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Abstract

In this paper, we present two new discretization schemes for reflected stochastic differential equa-
tions: their constructions are aimed to achieve the order 1 for the weak convergence, under some
conditions, improving the classical order 1/2 obtained with the projected Euler scheme (see Con-
stantini et al. [4]). We discuss the approximation of functionals of the reflected SDE, when the
time interval is finite or infinite (i.e. stationary problem).
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Introduction

We consider (X¢)s>0, a reflected stochastic differential equation (RSDE in short) in D, with oblique
reflection in the direction 7, i.e. the R%-valued process which solves

t t t
(1) Xt:x-l-/o B(X,) ds+/0 o(Xs) ale+/0 v(Xs) dks,

where
e W is a Brownian motion in R%

e D is a smooth bounded domain of R¢ (z € D)
t

e [, is a process increasing only on 0D: k; = / 1x,cop dks
0

e 7y is an unit inward vector.

To ensure the existence of such a process, we now state some hypotheses on B, ¢, v and D, which are
assumed to be fulfilled in all the sequel.

Assumption (R):
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(R1) the domain D is bounded and infinitely differentiable: we denote n(z) the unit inward normal
vector at z € 0D.

(R2) the functions B, o, v are of class C™ on D.
(R3) the direction 7y is uniformly non tangent to 9D, i.e.
Vx € 0D v(z).n(z) > po > 0.

Under these assumptions®, there is an unique strong solution to (1) (see Lions and Sznitman [11],
Saisho [13] and references therein). Let us denote by L the second order operator defined on C?
functions by

d d
1 *
Lg(z) = Bi(x)0z,9(x) + 2 > lo()o™ (2))i,;85, 4, 9(@)-
i=1 iyj=1
In the following, the regularity of the law of X} is going to be involved; to ensure it, we assume an
uniform strict ellipticity condition (see Cattiaux [3] for hypoelliptic hypotheses):

Assumption (E): for all z € D, one has o(z)o(z)* > € I; where € > 0.

Our main objective is to discuss how to accurately evaluate E; [f(X1)], or By [f3° f(X;) ds] when it
is well defined, using Monte Carlo simulations.

Let us now stress our attention on the evaluation of E;[f(X7)] for bounded measurable functions f.
Generally speaking, the law of X; is not explicit, hence only numerical procedures are available: we
focus on an approach using discretization schemes for the equation (1), which enable to evaluate the
expectation of interest using Monte Carlo simulations.

For SDEs without reflection solving simply X; = z + fOtB(XS) ds + f(f o(X,) dW,, we may use an
Euler scheme X" defined, if we consider N discretization times ¢; = i h with h := T /N, by

(2) Xg‘ = z
Xt = X!+ B(X]) (tivr — ti) + o(X2) (W, — Way).

tita
This numerical procedure is easy to implement since at each step, it requires only the additional
simulations of d independent Gaussian variables for the Brownian increments. This provides an order
1 scheme for the weak approximation, in the sense that the weak error converges to 0 at the rate h:

E, (£(X5)) —Es (f(X1)) = O(h).

Actually, one even has an asymptotic expansion in power of h at any order, under some conditions
(for smooth functions f, see Talay et al. [15]; for measurable functions f and non degenerate diffusion
coefficient o, see Bally et al. [1]).

But, when we consider SDEs with boundary conditions, the derivation of 1-order tractable schemes is
not as easy as before.

1. SDE with killing boundary. If we are interested in the computation of E;[17<,f(X7)] where
7 = inf{t : X; ¢ D} is the first exit time from D for X, an Euler scheme X" defined by (2)
with the rough exit time 7" = inf{¢; : X' ¢ D} yields only an 1/2-order scheme (for the weak
error) (see Gobet [8]) and additional simulations involving Brownian bridge laws are necessary
to obtain an 1-order scheme (see Gobet [8] [7]).

lthe C'*° condition is too strong for this result, but additional regularity will be needed later in the paper.




2. SDE with reflection in a half-space. For RSDE in a half-space with a constant reflecting direction
v(z) = 7, Lépingle [10] suggests to use a reflected Euler scheme, defined by

® {0 5
Xh = XZ +B(Xt’z) (tiv1 — t;) +0(X,{:)(Wti+1 - W)+ (kZ+1 — kg)

tit1

The key fact is that once obtained XZ, the simulation of X{; 41 18 easy, using d Gaussian variables
and an exponential one, all being independently drawn: the precise formulation is stated in
Proposition 2.1 below. This scheme is of order 1/2 for the strong error.

3. SDE with normal reflection in general domain. In this setting, Constantini et al. [4] study an
Euler scheme with projection on the boundary. If we denote by 7p(z) the orthogonal projection
of z on D, the approximation process is defined by

(@) { Xg =
XZH = 7D [thf + B(thﬁ) (tig1 — i) + U(XZ)(WQH - W) -

They prove that this scheme achieves the 1/2 order convergence for the computation of E; [f(X7)]

for smooth functions f with vanishing conditions on 9D (the approximation of E;[f(Xr)
T T ¢

exp(— [y c(Xy) ds— [y MX, fo (Xy) exp(— [y e(X) ds— fo s)dks)dk,] is also studied

under some conditions).

Actually, 7p(z) is uniquely defined only in a neighborhood of D and it may happen that Xg +
B(X[) (tig1 — ti) + o(X!)(Wy,,, — Wy;) does not belong to this neighborhood. In that case,
the choice of the projected point can be arbitrary made, since this event has a probability of
occurrence which decreases to 0 as exp(—c/h) for some ¢ > 0, and hence has no incidence on
the order of convergence.

Hence, for general RSDEs, an 1/2 order scheme is available, which provides a quite slow convergence
for numerical algorithms.

OBJECTIVE. Our aim is to construct new approximation processes X" based on N = T'/h
regularly spaced discretization times (¢;);, for which the weak convergence is of order 1:

E, (f(XP)) - B (£(Xr)) = O(h).

It is worth saying that these schemes should be easy to simulate. In this paper, we give two answers
to this problem:

1. first, we suggest an Euler scheme with symmetry w.r.t. 9D (see section 1).

2. second, we propose an Fuler scheme with oblique reflection in a half-space, which locally ap-
proximates D (see section 2).

The first procedure is a bit easier to 1mplement but it enables to obtain good evaluations only on
quantities of the form E, [f(X7) exp(— fo )] under some conditions. The second scheme turns
to be more sophisticated and yields good approx1mat10ns on more general quantities involving in par-
ticular the local time (k¢)o<s<7-

For sake of simplicity, we restrict in section 1 and 2 to the problem of computation of E; [f(X7)], when
f is smooth: the case of measurable functions is handled in section 3, whereas the stationary problem
(i.e. the evaluation of E, [[;° f(X;) ds]) is discussed in section 4. Detailed proofs of the theorems
presented in this paper and additional results are given in Bossy et al. [2] and Gobet [7].



1 Euler scheme with symmetry w.r.t. 0D

We now recall few basic facts from differential geometry involving the functions projection on D parallel
to v or symmetry w.r.t. 0D parallel to -y. We follow the notation from Gobet [8].

Property 1.1. Under (R), there is a constant R = R(D,~y) > 0 (which depends only on the geometry
of the domain D and on the constant py in (R3) related to vv) such that the following properties hold.

1. For any z € {z : d(z,0D) < R}, there is an unique s € 0D and z; € R, s.t.
z =5+ 2z ¥(s).

The point s := wgD(m) is the projection of x on 0D parallel to ~.
The real z1 := F7(z) is the algebraic distance (related to the vector fields v) between x and 0D.

2. The functions 7}, (x) and F7(z) are of class C*® on the compact set {z : d(z,0D) < R}.
We arbitrary extend them in Cp° on the whole space, with the conditions F7(.) > 0 on D and
F7() <0 on D°: hence, one hasBD {reR? : F(z) =0}.

3. The projection of x on D parallel to vy is defined on {x : d(z, D) < R} by:

mp(z) =z = (F(2))” v(myp(z))-

4. The symmetric of x w.r.t. dD parallel to vy is defined on {z : d(z,0D) < R} by:

Symjp(z) = m3p () — F'(z) (m5p(2)) =z — 2F7(z) y(7)p(z))-

5. We denote by Sym],(z) the function which is equal to z if z € D, and Sym} (z) if ¢ D and
d(z,0D) < R, i.e.
Sym},(z) = z — 2(F(2))” v(m3p(2))-

Definition 1.1. Euler scheme X" with symmetry w.r.t. 0D.
It is defined by:

~h
(5) BT h h
X = Sym% [Xti + B(Xti) (tit1 —ti) + O'(Xti) (Wt¢+1 - th)] .

Its simulation is straightforward since it only requires realizations of the Brownian increments.

Actually, X7 + B(X}) (tir1 — i) + o(X1) (Wi, — Wy,) may not belong to {z : d(z, D) < R}, the
set of definition of Sym},: in that case, we shall take 72 o= YZ e.g., this choice having anyhow no

incidence on theoretical and numerical convergences Note that this scheme enables to approximately
simulate quantities such as f(X7) (or f(X7)exp(— fo (X3) dt)) but not fo (X3)dky.

We now state the main result concerning the analysis of the weak error for X",

Theorem 1.1. Assume (R), (E) and that f is a C'(;HO‘(E, R) function (for some a € (0,1)) satis-
fying 7.V flap =~7.V(LS) o -



If any case, the convergence is at least of order 1/2 for X"
(®) E, (/(X1)) ~Bx (f(X1) = O (h?).

But if v is the co-normal vector (i.e. y(s) || [co*](s)n(s) for all s € D), X" achieves the 1-order
convergence:

h

(7) E, (f(X7)) — B (f(Xr)) = O ().
We shall briefly comments the above result.

1) First, the fact that the co-normal vector plays a key role in this setting is not surprising, since
in the PDE’s theory, this is also a privileged vector for the reflecting direction. Indeed, if we
consider the function u(t,z) = E, (f(X7—¢)) as the solution of the second-order parabolic PDE
with a Neumann condition

Ou+Lu=0 (tz)€[0,T)xD
u(T,z) = f(z) z€D
v(z).Vu(t,z) |ap =0,

it is well known that the analysis of the above PDE is much easier when the co-normal vector
coincides with the reflecting direction (see Freidlin [6] e.g.).

2) Second, we can easily understand why this procedure with a symmetry may work better than
those with the projection from Constantini [4]. Indeed, consider the case of a normally reflected
(v = n) Brownian Motion in D = R* starting from, say, 0: this process is equal to

) l d
(Bt_ inf Bs> 2 (1Bl o < (Sym(B1)) o+

the equality in law being derived from Lévy’s Theorem (see Revuz and Yor [12]).
ELEMENTS OF PROOFS OF THEOREM 1.1 (for a complete proof, see Bossy et al. [2]). The assumptions

on f ensure that derivatives of 4 up to some order are uniformly bounded: indeed, one has u €
C?te/244e([0, T], D) (see Ladyzenskaja et al. [9]). The weak error can be decomposed by writing

=2

-1

E, (F(XD) ~E: (/(X0) = 3 Es (ultisn, X7,,) — u(ti X))

2

I
=)

We analyze each difference using [t6’s formula between t; and ¢;1, the key fact being the identification
of the semimartingale decomposition of Sym},(Y;) where ¥; = YZ. +B (YZ) (t—t;) +J(YZ.) (Wy—Wy,).
For this, we adapt arguments from Gobet [8] Proposition 3.1, to derive

d(Sym},(Y})) = ly,ep dYi + ly,g¢p dYPP +~(Y;) dLY(F(Y)),

where Y;2P is an other It6 process and LY(F7(Y)) is the 1-dimensional local time of the continuous
semimartingale F7(Y) at time ¢ and level 0. The estimate (6) now follows quite easily. But the
interesting estimate (7) is much trickier to obtain, we refer to Bossy et al. [2] for the details.



2 Euler scheme locally reflected in half-space approximation of D

2.1 Exact simulation in a half-space

We first recall the useful result from Lépingle [10], which enables to exactly simulate RSDEs in a
half-space when the coefficients B, o, v are constant. To state a precise formulation, we define
D = {z € R¢: (z—y)n > 0} and consider the solution of Y; = x + B t + 0 W; + v k;. Here, k; is
explicitly given by:

1
k; = — max <O, sup —(x+Bs+0Ws—y).n) .
n.y 0<s<t

We can simulate Y; owing the

Proposition 2.1. Seta € R andc € R. IfU taw N(0,t1;) and V faw E(1/2t) independent of U,
one has

1
(Wt, sup (a.Ws + ¢ s)) faw (U, - [a.U + ct 4+ /[a2V + (a.U + ct)2]> :
0<s<t 2

2.2 Construction of (X" k"), using an Euler scheme with oblique reflection in a
half-space approximation of D

To describe the general procedure, we need to introduce a new uniformly non tangent vector field +/,
to which we associate the constant R defined in Property 1.1: the appropriate choice of 7' is discussed
in Theorem 2.1 below.

Set X! = z and k! = 0. We assume that z := X’[: € D and l;g are defined and we now construct

" h 1.h
X, and ki .

a) zis far from 9D. If d(z,0D) > R, we set Xgﬂ =z+ B(2) (tiy1 — t;) +0(2) (Wi, — Wy,) and
kt, “ l~§h. in other words, we consider that there is no reflection between ¢; and ¢;41, which is

false only with an exponentially small probability w.r.t. 1/h. If X} ‘.1 ¢ D (which also occurs
with a negligible probability), replace Xt 4. Dy its projection on D.

b) zis not far from 9D, i.e. d(z,0D) < R

bl) We set s = wg’D(z) for the projection of z on D parallel to 7.

b2) Let Dy = {2z € R? : (z — s).n(s) > 0} the half-space delimited by the tangent plane to 8D,
at s.

b3) Let (Y});<t<t;y, be the RSDE in D, defined by
Yy =z+ B(2) (t —t:) +o(z) (Wy — Wy,) +(s) (k' — k2t).

Note that (Ythﬂ,

ktl o l%g) can be simulated using Proposition 2.1.
b4) To obtain Xt¢+1’ project Y;?H on D parallel to ~: X{;H = W%(Yt?_i_l). Actually, most of the

time, one has }’,'5’1.1 , € D and the projection is obvious.



If we are interested (as in Constantini et al. [4]) in the approximation of f(Xr)exp(—Zr) — fOT h(X})
exp(—Zy)dk; with Z; = [ ¢(X;) ds+ [y A\(Xs)dks, we may use standard discretizations of the integral,

which we can simulate since one has obtained realizations of (X,Q 1 kg o kg)ogig N—1-

We now give the weak error for the computation of E; (f(X7)).

Theorem 2.1. Assume (R), (E) and that f satisfies the same assumptions as in Theorem 1.1.
For any uniformly non tangent vector field v', the weak convergence for X" holds with order at least
equal to 1/2:

(8) E(f(X}) —E(f(Xr) = 0 (h'/2).
But if v is the co-normal vector, the choice v'(.) = v(.) leads to the 1-order convergence:
(9) E, (f(XF)) — B (f(Xr)) = O (h).

When the reflecting direction is not the co-normal one, we may use for simplicity 7'(.) = n(.).

ELEMENTS OF PROOF (for a complete proof, see Gobet [7]). As before, we used the PDE solved
by u(t,z) and this leads, after some tricky computations, to the general estimate (8). Actually, the
term of order h!/2 can be interpreted as an integral on the boundary, involving the explicit transition
density function p;(z,y) of Y; defined in b3). To remove this term and achieve the order 1, we prove
that in the case of co-normal vector with o' =+, the function p(z,y) |[ycap has some nice symmetry
properties w.r.t. y. For example, if D = {y € R? : y; > 0} and Y; = x4+ 0 W; + 7 k; is reflected in
D, we prove that the function (y2,- -+ ,y4) — Pt (w, T p (@) + (0,92, - ,yd)*) is an even function in
each y;.

3 Extension of the results when f is measurable

Theorem 3.1. The theorems 1.1 and 2.1 are still valid if f is a bounded measurable function, satis-
fying d(Supp(f),0D) > 0.

ELEMENTS OF PROOF. Formally, the approach using the PDE solved by u remains the same; actually,
the main point consists in deriving time uniform control on quantities such as B, (0%u(t;, X)), even
if derivatives of u for t; closed to T' may explode for irregular functions f.

Following Bally et al. [1], we used Malliavin calculus techniques to transform the above expectation
using an integration by parts formula. It seems to be especially difficult in our setting because we deal
with piecewise RSDEs: the assumption on the support of f however enables to develop a quite easy
approach. Indeed, this support condition ensures that derivatives of u are bounded near 9D, so that
we only needs to apply Malliavin Calculus to the law of X" restricted to the interior of D. But strictly
inside D, it behaves like standard Fuler scheme without reflection, so that the classical integration by
parts formula can apply. This kind of arguments are used in Gobet [8] to deal with killed diffusions.

4 The stationary problems

In this section, we present a numerical procedure for the computation of

e) = | [~ 1060 .
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for z € D, using Monte Carlo simulations, where X is the RSDE defined (1). For the details, we refer
to Bossy et al. [2].

Under (R) and (E), (X¢)¢>0 is ergodic: we denote by p its invariant probability measure and we set
u(f) = | f(z)u(dz) whenever this quantity is finite. Since the Doeblin’s condition is satisfied, one
D

has

sup [Eg (f (X)) — u(f)| < Cexp(=At)

T€D
for some A > 0; hence, u(z) is well defined (see Freidlin [6]) if we impose

u(f) = 0.

We assume this assumption in the sequel. Moreover, one knows that u is the solution (up to an
additive constant) of the elliptic PDE

{Eu+f=0 z €D
v.Vu|sp =0.

The computation of u is motivated by a study by Faugeras et al. [5], which deals with the 3-dimensional
reconstruction of the electrical activity of the brain from electroencephalography and magnetoen-
cephalography: their approach leads to solve the above PDE (where the domain D C R3 corresponds
more or less to the skull of the patient) only at few points « € 0D, this fact justifying the Monte
Carlo approach for a performance purpose.

For the numerical procedure, we adapt ideas from Talay [14], Talay et al. [15], who consider the case
of SDEs without reflection. If h is a time discretization step, we denote by X” one of the two schemes
X" and X" studied in sections 1 and 2: as for X , X" satisfies an ergodic property and we denote by

p! its invariant probability measure. We write (X/7),>1 for some independent copies of X".
Thus, we may evaluate [;° B, [f (X;)] dt by

RY G U0 - )

since by the ergodic theorem and the weak approximation estimates for X", it is approximately equal,
for h small, M and ph both large, to

R (B 7K~ SO} = 0D (B () = SO} = [ @7 060] = (1) = o),

Actually, the main difficulty consists in justifying that the weak estimates for X" are somehow valid
uniformly in time ph = T — oo (see Talay [14]). For this, it is enough to prove that the derivatives
of E; [f (X¢)] converges exponentially fast to 0 when ¢ — oo. This is the following key result, which
seems to be new as far as we know.

Theorem 4.1. Assume (R), (E), and suppose that f is a bounded measurable function satisfying

u(f) = 0. Then, for any multi-index o and any integer k, one has

Vi>1  sup |0F05EL (f(X))| < Cexp(=At),
€D

for some XA = Aa, k) > 0.



5 Conclusion

We have proposed two new implementable schemes for the weak approximation of (X;);>0, a RSDE
with oblique reflection. The first one is built using an FKuler scheme on which we apply a symmetry
procedure at the boundary: it is convenient if we are interested in the simulation of f(X7) e.g.. The
second one consists in locally approximating the domain in a half space, in which a reflected FEuler
scheme is easy to simulate: this leads to the evaluation of X7 but also of its local time k;.

Both schemes give an 1-order convergence for the computation of E; (f(X7)) when the reflecting di-
rection is the co-normal one. Anyhow, preliminary numerical experiments illustrate that they work
better than the usual projected Euler scheme (see Constantini et al. [4]). On the figure 5.1, we com-
pare the projected Euler scheme and the Euler scheme with symmetry, in the case of a 2-dimensional
Brownian motion (z = 0) reflected in the unit sphere : it is clear that the weak convergence is much
faster for the Fuler scheme with symmetry. Analogous results are available for the scheme using a
half-space approximation.

0.75 T T T T T

T T T T
Euler scheme with symmetry -------
Euler scheme with projection

0.7

0.65

0.6

0.55

o5 —

0.45 1 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500

F1G. 5.1: evaluation of E, || X||? w.r.t. the number of discretization times N = T'/h.
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