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Abstract

In this paper, we address the problem of the validity of the Local Asymptotic Mixed Normality
(LAMN) property, when the model is a multidimensional diffusion process X whose coefficients
depend on a linear parameter 6: the sample (Xj/,)o<r<n corresponds to an observation of X at
equidistant times of the interval [0,1]. We prove that LAMN property holds true for the likeli-
hoods, under an ellipticity condition and some suitable smoothness assumptions on the coefficients
of the stochastic differential equation. Our method is based on Malliavin calculus techniques: in
particular, we derive for the log-likelihood ratio a tractable representation involving conditional
expectations.
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1 Introduction

Let P? be the law of the R¢-valued diffusion process
t t
X0 =z +/ b(0,s, X?) ds +/ 5(0,s,X?) dB, (1.1)
0 0

for t € [0,1], where B is a d-dimensional Brownian motion, z is fixed, b and S are known smooth
functions of (6,¢,z). 0 is a linear parameter which belongs to ©, an open interval of R. In this paper,
we focus on the case where S is non degenerate.

We are interested in an estimation problem when we observe X at n regularly spaced times ¢, = k/n on
the time interval [0, 1]: asymptotics are taken when n goes to +o0o. In this setting, exhibiting suitable
contrasts, Genon-Catalot and Jacod [4] explicit consistent estimators 6,, of 6. Furthermore, they
prove the weak convergence at rate y/n of their renormalized error v/n(, — 6;) to a mixed Gaussian
variable. An other interesting issue is to know if these estimators are asymptotically efficient: in
some way, this is related to the Local Asymptotic Mixed Normality (LAMN) property, which we
now recall (see e.g. Le Cam and Yang [9] chapter 5). If 7, = 0(X;, : 0 < k < n), we denote the
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restriction of P to F, by P, and the log-likelihood ratio of P? w.r.t. P% by Z,(6,8). The sequence
(RHY™, Fr, (P?)geo) of statistical models has the LAMN property for the likelihoods, at g, at rate
v/n and conditional variance I'(6y) > 0 if

Z3 (00,00 + u/v/n) = u Ay /T'(00) — u; I'(6o) + Ry

6 4
with R, % 0 and (A, T(6)) L(ﬂf) (A,T(6p)), where A ~ N(0,1) is a Gaussian variable, inde-
pendent of I'(§y). When the LAMN property holds true for the likelihoods, one can apply minimax
theorems (see Jeganathan [6] [7]) and derive, in particular, lower bounds for the variance of estimators.

In this paper, we intend to prove the validity of the LAMN property for the likelihoods at rate 1/n, for
the model (1.1), if the diffusion coefficient S is non degenerate, under suitable smoothness assumptions
on b and S. The result is new in a multidimensional setting, even if it is not surprising, since the
estimators exhibited by Genon-Catalot and Jacod [4] satisfy the LAMN condition.

Actually, the 1-dimensional case has been considered by Donhal [2]: its proof relies on a good expan-
sion of the transition probability density p? of X. Unfortunately, in higher dimension (except for some
specific cases, see Genon-Catalot and Jacod [3]), the well-known expansions of p? (see e.g. Azencott
[1]) are not sufficient to adapt Donhal’s proof.

To get the expected result, we adopt a new strategy. The first step consists in transforming the log-
likelihood ratio Z,(6y, 60y + u/+/n) using Malliavin calculus integration by parts formula: we derive
a representation of Z,, as a sum of conditional expectations (see Proposition 4.1). The second step
is to get an appropriate convergence result to analyze the weak convergence of this kind of sum: in
Corollary 4.1, we give simple conditions to achieve this purpose. Finally, simple expansions of the
conditioned random variables yield the result.

The Malliavin calculus approach we develop here is quite general and seems to suit well to the study
of the likelihoods: the case of degenerate coefficient diffusion (with hypo-ellipticity conditions) may
be treated in the same way. Furthermore, presumably, this approach may also enable to handle non
Markovian situations, s.t. hidden diffusions or stochastic differential equations with memory: this will
concern forthcoming papers.

The paper is organized as follows: in section 3, we briefly introduce the material necessary to our
Malliavin calculus computations. Section 4 is devoted to the proof of the result: the main steps are
the representation of Z, (6, 6y + u/+/n) involving conditional expectations (Proposition 4.1) and the
weak convergence of these kind of expectations (Corollary 4.1). An intermediate technical result is
proved in section 5.

2 Assumptions and results

Let © be an open interval of R. We consider b (resp. S) a map from © x [0,1] x R? into R? (resp.
into RY ® R%). As usual, the derivation w.r.t. @ (resp. w.r.t. space variables) is denoted with a dot
(resp. with a prime). In the sequel, we assume that the two following hypotheses are fulfilled.

Assumption (R): the functions b(0,t,z) and S(6,t,z) are of class C'** wrt. 6 (o > 0). The
functions b, S, b, S, b’ and S’ are of class C1? w.r.t. (¢,z). Moreover, all these functions (and their



derivatives) are uniformly bounded on © x [0,1] x R4,

Assumption (E): the matrix S is symmetric, positive and satisfies an uniform ellipticity condition
V(0,0,2) €O X [0,1] X RY  fimmin Ta(2) < 52(0,4,) < fima Ta(2)
for some real numbers 0 < tmin < tUmaz < +00.

Let (By)1>0 be a standard Brownian motion in R¢ (with (Gi);>o its usual filtration) and (X{);>0 be
the inhomogeneous diffusion process, which solves

t t
X! =z + / b9, s, X%) ds + / 5(0,s,X%) dB,. (2.2)
0 0

In the sequel, the indices 6, s,z in ]Eg’m stand in reference for the expectation under the law of the
diffusion XY starting at z at time s.

Remark: our study is restricted to a linear parameter: actually, there is no additional technical
difficulties to deal with multidimensional parameters, it is simply more cumbersome to write down.
Here, the true difficulty comes from the fact that the process takes its values in R¢.

Fix 6y € ©. For n € N*, we now consider the sample (X;, )o<x<n of the diffusion X observed at
equidistant discretization times ¢y = k/n on the interval [0,1]. For u € R, we introduce the log-
likelihood ratio

z0+u/\/ﬁ
Zn (60,60 +u/+/n) := log (W) (XO;Xl/na e, X)) (2.3)

n

The main result of the paper is the following Theorem.

Theorem 2.1. Under (R) and (E), the LAMN property holds for the likelihoods in 6y, i.e. there is
an extra Gaussian variable A ~ N (0,1) independent of Gy s.t.

£(Pb) u?
Zn(60,00+u/\/ﬁ) —" u +/T(6y) A — ?1‘(90)
where T(6p) =2 [ Tr($51)2(6o,t, X{°) dt.

The remainder of the paper is devoted to its proof: the first step of our approach consists in trans-
forming the log-likelihood ratio using Malliavin calculus techniques, to obtain a simple and tractable
representation of the ratio Z,(6o,0 + u/+4/n), as a conditional expectation. We first introduce the
material necessary to these computations.

3 Some basic results on the Malliavin calculus

The reader may refer to Nualart [10] for a detailed exposition of this section.



Fix a filtered probability space (2, F, (F;),P) and let (W});>0 be a d-dimensional Brownian motion.
Fix T € (0,1]. For h(.) € H = Lo([0,T],R?), W (h) is the Wiener stochastic integral fOT h(t) . dWy .
Let S denote the class of random variables of the form F' = f(W (h1),... ,W (hy)) where f € C3°(RY),
(h1,... ,hn) € HY and N > 1. For F € S, we define its derivative DF = (DtF) 0,17 as the H-valued
random variable given by

N
DyF = Z amzf(W(hl)a s aW(hn)) hz(t)

i=1

The operator D is closable as an operator from L,(€2) to L,(Q2, H), for any p > 1. Its domain is

denoted by D'? w.r.t. the norm ||F|, = [E|F|P + IE(||’DF||’;{)]1/p. We can define the iteration of
the operator D, in such a way that for a smooth random variable F, the derivative DFF is a random
variable with values on H®*. As in the case k = 1, the operator D* is closable from S C L,(f) into
Ly(Q H®F), p > 1. If we define the norm ||F||x, = [E|F|P + 35 E(|DIF|% ;)]'/?, we denote its
domain by D,

One has the chain rule property:

Proposition 3.1. Fiz p > 1. For f € CL(RY,R) and F = (Fy,--- ,Fy) a random vector whose
components belong to DP f(F) € D'P and for t > 0, one has

d
Dt(f(F)) = Zawzf(p) Dy F;.

We now introduce §, the Skorohod integral, defined as the adjoint operator of D:

Definition 3.1. § is a linear operator on L2([0,T] x Q,R?) with values in La(Q) such that:

1. the domain of § (denoted by Dom(0)) is the set of processes u € Ly([0,T] x Q,R?) s.t.

T
VF € DY?, ‘IE (/ D.F . uy dt)
0

2. if u belongs to Dom(¢), then 6(u) = fOT ug OWy is the element of La(2) characterized by the
integration by parts formula

< c(u) [|Fl2-

VF € DY2, E(F é(u)) =E (/OT DiF . uy dt) : (3.4)

In the following proposition, we sum up some of the properties of the Skorohod integral:

Proposition 3.2.

1. The space of weakly differentiable H-valued variables DY2(H) belongs to Dom(J).



2. If u is an adapted process belonging to Lo([0,T] x Q,R?), then the Skorohod integral and the Ito
integral coincides:

T T
0 0
3. If F belongs to DY2, then for any u € Dom(6) s.t. IEI(F2 o U7 dt) < +oo, one has

S(F u) = F o(u / DiF .y dt, (3.6)

whenever the r.h.s. above belongs to Lo(S2).

4. For u belongs to D*2(H), D and § satisfy the following commutativity relationship:
T
D) =i+ [ Difu) 6W.. (37)
0

5. The operator § is continuous from DFP(H) into DF~YP for all k > 1 and p > 1. In particular if
k=1, forp>1, one has

16(w)llp < e (lullr,(0,m) + 1Dullz,0,mem)) - (3-8)

At last, we recall the Clark-Ocone’s formula.
Proposition 3.3. Any random variable F € DY2 has the integral representation

F =KEF) + /TIE(DtF | Fy) . dW;.
0

4 Proof of the LAMN property

4.1 Transformation of Z,(6y, 6y + u/y/n) using Malliavin calculus

Under (R) and (E), the law of X{ conditionally to X? = 2 (¢ > s) has a strictly positive transition
density p? (s,t,z,y), which is smooth w.r.t. € (see Proposition 5.1). Thus, the Markov property enables
us to write

Bo+u/v/n 0
Zn (00,00 + u/v/n) = Z / o 0kt X, X ) . (4.9)

50
We now derive a new expression for i—g(tk, tr + T,x,y) as a conditional expectation, using Malliavin
calculus. For this purpose, let us consider, in all this paragraph, the solution of (2.2) starting at x at
time #;, i.e. the R%-valued process denoted (X b +t)t>0 solving

t d t
X} =z+ /0 b0tk + 5, X7 ) ds + Z/O Si(0,tk + s, X7 1) AW, (4.10)



where S; is the j-th column vector of S, (W;);>0 a new Brownian motion with its usual filtration
(Ft)i>0 (W corresponds to the shift of B at time #;: even it depends on k, we omit to specify it
because there will be no possible confusion in the sequel).

We associate to (X{ 1 4)e>0 its flow, i.e. the Jacobian matrix Y := V,X? ., and its derivative w.r.t.
6 denoted by X7.

Remark. Our notation with ka 44, Y2 and X are not homogeneous w.r.t. the time variable: deno-
ting ka +¢ by Xta would have been convenient at this stage of the proof, but nevertheless, the notation
with ka 1¢ will be clearer for the next computations.

Under (R), it is clear (see Kunita [8]) that Y} and X! solve
t d_ ot
Y = 1.+ / V0, tk+ 5, X)) Y ds+) / Si(0,tk + 5, X7, 1) YO dW
0 — Jo
7j=1
t . .
X! = / (b(a,tk +5, X0 o) H (0, + 5, X7 1) Xf) ds (4.11)
0
a st .
+ Z/O (Sj(o,tk +8,Xp 4s) + S50, 8, + 5, X)) Xf) AW s.
j=1

For any ¢ > 0, the random variables ka s Y}a and Xto are weakly differentiable: actually, one has
ka+t € Mp>1 P Yy € Mp>1 D?P, XY € Np>1 D?P, with the following estimates

for j =1,2,3, sup K o sup ||Dr1,---,rijk+t||p) <e, (4.12)
1,1 €[0,T TV Vr <t <T
for j =1,2 sup sup D Y”II”) <c (4.13)
<y k »T T1y Tt = & .
Py, €[0,T] PV <t<T
for j = 1,2, sup By, 4 sup Dy, X7 ||p) <e, (4.14)
r1, €0, PV <t<T

for some constant ¢ (uniform in z, k, @ and T < 1). Finally, Dstk 14 is given by:

szfk =Y (YHTIS0, 4 + s,ka +s) Ls<te (4.15)

S

Proposition 4.1. Assume (R) and (E). Set T > 0. For 1 < i < d, let us define uf = (uf )o<s<r

’

the R -valued process whose j-th component is equal to ufj,s = (S_I(G,tk +s,ka+S) 9 (Yﬁ)_l)i’j.
Then, one has

-0
p
_a(tkatk +T7'T7y) = Z
=1

1 .
T Egk T [5(XZT “f) / ka+T = y] . (4.16)

=



Proof. Let f and g be two smooth functions with compact support. One has
- [0 g0 Bl [0
= _/ e 91(0) / dy pa(tkatk + T,x,y) f(y)
© R4
= [dv90) [ dys (et + ) S0,
e Rd

[ a0 90 B, L [1(xh ) 4]

where we used a simple integration by parts in two different ways. It remains to prove that

d
B, o [VI(Xar)  X0] = S0 B, [0 ) 60 )] (417
i=1
Indeed, the proof of Proposition 4.1 now can be easily completed by comparing both expressions
obtained for — [ df ¢'(6) w[f( thrT)]
The derivation of the formula (4.17) for Et SV I(XE, +T) X%] is based on the duality relationship (3.4)
between D and . First, the chain rule (Proposmon 3.1) leads to D; (f(Xf 7)) =D XfHT Vi( tk—f—T):
fors <T, ’Dst s =YL (YO 7186, ti+s, th+s) is invertible, so that 0y, f( tk+T) Ds(f(ka+T)) uf’s.
Then, it follows that the Lh.s. of (4.17) is equal to

Z . [/OT awif(XfHT)Xf,Tds] = [/ Dy(f(X] 7)) - (X,Tuzs)ds]

= z % B, o [F(X0,02) 80 o)
=1

by the relation (3.4). This completes the proof of Proposition 4.1.

4.2 About the convergence of a sum of conditional expectations

Owing Proposition 4.1 and the equality (4.9), Z, (60,00 +u/+/n) is represented as a sum of conditional
expectations. To analyze its convergence, we need an appropriate convergence result: this is the
statement of Corollary 4.1 below. To prove it, we first state an intermediate result, which proof is
postponed in section 5.

Proposition 4.2. Assume (R) and (E). Fiz T > 0. Let us consider H, a Fr-measurable random
variable. For any 6 € © and any & > fimaz/ min, one has

IA

¢ (8, 1m) ", (4.18)

c16—0of (&, 1), (@19)

O, 0 4 [
B B, o [1H| ) X0z = X0,

‘ ( L [H/th+T Xf,fw]) Ef, [H]‘

for some constant ¢ uniform inx, k, @ and T < 1.

IA

The next result is our basic tool to analyze the convergence of the sum of conditional expectations.



Corollary 4.1. Let (Hy, )o<k<n—1 be F1/n-measurable random variables, which satisfy, for some a >
Emaz [ Bmin, the conditions

_ 1/2a _
B, o [Hy] =00 and (B, [H,[2°) " = 0™
uniformly in x, k and 0. Then, under (R) and (E), one has

fotu/vn 9 9 P%
3 /H nE, x, [Htk /XD, = th+1] a9 =% 0.
k=0 "0

Proof. Set { = 0°+u/\/_ k,Xt [Htk /Xtek_,_l = th+1] df: these are Gy, -measurable random
variables. Using Prop051t10n 4.2 and the conditions of the statement of Corollary 4.1, it is easy to
check that E% [¢0 / G, ] = O(n3/?) and E% [(€M)? / Gt] = O(n™?), uniformly in k. We complete the
proof, applying the following classical convergence result about triangular arrays of random variables.
Lemma 4.1. (Genon-Catalot and Jacod [4], Lemma 9). Let &, U be random variables, with &
being Gy, ., -measurable. The two following conditions imply Zz;é & Su:

n—1

n—1
SEE /G BU  and S E[ED)? /G, S0
k=0

k=0

4.3 Convergence of Z, (0,0, + u/\/n) under P%
From the equality (4.9) and Proposition 4.1, one deduces that

d n—1 00+u/\/ﬁ

Zn (80,60 + u/v/n) = ZZ/

i=1 k=0

W, x, [J(X01 wh) [ XD, = X, | d0. (4:20)

U

The remainder of the proof consists in expanding ¢ (XfT u¥) into few random variables M; ;. (corre-

sponding to the main term) and Hz(t) , these ones satisfying the two conditions Ef [Hz(lt)k] =0(n?)

1/
| ) = O(n=3/?) for all @ > 1, uniformly in z, k, #. Thus, by Corollary 4.1, we

conclude that their contributions converge to 0 in P%-probability:

and (]Et |H(l

2ytg

Oo+u/v/n ,
! PY
/ n E?k,xtk [Hft)k /XD, = th+1] do — 0.

=0 90
Set 4f = (ak , .- 4k )* ith =(S1);:(0,tp +1t, X? Since 4F is adapted, §(4%) i
et (ull,t, ’uzd,t)0§t<1/n wi umt ( )i (0.t + 1, tk+t)- ince 4, is adapted, (a;) is
simply an Ito integral (see (3.5)), i.e. 3, fl/n Afj AW ;. Using (3.6), we deduce that



. 1/n
XKy wl) = Xy 0) = | DiXlyyy - uby dt
1/n 1/n .
= (Y Si (0, +ty, X7 L )dAW;, | S(af) — DXY, . af, dt
. 0 0

. d 1/n
Ko _Z/o S (0,1 + ths Xiy )Wy | 8(3)
=1

: 1/n
+ X[ O(uf —af) - /0 (DiX]) ) - ufy — Do XYy - afy) di
1 1 2 3
= Mi(,t;)c - Mz(t;)c Hz(ti Hz(ti Hz(ti (4.21)

4.3.1 Main contributions

Let us denote AX,? = ka+1

— XJ and AXy = Xy, — Xy

a) Terms Migi: since S is invertible, it readily follows

k"

dw, = SO, te+t, X7 ) dX]  — S N0, t +t, XP ) b0t +t, XP ) dt
= S_l(aatkaka)dek—f—t
+(Tg — S7H0, 1, X7) S (0, 1, + t, X, 1)) dWi — S7H0, 15, X1,) b(0, 5 + 1, X7, 1) dt.

Thus, easy computations using standard Ito calculus techniques yield

d 1/n
1 - _
MY = [ 3 80,4, X0) /0 (571 (6,1, X0 )dX0,,

jm=1

d 1/n
( Z (S_l)i,j(O,tk,XtHk)/o (Sl)j,m(o,tkaka)den,tk—kt) +Hz(;7151

jm=1

m=1 m=1

d d
= (Z(SS_l)i,m(O,tk,ka)Aan,k> (Z(S‘z)i,m(e,tk,ka)AXﬁl,k) +H§ji (4.22)
1/
with Et [ 2(2] =0(n7?), (Et ] ztk| ) / = O(n=3/?) for all & > 1, uniformly in z, k, 6.
b) Terms Mz-(jl)c: we first deduce from (4.11) that ('DtXft)] = S;;(0,t) + t,ka_,_t) + (S;(0, ty +

t, ka +1) X7, so that it readily follows that

d 1/n , . .
M = Y /0 (8106, te + 1, X0, 40) + (S10, i+ £, X0, 1) X0);) (57 1i (0,6 + 1, X0, ) dt

i=1

d
1 . Y o—1
= > Si(0,tk, Xp)(S7Nig (0,1, X7,) + HYY) = <ss Dia(0,te, XE) + H), (4.23)

4yt ?



)

with the required estimates on the mean and the L,-norms of H (t
contribution in Z, (6o, 00 + u//n).

to ensure that it gives a negligible

4.3.2 Negligible contributions

It consists in verifying that for [ = 1,2, 3, one has IEt [ z(t)k] = O(n?) and ( 2l ztk| > =
O(n -3/ 2) for all o > 1, uniformly in z, k, §. We only sketch the proof of these estimates.

a) Terms Hi(jfi : remind that §(a¥) is an Ito integral, so that standard Ito’s calculus enables to prove
the required estimates.

b) Terms Hﬁi the Lo-norms of order 7 3/2 can be directly obtained using ||X1/n||17 = O(n 1/?)
and the inequality (3.8) combined with the estimates (4.12), (4.13).

To get the O(n~2)-estimate for the mean, first transform the random variable 6(uf — 4¥) € DY? into
an Ito integral owing Clark-Ocone’s formula (Proposition 3.3), taking into account the relatlon (3.7),
and then, use Ito’s calculus combined with the estimates (3.8), (4.12) and (4.13).

c¢) Terms Hi(’?;i: it is enough to prove that Dthl/n . uf’t—DtXZt “ft = tl/"( ds—l—ftl/n ) dWs,
with adequate L, controls on the adapted integrands. For this, if we put X; = (X{, X{) (this is a
R24_valued diffusion process), note that Dy X; /n = Y; /n(f@)_lﬁ (0,tr +t, X;) (see equality 4.15), where
V (resp. §) is the flow of X (resp. its diffusion coefficient): thus, Dthl/n . uf,t — Dtht . ﬁﬁt can be
decomposed using Ito’s formula between ¢ and 1/n.

4.3.3 End of the proof of the LAMN property
Plugging (4.22), (4.23) into (4.21) and (4.20), we have proved that Z,(6y, 0y + u/+/n) is equal to

d n=l .fotu/y/n a_ 4
ZZ/Q [ (Z(SS_l)i,m(o,tk,th)AXm,k) (Z(s—Z)i,m(e,tk,th)Aka)

1=1 k=0 m=1 m=1
) n—1
~(8871)i(0tk, X)) | A0+ B i= > &4+ Ra
k=0

with 5k = [tV [ (SS™1)(0, tr, X4y ) AXk.(S72) (0, th, Xy ) AXy — ﬁ(SS—l)(o,tk,th)] df and
R, 2%, Now, if one sets I'(6y) = 2 fol Tr(8S 1)2(0g,t, XP0) dt, it is easy to check that

n—1 n—1

]P>9
STER L / 6] T —u? T(00)/2, S EP[E / Gul - (B (& / G))* = v’ T(60),
k=0 k=0
n—1 P n—1 Po
ZEQO [fl?: / Gyl =0, ZEQO €k AWjk / Gu) =0
k=0 k=0
for j =1,---,d. Hence, we complete the proof of the result using a central limit theorem for triangular

arrays of random variables (see Jacod [5] Theorem 3-2).
O

10



5 Proof of Proposition 4.2

We first state some preliminary estimates about the transition density of X9 For p > 0, we denote
by G, (t,z,y) the density transition of the scaled Brownian motion (z + f Wi)i>0, i.e. the Gaussian

kernel G (t,z,y) = (2 7 t)~%2 p4? exp (—p |ly — z|?/2t) . The density p’(s,t,z,y) satisfies the
following estimates:

Proposition 5.1. Under (R) and (E), for any p1 and pe s.t. p1 < pmin < Pmaz < W2, there exists
c>0 s.t.

1
E GM2(t_Sa$ay) S pa(s,t,x,y) S CGMl(t—S,.’L',’y), (524)
[5%(s,t,2,y)| < cGpu(t—s,z,y), (5.25)

for0<s<t<1 and (0,z,y) € © x R x RY.

Proof. These estimates are classical: they can be found e.g. in Azencott [1] p.478. Note that Azencott
[1] assumes in his context more smoothness w.r.t. 6 than us, but being a little careful, we see that
(R) and (E) are sufficient assumptions for our purpose.

An other way to derive (5.25) consists in expressing p’ as the expectation of some random variable,
using similar Malliavin arguments as in Proposition 4.1, and to apply standard estimates.

O
We now come back to the proof of the estimates (4.18) and (4.19). It is easy to see that one has
f 9 9 8 9 p% 9
E; » (Etkw [H [ Xpyr = th-}—T]) =E;, » [H p_g(tkatlc +T,$ath+T)] : (5.26)

Using Hoélder inequality (with a and 8 conjugate) and the estimates (5.24), it follows that the r.h.s.
of (5.26) is bounded by

1-8 VB L/a
o (&,.4m1)" ([ 6t @an 6P wam ) <o (B ime)",

since the integral w.r.t. y is finite as soon as 8 u1 + (1 — ) p2 > 0 <= a > p1/pe: this condition is
satisfied up to modifying p; and po from the beginning. It completes the proof of the estimate (4.18).
To get the estimate (4.19), one deduces from (5.26) that

0o -9’
6 0 0 6 0 0 p ]
B o (B o [H ) X = X0, 0| ) =S [H] + /0 A [H i+ T, X, +T)] .
We estimate the last expectation using the same arguments as before, exploiting the upper bound
(5.25) for p? instead of those for p%
O
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