Finite volume method for the Cahn-Hilliard equation with
dynamic boundary condition

AixMarseille Université

Flore Nabet

Aix-Marseille Université, FRANCE
flore.nabet@latp.univ-mrs.fr

We study the evolution of binary mixtures taking into account the effective in-
teraction between the wall (i.e the boundary I') and two mixture components.
This phenomenon is described by the Cahn-Hilliard equation with non-linear
dynamic boundary condition: Find ¢ : (0,7T) x Q — R,
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where c is called the order parameter and p the chemical potential.

() c R? is a smooth connected bounded domain, T, is a bulk mobility, o,
is the fluid-fluid surface tension, I', defines a surface kinetic coefficient, o, a
surface capillarity coefficient and f. is the surface free energy density:.
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Bulk free energy density f; Interface thickness e

The free energy functional associated with this problem is the following:
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and formally verifies:
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Remark: The standard Neumann boundary condition d,c = 0 can be re-
covered by setting ', = +o00, o0, = 0 and f, = 0.

1. FV framework

¢ Space discretization: 7 = (91, 990)
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Let N € N* and T €]0, +00].
Vn € [0, N].

e Time discretization:

T
Time step: At = N = ty, = nAt,

e Discrete unknowns: Forn € [0, N|,
il = (e and 2 = (e ) where e = () ceon, ¢y = ()reom.
For ur € R7 and v,y € R,
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e Discrete H!' seminorms:
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where 1, = uy it u; satisfies Neumann boundary condition.

2
9 de f V, — VU,
s ()

vey

| Uoom

e Discrete projection: For u € CU([0,7] x Q) and n € [0, N] fixed,
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e Discrete free energy :
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2. FV scheme

e Consistent two point flux approximation for Laplace operators in (2.

e Consistent two point flux approximation for Laplace-Beltrami op. on I'.
e Semi implicit approximation in time = Newton method.

e Coupling between interior and surface evolution equations
through flux terms.

Find (¢, ju!), such that ¢) = PScg and for all n:
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where d/* = (f«(b) = f.(a))/(b— a).
4. Numerical results

3. Theoretical results

Theorem : Discrete energy equality
For ¢ € R given if there exists a solution (¢!, l"!) of (S), then:
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Theorem : Existence of a discrete solution
For all ¢, there exists at least one solution ((c!’, 1)), of (S).

Main tool: Topological degree theory.

Theorem : Convergence

Consider the problem (P) on a bounded domain . Then, for all ¢y € HY(Q)
such that v(cp) € HY(I) there exists a weak solution (¢, ) on [0, T[ such
that:

c€ L®(0,T; H'(R), ~(c) € L®0,T; H'(T)), we L*0,T; H' (),

and for all ¢ > 1, there exists a subsequence such that
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Main tools: Bounds on discrete solutions - Uniform estimates of time and
space translates on 2 and I - Kolmogorov theorem - Discrete H! compactness.

Theorem : Error estimate (Neumann boundary condition)
Assume that the solution (c, ) of (P) satisfy ¢ € C*([0,T], H*(Q)) and
1 e CH[0, T, H*(R)), then:

N PGc(t™) — chly , < C (At +size(T)).

Remark: Theseresults are true with a fully implicit method with At < Aty.

Work in progress: Error estimate for dynamic boundary conditions.

Case 1: Phase separation dynamics

Neumann case parameters: -

eBulk: e=0.1.T,=0,=0.1 4 .

e Time: 7' = 0.03, dt = 0.005.

Case 2: Interface dynamics contact-angle
Density: f.(c) = cos(fs)c*(5¢ — 1)
~ In accordance with [4]

e Bulk: e=04,1,=0,=0.1

Subcase 1: . = f,
Parameters: Domain size 8 X 4

~» In accordance with [1]

Parameters: Lateral domain size ~ 2

2

Subcase 2: f.(c) = gs¢® —
~ In accordance with |3]

Parameters:

e Surface: [, = 1077 o.=0
e Time: T' =100, dt = 0.1

(hs + gs)c

e Bulk: e=03,1,=0,=0.1
e Surface: [, = 10
e Time: T'=0.75, dt = 0.05.

o0 N =

e Bulk: e=0.1,1,=0,=0.1
e Surface: [, = 10
e Time: 7' = 0.025, dt = 0.005.
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Parameters: Initial concentration
e Bulk: e=021,=0,=0.1
e Surface: ', =10, 0, =0, gs = 10
e Time: dt = 0.001, T'= 0.37.
hs — O

Stationnary state, 05 = /3

Stationnary state, 05 = 27 /3
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