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ABSTRACT. We consider a multidimensional elliptic diffusion X*#, whose drift b(c, z) and diffusion
coefficients S(3,z) depend on multidimensional parameters « and . We assume some various hy-
potheses on b and S, which ensure that X®? is ergodic, and we address the problem of the validity
of the Local Asymptotic Normality (LAN in short) property for the likelihoods, when the sample is
(XkA,)o<k<n, under the conditions A, — 0 and nA, — +o0o. We prove that the LAN property is
satisfied, at rate v/nA,, for a and y/n for 8: our approach is based on a Malliavin calculus transfor-
mation of the likelihoods.
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RESUME. Nous considérons un processus de diffusion multidimensionnel elliptique X*#, dont les
coefficients de dérive b(c, x) et de diffusion S(S,x) dépendent de paramétres multidimensionnels « et
B. Nous formulons plusieurs jeux d’hypothéses sur b and S, assurant 'ergodicité de X% et nous nous
intéressons & la validité de la proprieté LAN (Local Asymptotic Normality) pour les vraisemblances,
quand D’échantillon observé est (Xya,)o<k<n, sous les conditions A, — 0 et nA,, — +oo. Nous
démontrons que la proprieté LAN est vérifiée, avec les vitesses v/nAA, pour a et y/n pour 3: notre
approche repose sur une réécriture du rapport de vraisemblance a ’aide du calcul de Malliavin.

Introduction

Let P*? be the law of (Xto"’g )t>0, the R¢-valued process solution of

t t
(0.1) XOB — 30+ / b, X8 ds + / S(8, X2P) dB,,
0 0

where B is a d-dimensional Brownian motion, z is fixed and known, b and S are known smooth func-
tions. We are concerned with the estimation of the multidimensional parameters (a, 3) which belong
to ©, an open subset of R x R" (n, > 1,ng > 1), when the observation is the discretized path
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(XkA, )o<k<n- The asymptotic are n — 400 and we consider the case when A, — 0 and nA, — 400,
assuming that X®# is ergodic.

The purpose of this paper is to prove the Local Asymptotic Normality (LAN in short) property
for the likelihoods under appropriate assumptions on b and S. We give a precise formulation of
the problem in our setting (for a general account on the subject, see Le Cam and Yang [19] e.g.).
If 7, = o(Xga, : 0 < k < n), we denote the restriction of PB to F, by IP’%”B. The sequence
(RH™, Fp, (P?{”B)(a,ﬁ)e@) of statistical models has the LAN property for the likelihoods, at (a?, 8°),
with rates v/nA, for a® and \/n for 8%, with covariance matrix ['®*#° € Rratns @ Rie+1s if for any
% € R" and any v € R"2, one has
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(0.2) log gy ((Xkan)o<k<n) = ( v ) N =5 ( ’ ) T , )+ B

0,0
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0,0
where R, = R, (u,v) P80 and N
covariance matrix I'@8",
If the LAN property holds true and if r°*#% is non degenerate (this is somehow related to an identifi-
cation condition on the statistical models), minimax theorems can be applied (see Hajek [10], Le Cam
[18], or Le Cam and Yang [19] for a review) and (I'®*#°)~! gives the lower bound for the asymptotic
variance of estimators. This justifies the importance of such a property in parametric estimation

problems.

The estimation procedure has been studied by several authors, mainly when d = 1 (see Prakasa
Rao [22], Florens Zmirou [4], Kessler [16]), while Yoshida [23] adopts a multidimensional setting.
The estimators they propose are contrast ones: their construction is based either on a discretization
of the likelihood associated to the continuous observation (see Yoshida [23] and also Genon-Catalot
[6]), either on the use of some approximative schemes (see Florens Zmirou [4], Kessler [16]) (see
also Genon-Catalot et al. [7] for general contrast functions in a different asymptotic framework). It
is worth noticing that these estimators are asymptotically efficient, since their variance achieve the
lower bound given by (I‘O‘O"BO)_1 as the reader may see from the statement of the LAN property (see
Theorem 4.1 below). Some significant progresses have been recently realized by Kessler [16] concerning
the assumptions on the form of the coefficients: in particular, he allows to deal with quite general
diffusion coefficients S, whereas the previous works were restricted to the cases when S(f,z) did not
depend on z or was linear w.r.t the parameters. Moreover, to derive the asymptotic normality of the
estimators, Kessler overcomes the restriction nA,?> — 0 (see Prakasa Rao [22]) or nA,® — 0 (see
Florens Zmirou [4] and Yoshida [23]), assuming only nA,? — 0 for some p > 1: here, to get the LAN
property, we need not require some specific form of the coefficients or some additional assumption on
the decreasing rate of A,,.

In a Markov setting, the loglikelihood ratio can be naturally expressed as a sum of terms of the form
logpa’ﬂ(An,XkAn,X(,H_l)An), where p®P(t,z,y) is the transition density function of Xf"’B, and to
derive asymptotic properties, one may follow one of the four following strategies.

1. Either, p®? is explicit (since X*# has a Gaussian law e.g.) and the computations can follow a
more or less classical routine: in this way, one can prove that the LAN property holds true for
the Ornstein-Uhlenbeck processes (see Jacod [13]).



2. Either, one assumes that some specific estimates on p®#(, z,y), its derivatives and some integrals
involving these quantities are satisfied, and asymptotic properties may be deduced (see Genon-
Catalot et al. [8] when the observation is restricted to [0,1]). But in general, the validity of
these estimates turns to be impossible to check. See also Hopfner, Jacod and Ladelli [12] for the
case of Markov chains or Markov step processes.

3. Either, one uses an expansion of p*#(t,z,y) w.r.t. t,a,8 up to an appropriate order. This
strategy has been successfully performed by Dacunha-Castelle et al. [2] in the case of an one-
dimensional elliptic diffusion for estimation purposes, by deriving for p®# (t,z,y) a quasi-explicit
representation using a Brownian bridge. This approach has also been used by Donhal [3] to prove
the LAMN property when d = 1, in the asymptotic assumption nA,, = 1. For our objective, this
strategy has some drawbacks: it essentially restricts the study to the one-dimensional case, since
the representation of pa’ﬂ(t,x,y) can not be extended, using the same arguments, to a general
multidimensional situation; even for d = 1 in our setting, we need to impose a condition on the
decreasing rate of A, and more smoothness conditions on the coefficients than needed.

4. Either, and this is the approach we are going to adopt, instead of expanding log po"ﬂ(An, z,Yy)

when o, 8, ,y are fixed, we first transform log(pao+ﬁ’ﬂo+ﬁ/pao’ﬁo)(An,XkAn,X(,H_l)An)
using a Malliavin calculus integration by parts formula, and then, compute a stochastic expan-
sion. We followed this approach in [9] and derived, in a quite straightforward way, the LAMN
property when nA,, = 1, generalizing the result of Donhal [3] in a multidimensional setting.

The content of the paper is the following. Our purpose is to derive the LAN property defined in
(0.2), when the observation is (Xja,)o<k<n, With the asymptotic A, — 0 1and nA, — +oo: this
property is known to be true only in the case of Ornstein-Uhlenbeck processes (see Jacod [13]). We
consider different sets of hypotheses on b and S, under which X®# is ergodic. The diffusion coefficient
S is always assumed to be uniformly strictly elliptic, whereas various hypotheses on b will be made
(including the case of unbounded coefficients). A first set of models (which include the Ornstein-
Uhlenbeck processes) is defined in section 1, whereas extensions will be briefly exposed in section 5. In
section 1, we state preliminary results concerning estimates on the transition density (their proofs are
postponed in Appendix A) and we define the notation used in all the paper. To understand the chain
of arguments to get the LAN property, we propose a step-by-step proof. It starts in section 2, where
we expose Malliavin calculus ideas, which allow to transform the loglikelihood ratio in a tractable
way. Section 3 is devoted to the stochastic expansion of this loglikelihood, to exhib the main order
contribution: this is the crucial and technical part of the paper. Then, we state the LAN property in
section 4 (see Theorem 4.1) and complete easily its proof, using the results of section 3. The validity
of LAN property under other assumptions is discussed in section 5.

1 Assumptions, notations and preliminary results

As usual, we denote the i-th coordinate of the vector u by u;, or u;; if u = u; is time dependent. For
smooth functions g(w), Oy, g(w) stands for the partial derivative of g w.r.t. w;.

Now, let us consider ©, (resp. ©3) an open subset of R (resp. R™ ) for some integer n, > 1 (resp.
ng > 1): these two sets are used to define the parameterization of the coeflicients of the model of
SDE’s which we are interested in.

lin the sequel, we assume, without restriction, that A, <1 for all n



Let b(c,z) be a map from O, x R? into R?, and S(B,z) a map from ©5 x R? into R¢ @ R¢. For fixed

«a and S, these maps as function of = are supposed to be globally Lipschitz, so that there is an unique

strong solution (Xf"ﬂ )t>0 to the homogeneous stochastic differential equation

t t
(1.3) X07 =+ [ b Xe) ds+ [ 5(8,X79) dB,
0 0

where (By);>0 is a standard Brownian motion in R? (with (G;)¢>o its usual filtration) and z is a
deterministic initial condition. In the sequel, the indices «, 8, z¢ in ]Eg(’)ﬁ stand in reference for the
expectation under the law of the diffusion X®# starting at zo. When no confusion is possible, we may
simply write X; instead of X{7.

In order to get asymptotic properties on the likelihood ratio, it is necessary to put additional regula-
rity conditions on the coefficients. To include the important case of Ornstein-Uhlenbeck processes, we
allow the drift coefficient to be unbounded: this hypothesis will lead to technical difficulties, mainly
concerning some estimates on the transition density (see Proposition 1.2 below). The easier case of
bounded drift coefficient is discussed in section 5. In the sequel, we assume the following hypotheses.

Assumption (R):
1. the functions b(a, z) and S(3,x) are ? of class C'*7 w.r.t. (o, z) or (B,z), for some v € (0,1).
2. each partial derivative 0o, b(c, x), 95,b(cv, ), 85,S(B, ), 02, S(B,z) is of class C! w.r.t. z.
3. the following estimates hold:
(a) [b(e, )| < c(1+ |z) and |0y;b(c, z)| + [S(B, z)| + 02, 5(8B,z)| < ¢
(b) lg(2)| < el + [2]9) for g = Du;b, 05, 06 Oz, 0,0 Op,S, 05, 0)S 0r 8, 5.5

i, Tj J T
(c)

|0a,; b(cx, z) — By, b(, )| 4 |0, S(B,x) — 98, S(B, )|
o= aep 5= Pl

for some positive constants ¢ and ¢, independent of (o, o/, 3, ', z) € ©2 x G)% x Re.

< (1 + [2|)

To ensure the ergodicity of the process (1.3), we impose two conditions derived from Has'minskii [11]:
the drift coefficient b is strongly re-entrant and the matrix S is strongly non degenerate.

Assumption (D): one has V(a,z) € O4 x R? b, z).x < —cg |z|? + K for some constant ¢y > 0.
Assumption (E): the matrix S is symmetric, positive and satisfies an uniform ellipticity condition:

V(B,x) € O x R Cl Tu(z) < S(8,7) < 1 Ty(x)
1

for some constant ¢; > 1.

Zas usual, f is of class C'*?’ means that f is of class C' and its partial derivatives are y-Holder continuous



Example 1.1. Set O, = (7", o) x K (K is some open bounded subset of R) and O =
(Bmin, Bmaz)  Then, the linear Ornstein-Uhlenbeck process Xf"ﬂ =xz9 + fg(qu?’ﬂ + ag) ds + 8 By
fulfills the above assumptions when o*** < 0 and ™" > 0.

Under assumptions (R), (D) and (E), the process X®# has an unique invariant probability measure:
we denote it by pu®? and we are going to prove that it has squared exponential moments.

Proposition 1.1. Under (R), (D) and (E), there is a constant C. > 0 such that

1. for any C € [0,C) and for any A > 0, one has:
(1.4) V>0 Eg‘(’)ﬂ exp (C|X¢|?) < exp (Clzo|?) exp (=M ) + K,
for some constant K = K(C, \)

2. for any C < Cg, one has
(1.5) / exp (C|z|?) p®P(dz) < oo.
R4

Proof. Set f(z) = exp (C|z|?) and denote by L*? the infinitesimal generator of the diffusion X®#.
From assumptions (R) and (D) and putting C, = cy/c?, one easily deduces:

L¥Pf(@) = 20f(@) ) bi(e,z)m +20°f(w) Y _(5%)(B, 2)wim; + Cf(w) Y _(5)i(8,)

] 2

< 20 (—co + Oct) o’ f(2) + K f(z) = —cpla* f(z) + K f(z),

using for the last inequality C € [0, C.), so that ¢ > 0.

Now, it readily follows that L®# f(x) < —Af(z)+K'()) for any A > 0; thus, if g(t) = a;)ﬂ (f(X3t)), one
has ¢'(t) < —Ag(t) + K'()). To derive (1.4), compute (g(t) exp(At))’ and use the previous inequality.
We deduce (1.5) from (1.4). Let U be a compact subset of R%: from the ergodic theorem, one gets

/Rd exp (C|a:|2) 1eer p®P (dz) = t_l)iglooEga’B (exp (C|Xt‘2) 1x,cv) < K,

for some constant K independent of U. Now, let U increase to R? and apply monotone convergence
theorem, to complete the proof.
O

Under (R) and (E), the law of X}" # (¢ > 0) conditionally on X, o # = 4 has a strictly positive transition
density p®#(t, z,y), which is, in particular, differentiable w.r.t. o and 3 (see Proposition 2.2 below).
Furthermore, p®#(t, z,y) and its derivatives satisfy the following estimates.

Proposition 1.2. Assume (R) and (E). There exist constants ¢ > 1 and K > 1 s.t.

K z —yl?
(1.6) paﬁ(t,x,y) < W exp (_| = | ) exp (Ct |a;|2) :
(1.7) O‘”B(t z,y) > 1 ex —CM ex (—ct|x|2)
. p ' Ty Y) 2 K 1472 p 7 p )

5



and for any v > 1, there exist other constants c>1, K > 1, ¢ > 0 s.t.

_ - 18,,.p®B v

(1.8) E28 ‘;pﬂ (o, Xy)| < K% exp(ctzf?) (14 |z)),
_ |95, p*P v

(19) BpP | (e X0 < K exp (et o) (L fal),

for0<t<1, (z,y) EREX R, 1<i<ng, 1 <j<ngand (o, B3,8) € Oy X Oy x O5 x Op.

Analogous bounds for |0, p®?(t, z,y)| and |0, p®B(t, z,y)| are also available, but we will not use them
in the sequel. To derive estimates (1.8) and (1.9), we somehow exploit Malliavin calculus represen-
tations which we introduce in Section 2 below: so, we admit for a while this proposition, the proof
being postponed in Appendix A.

As far as the author knows, these estimates seem to be new in the context of unbounded drift and

bounded diffusion coefficients. Actually, when the functions b and S (and some of their derivatives)

are bounded, Gaussian type bounds (i.e. of the form £ exp(— |w y' )) for p and its derivatives are

available (see e.g. Theorem 4.5, Friedman [5]), whereas when b a,nd S have a linear growth (think of
the geometric Brownian motion e.g.), the upper bounds are not of Gaussian type, but only decreasing
faster than any polynomials.

Here, the boundedness of the diffusion coefficient enables to keep Gaussian bounds, up to the fac-
tor exp (¢t |z|?). Actually, this latter term is unavoidable. Indeed consider again the Ornstein-

Uhlenbeck process from Example 1.1: one has pal’o’l(t,x,x)tgo 27r exp (— an%t) estimate which
should be compared to inequality (1.7).

Notation.

In all the paper, the multi-index of parameters (a1, , @, , 81, ,Bny) is going to be simply denoted
by (a, 8), and (a?, 8%) = (a, - - - ,aga B, ,ﬂgﬂ) € O, X% 0Og corresponds as usual to the true value of

the parameters. Besides, («, ) might be a row vector as well a column vector: we will not distinguish
the notation, since in the further contexts, no confusion will be possible.
To define the local likelihood ratio around the parameter (o, 8°), we fix u € R, v € R™ and set

+ 81— (o0 Yoo V) (0 0 Una g0, U1 g0 o Ung
(Ol 7/8 ) (CV +\/7LTH’IB +\/ﬁ) (a1+ nAn’ ’ana—i_\/nTn”Bl—i_\/ﬁ’ 7/8nﬂ+\/ﬁ)

Our main issue is to study the weak convergence (under Po"A° and under the assumptions A, — 0,
nA, — oo) of the local likelihood ratio
+ g+
Py *
Zip 1= dPao 30 ((XkAn)OSkgn),
n

or the convergence of its logarithm z,, = log(Z,), which can be rewritten using the transition densities
as:

a+,/3’+
(1.10) 2y = Zlog ( ) (A, Xgans X(k11)A,)-



But to deal with some perturbations around (a?, 8%), we adopt more specific notation:

S 2 W (N S SN | B SN Ung g0 U1 g0 o Uns
(O‘zaﬂ) (ala 7az—1aaz+\/nTn7 aana+\/m7/81+\/ﬁa 718n3+\/ﬁ)

Ui Un,, m v
(ai(l)718+): <Oé(1),'-- '(L)laa +l\/— z—}-l—i_\/L "a?l"—'_\/JTn’ﬁ?—F\/_’ ,ﬁng \/n5>

0 0 0
(aaﬂ;—) = <O[]_,"' aanaaﬂla" 75z 175z

ﬁO U"ﬁ
f ’ b nﬂ f
Vi+1

0 0 20 0 , Ung
(aaﬂl(l)): ala"'aanaaﬁla""ﬁz laﬁz +l\/—a:81+1+ \/—""aﬁnﬂ‘l_% .
We also introduce the mean vector and the covariance matrix of Xg’f

m* () = (m(2)) = (E27[Xia,)),
veldla) = (V' @), = (B Ko, = mP @)X, - m? @)

0.

We may write g(n,z,a, ) = R(e,,z) if the function g satisfies the estimate |g(n,z, o, 8)| < K(1 +
|z|?)€y, for some positive constants K and ¢, independent of z, n, « € ©, and f € Og.

Besides, the notation K will be kept for all finite positive constants, (independent of z, n, «, 8 and
so on), which will appear in proofs.

2 Transformation of the log-likelihood ratio using Malliavin calculus

In this section, we present the methodology to derive the convergence of the local log-likelihood ratio:
the main new idea is to use Malliavin calculus techniques to rewrite this ratio in a tractable way. This
strategy has already been performed in Gobet [9] and we briefly expose it in this new setting.

ot ﬁ+ pai",ﬂ"’ pa'."_ ﬁ+

+ + +
. . P > _ i’ + pa’Bl a’ﬂj a,ﬂnB
Since one may write *—; 7 =
pe

p

poaB
R
A pofT g ey pete

one easily de-

duces, using the smoothness property of p®?, that equation (1.10) can be transformed as

n—1 n—1 n—1 n—1 8
(2.11) zn—ZC Y G DY G Y G D G +Zg"‘*
k=0 k=0 k=0 k=0

where
(2.12) A M(An,XkA » X(k+1)A0)5
k /—nA paiD.BT n n
) 1 3 a,B;(1)
) vj B;P
(213) Ck:] = % A dl W(An’XkAn’X(k-i-l)An)'

The core of the analysis of the weak convergence of z, is of course based on a good understanding of the
stochastic behavior of (;* and g‘,fj , which is going to be analyzed through some stochastic expansions.

.8
To this purpose, the first step of this program is to rewrite ‘;fa 5 (T z,y) and = —L5—(T,z,y) as a
conditional expectation, using Malliavin calculus. For this, we need to introduce the materlal necessary
to our computations (for more details, see Nualart [21]).



2.1 Basic facts on Malliavin calculus

Fix a filtered probability space (2, F, (F;),P) and let (W;);>0 be a d-dimensional Brownian motion.
Fix T € (0,1]. For h(.) € H = Lo([0,T],R?), W (h) is the It6 integral fOT h(t) dW.

Let S denote the class of random variables of the form F' = f(W (h1),... ,W (hy)) where f € C3°(RY),
(hi,... ,hy) € HYN and N > 1. For F € S, we define its derivative DF = (DiF)ieo,1) as the H-valued

random variable given by D.F = Zfil Og; f(W(h1),... ,W(hy)) hi(t). The operator D is closable as
an operator from L,(Q) to Ly(2, H), for any p > 1. Its domain is denoted by D' w.r.t. the norm

1
IFllip = [EIFP +E(IDF|%)] "
We now introduce §, the Skorohod integral, defined as the adjoint operator of D:
Definition 2.1. § is a linear operator on L([0,T] x Q,R?) with values in Ly(Q) such that:

1. the domain of § (denoted by Dom(J)) is the set of processes u € Lo([0,T] x Q,R?) such that
VF € DY2, one has ‘E(fOT DiF . uy dt)‘ < c(u) ||F||2-

2. if u belongs to Dom(d), then 6(u) is the element of La(2) characterized by the integration by
parts formula: VF € DY2, E(F §(u)) = E (fOT DiF . uy dt) :

We now state some properties of the Skorohod integral, which are going to be useful in the sequel:

Proposition 2.1.

1. For any p > 1, the space of weakly differentiable H-valued variables D' (H) belongs to Dom(6)
and one has

(2.14) 16(uw)llp < ¢p (lullz,@,m) + 1PullL,@,H0mH) -

2. If u is an adapted process belonging to Lo([0,T] x Q,R4), then the Skorohod integral and the Ito
. . T
integral coincides: 6(u) = [ ur dW;.

3. If F belongs to DY2, then for any u € Dom(6) s.t. E(F? OT’U,% dt) < 400, one has

(2.15) 5(F u) = F 6(u) /0 "Dy di,

whenever the r.h.s. above belongs to Lo(S2).

Oa; P
payﬁ

. B dp,p™P
2.2 Transformation of e

(T, 2,y) and —5— (T, 2,y)

To allow some Malliavin calculus computations on transition densities while avoiding some confusion
with the observed process (1.3) generated by the Brownian motion (B;)¢>o, we consider an independent



Brownian motion (W;);>o (with its usual filtration (F;)s>0) to which we associate an independent copy
of X*P (still denoted by X®#), which consequently solves

t d .t
(2.16) X0 = ot (e xeyas+ Y [ i, x00)
0 =1 0

where S; is the [-th column vector of S.
Since b(a, z) and S(B, x) are assumed to be of class C**7, X}* # is differentiable as a function of z,

and 3 (see Kunita [17]), so that we can introduce its flow, i.e. the Jacobian matrix Y;a”g = V. X} B

and its derivative w.r.t. o; (resp. ;) denoted by Oa, X} B (resp. Og; X7 B ). This defines new processes,

which solve a system of SDE’s:
t d t
v = Ig+ / Vib(a, XP) Y0P ds + ) / VaSi(B, X$7) YF dWi,
0 =1 0
t
(2.17) 9, X — / (B,b0, X32) + Vbl X3) B0, X3P dis
0
d ¢
+3 / ViSi(B, X&FP) 00 X2P dW 4,
=170
t
(218) 95X = /vwb(a,xgﬁ)aﬂjxg’ﬂ ds
0
d ¢
+>° / (ngSl(ﬂ,Xg”B)+V$Sl(ﬂ,Xsa’B) aﬂjxgﬁ) AW, s.
=170

Under (R), for any ¢t > 0, the random variables Xto"ﬂ, Yf"’B, (Yf"ﬁ)_l, (BaiXta”B)i and (85tho"’3)j
belong to D' for any p > 1 (see Nualart [21], Section 2.2). Besides, the following crude estimates
hold true:

(2.19) EP ( sup ||Zt||p> + sup E&P ( sup ||DTZt||p) = R(1,z)
0<t<1 rel0,1] r<t<1

for Z, = X%, Y™P or (Y?)~1. We now state the useful result for the analysis of the loglikelihood.

Proposition 2.2. (Gobet [9], Proposition 4.1). Assume (R) and (E) and set T € (0,1]. For
1 <1y £d, let us define U, = (Uy, t)o<i<t the R4 -valued process whose la-th component is equal to

Uiot = (S‘l(ﬂ,Xta’ﬂ) Y;a,ﬂ (Y:,?"ﬂ)_l)l . Then, one has

1,02

d

O, 0™ 1
Olt)a,/a’ (T,2,y) = T Eg’ﬁ Z 6(80‘in01[,,§“ Un) | X%ﬁ =Y
I1=1
aﬂ.pa’ﬂ d
J

1
(Tz,y) = 7 BP0 005, X7 U) | X777 =y

a,B
p I1=1



3 Expansion of the local log-likelihood ratio

From Proposition 2.2, each random variable ¢ (or ¢,’) can be rewritten as
1
, U 1 _),8% () .BF o !
(ot = == /0 di _E;Y(k( )nﬂ [Hr?’(l)’ﬂ | XA ( Wt = X(k+1)A, ]

for some random variable H, ai(DF" 7o derive the convergence Ez;é " under Pao’ﬂo, we may apply a

classical convergence theorem for triangular arrays of random variables, by checking the convergence
of the sum of some conditional moments, e.g. » IIEO‘ ,B° [¢2 |Gka,|: the fact that the expectations

outside and inside refer to different probability measures (]P’O‘O’/”O and P, 5+) is a sizable difficulty.

Our approach to this problem is to perform a stochastic expansion of Hy ai(B),67 under P%O:8" | The
miracle arises from the fact that this random variable is equal at the first order to some function

g(ai(l), Bt,n, X; (0.8 +,XZ”‘;L(Z)’ﬁ +): consequently, its conditional expectation is immediate to compute
and thus, the checking of the convergence of the sum of the conditional moments (under IP’O‘O’*BO) of
g(ei (1), 87, n, Xka,, X(k41)A,) becomes much more easy.

Nevertheless, we have to prove that the remainder terms in these expansions have no contribution in
the limit of z,,. For this, it is necessary to obtain some specific results on the convergence in probability
of sums of conditional expectations: our crucial tools are Propositions 3.1 and 3.2.

3.1 Some convergence results

The main purpose of this section is to prove the two following Propositions.

Proposition 3.1. Assume (R), (D) and (E). Set i € {1,--- ,ns}. Let H be a Fa,-measurable
random variable, which satisfies for any p > 1:

1/
Egi(l),ﬂJr [H] =0 and (Egz (l),/J’+|H|M) K _ R(An3/2€n,x)a
for some sequence €, — 0. Then, one has

HDQOBO

ozll + o; (1,1
R on L 0 1 <]
k=0

Proposition 3.2. Assume (R), (D) and (E). Set j € {1,--- ,ng}. Let H be a Fa,-measurable
random variable, which satisfies for any p > 1:

. j 1
Eg,,@] ) [H] 0 and (E{jaﬂj (l)|H|u) /m — R(Anﬁn,Iﬂ),

for some sequence €, — 0. Then, one has

OBO

ni: / l—JEX’fi X350 = Xepan| 5 0.
k=0

10



Actually, analogous results are proved in Gobet [9] (see Corollary 4.1), but they are inefficient for our
purpose. The main difference concerns the assumption on the mean of H, which is taken to be 0 in this
paper, whereas in [9], it was dominated by some power of A,,. This difference turns out to be crucial,
and being a little careful in the proof below, we may note that if the mean of H is only supposed to be
of order A,”, we can not obtain the result of the Propositions above, unless we impose (as in Kessler
[16] and others) some restrictive conditions on the decreasing rate of A, such as nA,” " 0.

In order to prove Propositions 3.1 and 3.2 and further results, we need a classical discrete time ergodic
theorem, which following version is adapted from Kessler [16].

Lemma 3.1. Assume (R), (D) and (E). There is a constant C, > 0, such that, if g is a differentiable
function satisfying |g(z)| + |Vg(z)| < K exp(C|z|?) with C < C., then

ao,,BO

1n_1 P 0 30
5 2o 9Xka) T [ gyt (),
k=0

where the limit above is finite.

Proof. Take C! < C. where C, is defined in Proposition 1.1: the continuous time ergodic theorem
20,80
ensures that A OnA” g9(Xs) ds 2 Jga 9(z) 1®"#° (dz). Thus, it is enough to prove that

n—1 (k+1)A

0 1 a() 0
0”3 nA ) ds = —Zg Xk, nA, Z/k zo”B 9(Xs) — 9(Xka, )| ds

k=0

converges to 0. But using standard It6’s calculus, one gets (for some A > 0)

B2 9(X,) — g(Xna,)| € Kv/An B exp(\C|Xpa, [2) B exp(ACIX,[2) < K\/Bn,

for some new constant K, which is independent of kA, and s owing the uniform estimates of Propo-
sition 1.1 up to choosing C small enough. The completion of the proof now follows easily.
O

The above Lemma is going to be often combined with the following classical convergence result about
triangular arrays of random variables.

Lemma 3.2. (Genon-Catalot et al. [7], Lemma 9). Let £, U be random wvariables, with &} being
G(k+1)a, -measurable. The two following conditions imply Zz;é & v

n—1 n—1
P P
Y Bl 1Gra ) > U and Y E[(E) | Gra,] =0
k=0 k=0
o . n i l i l’ +
Proof of Proposition 3.1. Set { = fo dl x~ Ao ?(k( )BT [H | in( BT _ X(k+1)An]: these are

9(k+1)a,-measurable random variables, to Wthh we are going to apply Lemma 3.2.

11



1-Evaluation of E2°° [¢n Gra, |. It reduces to evaluate
k n

,80
' . + ?
o [0 [ | X8O = Xy, ] | Gra, | = B0 [H L (B, X, Xa,)

kAp kAn a;(l), gt

. a@(l),,@
(3.20) = B (8" lH %(AnaXO,XAn)

kAnp ai(l)aﬂ+

+ ) + + +
(pai+1’f3+ _ pal(l),ﬂ"') + (po‘z‘+2w3+ _ pai+1’f3+) et (pa,ﬂ’L — pQna »3+)

(321) +H O

Oé,,B; — Oé,,31+ + - + pao,ﬂo _ paaﬁ'z_ﬂ
(3.22) P pr7) ai(l)w( ) (A, Xo. Xa)

The term (3.20) is equal to E?gk(i)’ﬂJr [H] =0
Each difference in (3.21) (strictly speaking, not the first one, but nevertheless, the following arguments
also apply to it) is equal to

+ + + 5+
J0,6° | g (PP — BT
Egék(A)nﬁ [H pai(l),ﬂ+ (Ana X07 XAn)

(AnaXO; XAn)] -

i (1),8+ 8amp°‘m (0,87 pam(1),5*
XkAn, pam(l),ﬂ+ p%’(”,ﬂ"‘

Using Holder’s inequality (with 14, 15 and v3 conjugate) and the estimate on (E?gk(i)’ﬂ +|H [»1)1/v1] the
inequality (1.8), upper/lower bounds (1.6) and (1.7), it follows that the r.h.s. of the above equality is
bounded by

KA X R(Ang/QEn,XkAn) x /A, exp (c A, |XkAn|2)
nan

1/vs
X . X —y|?
« ( / L. 7S TN N SRR A L. e W CRR PP S P dy
dj2 (1-vs)d/2
N A,

Vn

since the integral w.r.t. y is finite as soon as —v3/c — (1 — v3)c < 0: this condition is satisfied up to
choosing v3 closed to 1, i.e. v; and v, enough large.

Using analogous arguments (and in particular estimate (1.9)), check that each difference in (3.22)
satisfies the following inequality

A, 3/2¢
<R (7" Xin, | exp (¢ A [Xka,l?)

NG

Taking into account that ¢ A, < C./2 for n large enough, one has proved that

3/2
<R (uanAn> exp (¢ Ay [Xga,[?) -

B B
a; (0),8% | gy (PWTmtr — p*im)
EXkAn [H pai(l);ﬂ+ (A'FL’X();XAn)

BR[| Gra,]

3/2
< 1 1 R (ManAn> o€ An | Xpa, 2 < e, X lR(lanAn) e3Ct | Xkanl®
Vi Z

12



0

0
PasB
— 0.

Apply Lemma 3.1 to the function R(1,z) 2 171” and conclude that S DR & | Gka,)
2-Evaluation of Ee’ 8 [({,’;)2 | Gk An]' Using repeatedly Jensen’s inequality, one has

paO,ﬂO
pai(l)7ﬂ+

|12 1 1 )
B (€ Gra] < 14 a B0 | w2

= 'n/An An2 0 XkAn

(An, XO, XAn)]

IN

1 1
6721 X ER(l’XkAn) €Xp (EC(IB |XkAn|2> ?

where the expectation under P (8" has been evaluated as before, i.e. using Holder’s inequality, the
(1.8
estimate on (]Eg‘(’k(i)’ﬁ |H|?1)'/"1 and upper/lower bounds (1.6) and (1.7). Lemma 3.1 completes the

00
proof of Zz;é E” 8 [(&}:)2 | gkAn] P30, Thus, Proposition 3.1 is proved.

The proof of Proposition 3.2 is very similar to the previous one: we omit it.

3.2 Stochastic expansion

The objective of this section is to derive some good approximations of the sums Zz;é ¢, and Zz;é ¢ kj
from (2.11): as explained before, it consists in performing a stochastic expansion (w.r.t. the small
time A,) of the random variables Zﬁ:l 5(3ainC:’;X)n’ﬂ+ U,) and Zﬁzl (0, Xlol"’ijil) Uj,) defined in
Proposition 2.2. To neglect the contribution of the remainder terms, we apply Propositions 3.1 and
3.2 above. The main difference with what we did in [9] is that we have to keep in mind that these
remainder terms have to be centered random variables: this may explain that the next computations
are little more intricate than in [9].

3.2.1 Contributions of the drift coeflicient
Lemma 3.3. Assume (R), (D) and (E). Seti € {1,--- ,ns}. If one defines

~
[£21

1 ! _ (D .BF
G = /0 L Ba,b(es(1), Xa,)- 8728, Xea) K(gsna, —m* 0P (Xpa,))]

n—1 n—1 0.0
o raqn PP
then one has E Cr' — U E ¢t — 0.
k=0 k=0

Proof. As in Proposition 2.2, define U;, = (Uy, t)o<t<a, as the R?-valued process with component
. . . (.8+

equal to Ul1l2,t — [S—l(ﬁ—l—,X;lz(l),ﬂ*') Y;az(l);ﬁ"' (YAa;(l)le+)_1]llyl2, and set X(()lq,(l),,@ = .

The above Lemma is proved if one shows that

a;(t), + — a;\t), + a;
(3.23) 60 X107 Usy) = Al (eil0), @) S 7287, 2)(XZ P =m0 (@))|

l

1
for i; € {1,--- ,d}, with (Egi(l)’ﬂ+|Hll|“) /u = R(A,*?e,,z) for all > 1 (e, — 0).

13



Indeed, one has that Eg’ Ok [H;,] = 0 since both other random variables of equality (3.23) are cen-

tered under P8 "

one gets the result.

. Thus, Proposition 3.1 applies and after a summation over /; of equalities (3.23),

Proof of (3.23). Here, for simplicity, if V' is a random variable (possibly multidimensional), we use the
notation V = R/(e,, ) if for any u > 1, one has [E;’ (l)’ﬂ+|V|“]1/“ = R(ep, z) uniformly in all variables
(except z, u and n). From (2.15), one has:

(3.24) 500, X0 ULy) = 00, X107 5(U, / D; 00, X0 Uy, .

1- First of all, we are going to prove that
B (1) 5+
(3.25) Dy 80, X' - Upy o dt = R'(AG?, ).
0

Indeed, standard computations with Gronwall’s lemma yield supg<s<na, |8aiX§‘i(l)”3 +| = R/(An,z).
(1),8+
Thus, deriving from (2.17) the equation solved by (D; 0, X\ 20,8 )0<t<An, one can easily obtained

Dy (9al.XZin(l) B = R'(Ay,,z) using the above estimates on 9, Xaz(l) and (2.19). It remains to take
into account estimates (2 19) to complete the proof of (3. 25)

2- Second, using standard Itd’s calculus, one gets from equation (2.17) that
(3.26) O, X PT Ao,y (i(l), ) = RI(A,%2, ).

3- At last, set Uy, = (S~ )1, (8%, XD and write 8(Uy,) = 8(T1,) + 6(Uy, — U1, ): using (2.14)
and estimates (2.19), it readily follows that §(U;, — U;,) = R'(A,, z).

Furthermore, since U, is an adapted process, §(U;,) is simply an Tté integral. The matrix § is
invertible, thus one has

(327) th — S_l(,B,Xta”B) dXta”B _ S—l(ﬁ’Xféyﬂ) b(a,Xta”B) dt
_1(ﬁ,g;) de"ﬂ + (Ig — S_l(ﬁ,x)S(,B,Xf’ﬂ)) AW, — S_l(ﬂ,m) b(a,Xf’ﬂ) dt,

for any («, 8). Consequently, easy computations yield

d n
= Z/ B l1,l2 (:8+ Xal ®, a dle,t - Z/ l1,l2 CL‘) dle,t + RI(AH’.’IJ)

= l2 1
d
+
_ Z 2115 (B / Xm3 tl) LA R'(An,z)
la—1
(328 [ aln(l) BY _ a8t (m))]l + R'(Ap, 7).
1

where we used in particular that m®®#* (z) = z + R(A,, z). Combining estimates (3.25), (3.26) and
(3.28) in (3.24), one completes the proof of (3.23) taking €, = VAp,.
O
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3.2.2 Contributions of the diffusion coefficient
Now, we focus on the approximation of the sum Zz;é ¢’ in (2.11).

Lemma 3.4. Assume (R), (D) and (E). Set j € {1,--- ,ng}. If one defines

& = i/ldl L1 {(85,5 57 (5;(1), Xea,)
k = \/ﬁ 0 A, Bi i\t )y AEA,

[(Xernya, =m0 (Xea, ) (Xgeana, =m0 (Xpa,))* = Voo (Xpa,)] |

n—1 n—1 0.0
. ~B; P8
then one has g ¢’ — vy E ¢’ — 0
k=0 k=0

Proof. The techniques are very similar to those of Lemma 3.3, thus we expose a shortened proof,
voluntarily omitting some details (see also [9], section 4.3 for many analogies).

As before, set X @8 — & and define U, as the R%-valued process with component equal to U, ot =
[S_l(,@j(l), X @ (l)) 85 (1) (Yg;ﬁj(l))_l]ll’lz. The lemma, is proved if

a,f; _ a,B;(l a.Bi
(329) 8605, X% Un) = [958 5 (80, 0)(X37Y — m PO (a))]
x [5—2(5j(1),$) (X“"*f O —meni 0|
1
(agjs S7HB W,V B @) ST (B (1), 0))  + Hy,
for I, € {1,-++ ,d}, with ( ALl |u) Anén,z) for all g > 1 (e, — 0).

Indeed, easy algebra in equality (3.29) shows that E2Pi l)[ H;,| = 0: thus, Proposition 3.2 applies.
Then, if we sum over [y equalities (3.29) and remind of Proposmon 2.2, we obtain the result taking into
account that for A and B some d X d-matrixes and y some vector of Rd, one has Ay.By = Tr(A*Byy*).

Proof of (3.29). For simplicity, we write V = R'(e,, z) if the random variable V satisfies for any p > 1,
[Eg’ﬂj l)|V|”]1/“ = R(€p, z) uniformly in all variables (except z, u and n). From (2.15), one has:

Ap
Bi Bi(l ,Bi(l
(3.30) 5(95, X%V Un,) = 95, X5 Vs (n,) — /0 D1, X5 Uy, .

From equation (2.18), it readily follows

d An
O, X% =3 | 9,Sunn(By(1), ) Wiy + R (B, )
lbo=1
(3.31) = |95, 571 B0, ) (XRPY = m O (@))| + R (An,2)
1

where we used at the last equality the same arguments as for (3.28).
As in the proof of Lemma 3.3, one has

(3.32) 0(U,) = [572(8;0), ) (X3P = m O (@))| + R (An,2).

l1
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Moreover, one checks that

d
A”Da x50 oo g = o 95.9 (1), x2Pi 0y (g1 (), x*% 0y gt + R(A,3/?
U8 A, - Vit - Z Bi ll,lz(ﬂj()a t )( )h,b(ﬂ]()a t ) + ( n ,.’L‘)

0 0 l2=1
=D, [95,8571(8;(1), 3)] ., + R(A2, ).

Besides, standard computations yield V%" (z) = A, 5%(8;(1),z) + R(A,*?,z), so that one gets

An .
D, Xp XY Uy dt = (95,5 57181, m)V D (@) S2(8;(1),2))  + R/(A%2, ).

0 l1,l

Plug this last equality, estimates (3.31) and (3.32) into (3.30) to complete the proof of (3.29). Lemma
3.4 is proved.
O

3.3 About an explicit approximation of the log-likelihood

To conclude this section on the expansion of the local log-likelihood ratio, we would like to give an
answer to the following question:

"Which explicit (or quasi-explicit) log-likelihood should we have to consider from the beginning to
find the same expansion that those given by Lemmas 3.3 and 3.4 combined with equality (2.11)?”

Reasonable explicit likelihoods can be derived from Gaussian Markov chains and in this setting, it is
tempting to consider those given by the Euler scheme: nevertheless, as it is underlined by Kessler [16],
it does work only under some restrictive assumptions of the decreasing rate of A,,.

To get the ad hoc log-likelihood, let us denote by (Yka”g )o<k<n the R%-valued Gaussian Markov chain,
which fits the two first conditional moments of (XIS’Aﬁn)OSkSn’ i.e. defined by YOO‘”B = z0 and Ykofl’_f =

Yko"ﬂ + €x41, where €xy1 is a Gaussian random variable, independent of €1, - - - , €, with mean equal to
mo"fB(Yka’ﬂ ) and variance equal to VO‘"B(Yka”H )-
Under our hypotheses, V®#(z) is invertible and the transition density of Y*# is equal to ¢*#(z,y) =

W exp (—3(y — m®#(2)).[(VP(z))~L(y — m*F(z))]) . The local log-likelihood ratio func-
7)¢det Vel (x

tion associated to Y, in which we have replaced the observed diffusion process, is thus given by
a+7 + . . . .
Zn = 22;3 log(qqao—zo)(X kAns X(k+1)A,)- This quantity (explicit up the knowledge of m®P and VP)

is our candidate to give the same limit than the true local log-likelihood ratio z,, defined in 2.11.
ao,,BO
Indeed, one can prove that z, —Z, — 0. This can be done from Lemmas 3.3 and 3.4: we omit the

details of the computations, which are somehow standard since everything is explicit.

Of course, this result is not surprising: it confirms in some sense that the approach of Kessler [16]
was appropriate. Actually, it is not very interesting to obtain the result now, while we have almost
finished to prove the LAN property: it would have been more efficient to have this approximation
result from the beginning, but we do not have good ideas to obtain it by direct arguments.
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4 LAN property

4.1 Statement of the result

The main result of the paper is:

Theorem 4.1. Under (R), (D) and (E), one has

0 0
Ot Zmn Bt R

dP @’ [ 0go 1 [ u 0g0 [ u
log 3 dIP’%OaﬂO (Xkan)osk<n) ~— v N 2\ v T v )’
where N*8° s a centered R+ -yalued Gaussian variable, with covariance matriz
%8 ‘ 0
ra®.80 _ b
aO,ﬂO
-

0 30
where the elements of matriz Fgo’ﬁo € R @ R™ gnd 'y B c R @ R are given by

a9 .30 _ o
5 )i = /R 00,5, 2).[S (8%, 2)Da, b0, 2)|u" " (de),

O )i =2 [ e [03,5(68°,2)571(6°,2)05, S(6°,2)57 (6%, )] " (o).

First, it is worth noticing that I‘g‘o’ﬂ ’ and I‘go’ﬂ ’ are the asymptotic Fisher information matrixes
for the continuous time diffusion (see Prakasa Rao [22], Dacunha-Castelle et al. [2], Florens-Zmirou
[4], Genon-Catalot [6], Yoshida [23], Kessler [16]). Second, N®"#° has no correlation between the
components involving a perturbation on the drift coefficient and a perturbation on the diffusion coef-
ficient: the efficient estimation of the drift and diffusion parameters are asymptotically independent

(see Florens-Zmirou [4], Yoshida [23], Kessler [16]).

4.2 Proof

We are going to prove the following estimates:

OBO 1 0 0 g0 0 30
(4.33) ZE‘M (G 1 Gran) = =5uilT5 i =i (T )i =+ =t (05 i

pa’s° 0 go

0 B0 -2ny. 20us 0 3020, 0 A0 - ~qvs
(4.34) ZEa PR G| Grnn] — B PG | Gran) B P10 | Granl — (T )i

k=0

0,30
(4.35) Z]E"‘ B8t | Gra,] = 0,

pels 1 0 30 0 30
(436) ZEQ 8° [C[Bz | gk:An] — __,UZ(PCK 0,80 ) ’Uz—|—1(ra B )i,i+1 e — ’UnB (I‘g B )’i,nﬂa
k=0
] 0.80:28; 2B 0 3028 0 3028 ]paOBO 0,30
i FPj i j ’ af,
@37) Y ECTIGE GO | Gra, BTG | Gra BTG | Grall > (TS )i,
k=0
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n—1 0,40

fus P8

(4.38) SUEIEE) | Granl — 0,
k=0

n—1 ) s . a 0,50
(4.39) STEPIE G| Gra,] — BV IE | Gra, B IEY | Gra,) T 0.
k=0

If we admit for a while these estimates, it is easy to derive Theorem 4.1 by an application of Theorem
VII-5-2 from Jacod et al. [14] e.g., combined with equality (1.10), (2.11), Lemmas 3.3 and 3.4.
In the following computations, Lemma 3.1 is going to be frequently used without being quoted. Fur-
thermore, the notation ¢, refers to any subsequence converging to 0: most of the time, it is equal to
some positive power of \/nlA—n or /A, the power possibly depending of the Holder exponent +.

Proof of (4.33). It is clear that

B IG | Gean) 1 00, b(00). X, ) (57287, Xea, ) m*™ (Xya,) = m* 0P (Xpa,))] -

\/_

From m®P(z) = z + fOA" EX? (b(a, X2P)) dt, it readily follows using equations (2.17) and (2.18) that
the difference m®"#° (z) — m® 8% (1) is equal to

lui

Ui+ Uny A

The completion of proof of (4.33) is now straightforward.

—Anaaib(ozo, x)

Proof of (4.34). With the previous arguments, one justifies that E*"#°[C% | Gea ] B A [C7 | Gra,] =
R(n™2, Xgn, ); thus, this term has a negligible contribution. On the other hand, one easily gets

0 80 2gs i 1 Lol L
BB 6 G ] = =Y / /0 dl di' [872(B*, X, )0nblo (D), Xea,)ln

nAn 0
l1,l2

XIS 728, Xkan) By b0 (1), X i X Vit (X, )+
2 (Xia,) = m O (Xyn, )iy (2P (X, ) = o OF (Xn, )i

— €
8Oéib(aO’XkAn)'[S Q(ﬁOanAn)aajb(aoanAn)] + ZHR (17$) ’

(
1
n
so that convergence (4.34) holds true.

Proof of (4.35). Basic estimates yield E”‘O’BO[(QQI?)LL | Gka,] = R(n~2,z) and the result follows.
Proof of (4.36). One has that

1
a,807 2Bi — 1 -3 )
B Gl = —mx [ AT {055 7 (A0) Xiea)
% [((mao,ﬂo _ ma,ﬂi(l))(mao,ﬂo _ ma,ﬂi(l))*) (Xpa,) + (Vao,ﬂo _ Va,ﬂi(l)) (chAn)] } )

Terms involving the difference with m®# are clearly negligible. For the others, use the equality
Virh (@) = iy wi+ [y B (S 10 (B, X27)4bu (o XP2) X 40, (00 X0V X[00) dt—mfy? (w)mi2” (),

l1,l2

18



and equations (2.17), (2.18) to obtain that the difference Vo"#°(z) — V*Ai()(z) is equal to
i
Vn

This completes the proof of (4.36).

- 2An(8gi+155)(ﬂ0,x)qii/%1 L 2An(8gnBSS)(ﬂ0,:v)% +R (en%,x) .

~2A,,(95,85)(8°, z)

Proof of (4.37). We neglect the second product since E*°»3’ [é,fl | Gk, ] E° ’ﬂo[é}fj | Gka,] = R(n™2, ).
For the first term, we immediately obtain

p B 1 Lot _ _
B [E8 |GkAn]:n A2 > /O /O dl dl' (05,55 (Bi(1), Xk, )i 12108,9S ™ (B; (1), Xk, )isa

™o ls,la
x B2 [((X(k—e—l)An —m®H O (Xpa, )t (X pnya, — m@H O (Xea,))i, — Vi (XkAn))
X ((X(k+1)A,, — m P (Xpa, s (K ernyan, — m@PH (Xga, )i — Vljflj(l’)(XkAn)) | an] :
Long but standard computations give that the expectation inside the sum satisfies
BT | Gran] = An? (510,15 (5 s + (5211 14 (5%)105] (8% X)) + R(A2en, Xga,)-
The end of the proof of (4.37) now follows easily.
Proof of (4.38). It is clear since E®’ ,,30[(651-)4 | Gka,] = R(n72,2).

Proof of (4.39). Using standard estimates, one has

1 1
B2 [E0 | G ] = > /0 /0 dl dl' [S(B, Xea,)Pa;ble (1), Xea, i

1

nA,/? A

(05,552 (B; 1), Xea oo % B [(Xanya, =m0 (Xpa, )

x ((Kggsnan = m O Xn, ) Kesna, = m 5O Xa, )i = Vi (Xia,)) | Gra
= R(n"'vVAn,Xia,).

Furthermore, it is clear that B »° [f;:’ | Gk, ] B2 [f,f] | Gka, ] = R(n™2, XA, ). This completes the
proof of (4.39).
O

5 Validity of the LAN property under other assumptions

In this section, we consider a new set of hypotheses, different of (R), (D) and (E), and we discuss the
validity of the result of previous sections under these assumptions. Our motivation is to extend the
class of ergodic models that we may consider for the LAN property, to a class of SDE’s with bounded
drift coefficient (for which (D) can not be fulfilled). Assumptions (R) and (D) have to be replaced
by the following ones.

Assumption (R’): this is the same assumption as (R), except that b(«a, z)| < ¢(1 + |z|) is replaced
by |b(e,z)| < c.
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Assumption (D?”): there are constants Ky > 0 and ¢y > 0 such that
V(a,z) € 04 xR (|z| > Ky = b, z).x < —cglz) .

An analogous assumption to (D) is made by Florens-Zmirou in [4] (see also Has'minskii [11]). Now,
we are going to briefly justify than under (R’), (D’) and (E), X*# is ergodic: the main tool is time
uniform controls on exponential moments which we now state.

Proposition 5.1. Let fo(z) be a smooth function which coincides with exp(C|z|) for |x| > 1. Under
(R?), (D?) and (E), there is a constant Ce > 0 such that

1. for any C € [0,C¢), one has for some constants A = A(C) > 0 and K = K(C):

(5.40) V>0  EXPfo(Xy) < fo(zo) exp(—At) + K.
2. (Xta’ﬂ)tzo is ergodic and its unique invariant measure p®P satisfies for any C < Ce:

(5.41) /Rd exp (Clz|) u®?(dz) < .

Proof. We apply the same arguments as for the proof of Proposition 1.1. Using assumptions (R’) and
(D?), check that for |z| > 1, one has L*# fo(z) < C fc(:c)(b(a’w)'x + £ 1 K,C), hence L*P fo(z) <

|z |z]
—C cofo(z)/2 for |z| > (4K1/co) V KoV 1 and C < ¢y/(4K2). Thus, if g(t) = Eclaﬂfc(Xt), one has
proved that ¢'(t) < —Ag(t) + K (with A = C ¢y/2) and (5.40) easily follows.
Since one gets time uniform control on moments, the existence of an unique invariant measure is a
consequence (see Has’minskii [11]) of the strict positivity of the transition density, this fact being clear
under (R’) and (E’). The proof of (5.41) is obtained as for (1.5).

O
We now state that the LAN property is also valid for this class of models.
Theorem 5.1. Under (R’), (D’) and (E), the conclusion of Theorem 4.1 remains true.

Proof. Apply exactly the same arguments as for Theorem 4.1. The main difference comes from the
estimates of Proposition 1.2, which have to be adapted to the new hypotheses. Actually, one can prove,
without difficulty, that estimates (1.6), (1.7), (1.8) and (1.9) are valid without the factor exp(£ct|z|?):
clearly, this modification does not change the result, since uao’ﬂo has polynomial moments of any
order.

O

The reader may have understood than weaker forms of assumption (R’) and (D?’) are available: the
crucial fact is to ensure that /ﬂo’ﬂo has enough moments to control the growth of the derivatives of b
and S. For instance, if one replaces b(a,z).z < —cg|z| by b(e, z).2 < —colz|” with 4/ € (0,1) (this
ensures polynomial moments for uao’ﬂ up to some order ¢qq), one can explicit the maximal polynomial
growth order which is allowed for the derivatives of b and S.

A Estimates on the transition density function

This Appendix is devoted to the proof of Proposition 1.2, which assumptions we assume.
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A.1 Proof of (1.6) and (1.7).

Owing the Markov property, note that it is sufficient to prove these estimates only for ¢ < T, where
Ty > 0 is an arbitrary small positive constant depending only on b and S.

Our techniques are based on a Girsanov transformation. We introduce some notation and recall some
well known results.

For sake of simplicity, p®P(t,z,y) (resp. E*?) is simply denoted by p(t,z,y) (resp. E). We also
omit the parameters o and 3 in the coefficients b and S. E° and p°(t, z,y) refers to the law of the
SDE’s (1.3) where the drift coefficient is removed, i.e. X; = z + fot S(X)dBs (B being a Brownian
motion under E?). We set Z; = exp(f(f S 1 X,)b(X,)dBs — %fg |S~1(X5)b(X5)|?ds). Since S~1b has
a linear growth, (Z;);>0 is a martingale (see Benes’ criterion, [15] p.200) and this allows a Girsanov
transformation.

Furthermore, it is well known (see Aronson [1], Friedman [5]) that p°(¢,z,y) is smooth and satisfies

1 |z — y|? 0 K |z — y|?
. ) < < -
K z -yl
0

for some uniform constants. We are going to derive (1.6) and (1.7), from (A.42) and (A.43) using the
announced Girsanov transformation. The following Lemma gives the other necessary estimates.

Lemma A.1. For any pu1 > 1, any q > 0, there are some constants Ty > 0, ¢ > 0, K > 0 such that
for t <Tpy, one has

B (242 (1+ X)) + B (2,11 + 1Xu)?) < K exple ¢ |af?) (1 + Jo])".

Proof. Since for any r > 0, EX (1 + |X;|)” < K(1 + |z|)", it suffices to prove Lemma A.1 when ¢ = 0.
Fix A > 0. One has that /\fot |S7H(X,)b(Xs)|2ds < AKt(|z|* + SuPgeo, g [ Xs — z|?), and besides,
one easily checks E) exp(AKt supsefo,g | Xs — z|?) < K for t small enough (use e.g. a time-changed
Brownian motion coordinate-wise); thus, for t < Ty()\), one obtains that

(A.44) B exp (/\ / t |S‘1(Xs)b(Xs)|2ds> < K exp(ct|z]?).
0

Write Z/ = exp (,Ul JESYX,)b(X,)dB, — 2 ! |S*1(X5)b(XS)|2ds) exp (uf s |S*1(X5)b(Xs)|2ds),
take the expectation and apply the Cauchy-Schwarz inequality: the first term is equal to 1 and the
second one is estimated by (A.44) for ¢ small enough. This completes the proof of the estimate for
EX(Z}'"). Same arguments apply for E2(Z, *).

O
A.1.1 Proof of (1.6).

Owing the Girsanov transformation, one has

(A.45) p(t,z,y) = p°(t, 2, 9)ES (Z¢ | Xi = y).
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To deal with the above conditioning, we invoke the law of the diffusion bridge from Xg =z to X; =y

(see Lyons et al. [20] e.g.), i.e. an other Girsanov transformation, which transforms the Brownian
: . . Vzpo(t_U;Xuyy) : _ t -1
motion B, in B, + fo S(Xu)Wdu. Hence, since Z; = 1 + fo Zs ST (X5)b(X;) dBs, one gets

Eg (Zt | X = y) =1+ ) /t Eg [Zs b(Xs).Vpo(t - SaXSay)] ds.
0

pO(t, 2,y

Applying Holder’s inequality (with g and po conjugate), Lemma A.1, upper bounds (A.42) and
(A.43), one obtains (for ¢ small enough) that |Eg [Zs b(X5).Vap®(t — 5, Xs,9)] | is bounded by

dz o=z Jz—yP ]
2 _ _
K exp(ct |z]®) (1 + |z]) [/Rd sU2(t — 5)(d+Du2/2 exp ( cs 2y, (t — s)

1 |z —y?
14/ (1 — ) @D2=dfew) “P\" oy )

We now choose pz closed to 1 to ensure that (d+ 1)/2 —d/(2u2) < 1: it readily follows that

K exp(ct|z]?) (1+ |=|) exo [ — |z — y|?
PO (t, ,y) {(d=1)/2 p at )

< K exp(ct |zf?) (1+ |z])

B (Z:| Xe=y) <1+

Using exp(c t |z]?) |z|/t4"1/2 < Kexp(c' t |z|?)/t¥? combined with the inequality above, equality
(A.45) and upper bound (A.42), one completes the proof of (1.6) for ¢ small enough.

A.1.2 Proof of (1.7).

From equality (A.45), Jensen’s inequality yields
1 1
pt,z,y) ~ p°(t, z,y)

with Z71 =1 — [/ Z71 S~ (X,)b(X,) dBs + [y Z;' |S~'(X;)b(X;)|? ds. Introducing the diffusion
bridge as before, we can prove that

(A.46)

IA

E) (Z7' | Xe =)

(A.47) =

K omplot il o (o)

t
0 -1 ¢o—1 _

Besides, using Holder’s inequality (with x; and po conjugate), one gets for s < ¢

By (2,715 1 (X)B(X)I* | Xe =) = mEﬁ (2,11 (XD POt — 5, X, 1))
K epletlel) 0 +jaf) o ()

POt z,y) 1d/(2p) (¢ — g)d/2=d/(2u2)"

so that choosing us closed to 1, one obtains that

t 1 K exp(ct |z|?) |z —y|?
0 —1 —1 2 _ _
(A48) E, (/0 ds Z; " |S (Xs)b(Xs)|” | Xy = y) S Oy 72 Xp( dt ) '

Combining (A.46), (A.47), (A.48) and (A.42), one completes the proof of the lower bound of p(t, z,y)

for ¢t small enough.
O
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A.2 Proof of (1.8) and (1.9).

The arguments being similar for both estimates, we only detail the proof of (1.8). Using Jensen’s
inequality and Proposition 2.2, one obtains:

v

= 5 | Oas D® o, v - 1 d
Y | Sar ba X)) < | dyp™ ey BT Y000 X0 Un)| | X =y
=1
14
t Xaa/B d
< _V]Egaﬂ p z, /3 Z 5 a Xlﬂléa/f Ull)
t 7/8(t T Xt, =1

PP (ta X7 ﬁ)rl
@B (t,2,X )

is bounded by exp(c t|z|?) up to choosing Hl closed to 1 (see the arguments used to prove (A.48)).

On the other hand, E3”| le 1 ((9%Xl1 . Uy,)|#2] is estimated by ¢3/#2/2(1 + |z|)?, applying the

arguments as in the proof of Lemma 3.3. We are finished.

Apply Hoélder’s inequality (with g1 and po conjugate). On one hand, check that D [

O
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