ann. Inst. Henri
Poincaré 25-2 (1989) 175-194.

[3] P. Baldi, Exact asymptotics for the probability of exit from a domain and applications to
simulation, The Annals of Probability 23-4 (1995) 1644-1670.

[4] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: I.
Convergence rate of the distribution function, Probability Theory and Related Fields 104-1
(1996a) 43-60.

[5] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: II.
Convergence rate of the density, Monte-Carlo Methods and Appl. 2-2 (1996b) 93-128.

[6] N. Bouleau, Formules de changement de variables, Ann. Inst. Henri Poincaré 20-2 (1984)
133-145.

[7] M. Broadie, P. Glasserman and S. Kou, A continuity correction for discrete barrier options,
Working paper, Columbia University (1996).

[8] P. Cattiaux, Calcul stochastique et opérateurs dégénérés du second ordre - II. Probléme de
Dirichlet, Bull. Sc. Math. 2éme série 115 (1991) 81-122.

[9] C. Costantini, B. Pacchiarotti and F. Sartoretto, Numerical approximation for functionals
of reflecting diffusion processes, STAM J. Appl. Math. 58-1 (1998) 73-102.

[10] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall (1964).



REFERENCES 33

[11] A. Friedman, Stochastic differential equations and applications, volume 2, Academic Press,
New York (1976).

[12] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order,
Springer Verlag (1977).

[13] E. Gobet, Schémas d’Euler pour diffusion tuée. Application aux options barriére, PhD
Thesis Université Paris 7 Denis Diderot (1998a).

[14] E. Gobet, Schéma d’Euler continu pour des diffusions tuées et options barriere, C.R. Acad.
Sci. Paris Série T 326 (1998b) 1411-1414.

[15] E. Gobet, Schéma d’Euler discret pour diffusion multidimensionnelle tuée, C.R. Acad. Sci.
Paris Série I 328 (1999) 515-520.

[16] I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, Springer Verlag
(1988).

[17] T.G. Kurtz and P. Protter, Wong-Zakai corrections, random evolutions and numerical
schemes for SDEs, in Stochastic Analysis, Academic Press (1991) pp. 331-346.

[18] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus I, in: K.It6, ed.,
Stochastic Analysis, Proc. Taniguchi Internatl. Symp. Katata and Kyoto 1982, Kinokuniya,
Tokyo (1984) pp. 271-306.

[19] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasi-linear equations
of parabolic type, Vol.23 of Translations of Mathematical Monographs, American Mathe-
matical Society, Providence (1968).

[20] B. Lapeyre, E. Pardoux and R. Sentis, Méthodes de Monte-Carlo pour les équations de
transport et de diffusion, Vol.29, Mathématiques et Applications, Springer (1998).

[21] D. Lépingle, Un schéma d’Euler pour équations différentielles stochastiques réfléchies, C.R.
Acad. Sci. Paris Série T 316 (1993) 601-605.

[22] M. Musiela and M. Rutkowski, Martingale methods in financial modelling, Springer Verlag
(1998).

[23] D. Nualart, Malliavin calculus and related topics, Springer Verlag (1995).

[24] D. Revuz and M. Yor, Continuous martingales and brownian motion, Springer Verlag
(1991).

[25] D. Siegmund and Y.S. Yuh, Brownian approximations for first passage probabilities, Z.
Wahrsch. verw. Gebiete 59 (1982) 239-248.

[26] D. Talay and L.Tubaro, Expansion of the global error for numerical schemes solving
stochastic differential equations, Stochastic Analysis and Applications 8-4 (1990) 94-120.



