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We study the evolution of binary mixtures taking into account the effective in-
teraction between the wall (i.e the boundary Γ) and two mixture components.
This phenomenon is described by the Cahn-Hilliard equation with non-linear
dynamic boundary condition: Find c : (0, T )× Ω → R,
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∂nµ = 0 in (0, T )× Γ;

c(0, .) = c0, in Ω;

where c is called the order parameter and µ the chemical potential.
Ω ⊂ R2 is a smooth connected bounded domain, Γb is a bulk mobility, σb

is the fluid-fluid surface tension, Γs defines a surface kinetic coefficient, σs a
surface capillarity coefficient and fs is the surface free energy density.
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The free energy functional associated with this problem is the following:
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and formally verifies:

d

dt
F [c(t, .)] = −Γb

∫
Ω
|∇µ|2 − ε3

ΓsΓb

∫
Γ
|∂tcpΓ|2 .

Remark: The standard Neumann boundary condition ∂nc = 0 can be re-
covered by setting Γs = +∞, σs = 0 and fs = 0.

1. FV framework

• Space discretization: T = (M, ∂M)
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•Time discretization: Let N ∈ N∗ and T ∈]0,+∞[.

Time step: ∆t =
T

N
⇒ tn = n∆t, ∀n ∈ J0, NK.

•Discrete unknowns: For n ∈ J0, NK,
µnM = (µnK)K∈M and cnT = (cnM, c

n
∂M) where c

n
M = (cnK)K∈M, c

n
∂M = (cnσ )σ∈∂M.

•Discrete H1 seminorms: For uT ∈ RT and v∂M ∈ R∂M,
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where uσ = uK if uT satisfies Neumann boundary condition.
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.

•Discrete projection: For u ∈ C0([0, T ]× Ω) and n ∈ J0, NK fixed,
PcTu(tn)

def
= (PcMu(tn),Pc∂Mu(tn))

def
= (u(tn, xK)K∈M, u(t

n, xσ)σ∈∂M) .

•Discrete free energy :
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∂M(c∂M),
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2. FV scheme

• Consistent two point flux approximation for Laplace operators in Ω.

• Consistent two point flux approximation for Laplace-Beltrami op. on Γ.

• Semi implicit approximation in time ⇒ Newton method.

•Coupling between interior and surface evolution equations
through flux terms.

Find (cnT , µ
n
M)n such that c0T = PcT c0 and for all n:
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where df∗ = (f∗(b)− f∗(a))/(b− a).

3. Theoretical results

Theorem : Discrete energy equality
For cnT ∈ RT given if there exists a solution (cn+1T , µn+1M ) of (S), then:
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Theorem : Existence of a discrete solution
For all c0T , there exists at least one solution ((cnT , µ

n
M))n of (S).

Main tool: Topological degree theory.

Theorem : Convergence
Consider the problem (P) on a bounded domain Ω. Then, for all c0 ∈ H1(Ω)
such that γ(c0) ∈ H1(Γ) there exists a weak solution (c, µ) on [0, T [ such
that:

c ∈ L∞(0, T ;H1(Ω)), γ(c) ∈ L∞(0, T ;H1(Γ)), µ ∈ L2(0, T ;H1(Ω)),

and for all q ≥ 1, there exists a subsequence such that

c∆t
T −−−−−−−−−→

size(T ),∆t→0
c in L2(0, T ;Lq(Ω)) strong,

c∆t
∂M −−−−−−−−−→

size(T ),∆t→0
γ(c) in L2(0, T ;Lq(Γ)) strong,

and µ∆t
M −−−−−−−−−→

size(T ),∆t→0
µ in L2(0, T ;Lq(Ω)) weak.

Main tools: Bounds on discrete solutions - Uniform estimates of time and
space translates on Ω and Γ - Kolmogorov theorem - DiscreteH1 compactness.

Theorem : Error estimate (Neumann boundary condition)
Assume that the solution (c, µ) of (P) satisfy c ∈ C2([0, T ], H2(Ω)) and
µ ∈ C1([0, T ], H2(Ω)), then:

max
0≤n≤N

|PcMc(tn)− cnM|1,T ≤ C (∆t + size(T )) .

Remark: These results are true with a fully implicit method with ∆t ≤ ∆t0.

Work in progress: Error estimate for dynamic boundary conditions.

4. Numerical results

Case 1: Phase separation dynamics Neumann case parameters:

• Bulk: ε = 0.1, Γb = σb = 0.1

• Time: T = 0.03, dt = 0.005.

Subcase 1: fs = fb ⇝ In accordance with [1]

Parameters: Domain size 8× 4

• Bulk: ε = 0.3, Γb = σb = 0.1

• Surface: Γs = 10

• Time: T = 0.75, dt = 0.05.

Parameters: Lateral domain size ∼ 2

• Bulk: ε = 0.1, Γb = σb = 0.1

• Surface: Γs = 10

• Time: T = 0.025, dt = 0.005.

σs = 0

σs = 5

σs = 0

σs = 5

Subcase 2: fs(c) = gsc
2 − (hs + gs)c

⇝ In accordance with [3]

0.0 0.5 1.0

- hs = 3
- - hs = 0

Parameters:

• Bulk: ε = 0.2, Γb = σb = 0.1

• Surface: Γs = 10, σs = 0, gs = 10

• Time: dt = 0.001, T = 0.37.

hs = 0

hs = 3

Case 2: Interface dynamics contact-angle
Density: fs(c) = cos(θs)c

2(23c− 1)
⇝ In accordance with [4]

Parameters:

• Bulk: ε = 0.4, Γb = σb = 0.1

• Surface: Γs = 107, σs = 0

• Time: T = 100, dt = 0.1

Initial concentration

Stationnary state, θs = π/3

Stationnary state, θs = 2π/3
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