INSTITUT de MATHEMATIQUES

BENCHMARK: THE 2D DISCRETE DUALITY FINITE VOLUME METHOD

Université Nice Sophia Antipolis

FRANCK BOYER, STELLA KRELL, FLORE NABET

franck.boyer@math.univ-toulouse.fr, stella.krell@unice.fr, flore.nabet@polytechnique.edu

PROBLEM

The aim of this work is to study, from a computational point of view, the behaviour of the steady ($\theta = 0$) or unsteady ($\theta = 1$) incompressible Stokes $(\chi = 0)$ or Navier-Stokes $(\chi = 1)$ equations in the framework of the Discrete Duality Finite Volume method (DDFV for short).

Let $\mathcal{D} \subset \mathbb{R}^2$ be a connected and bounded polygonal domain (here \mathcal{D} is the unit square). For a given final time T > 0 the problem we are interested in is the following: Find the velocity $\mathbf{u} : (0,T) \times \mathcal{D} \to \mathbb{R}^2$ and the pressure $p:(0,T)\times\mathcal{D}\to\mathbb{R}$ satisfying

$$\begin{cases} \theta \mathbf{u}_t - \nu \Delta \mathbf{u} + \chi (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}, & (t, \mathbf{x}) \in (0, T) \times \mathcal{D}, \\ \operatorname{div}(\mathbf{u}) = 0, & (t, \mathbf{x}) \in (0, T) \times \mathcal{D}, \end{cases} \\ \int_{\mathcal{D}} p(t, \mathbf{x}) \mathrm{d}\mathbf{x} = 0, & t \in (0, T), \\ (\operatorname{if} \theta = 1) \quad \mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x}), & \mathbf{x} \in \mathcal{D}, \\ \mathbf{u} = \mathbf{g}, & (t, \mathbf{x}) \in (0, T) \times \partial \mathcal{D}, \end{cases}$$

where ν stands for the viscosity, $\mathbf{f} \in (L^2((0,T) \times D))^2$ and $\mathbf{g} \in (L^2((0,T) \times D))^2$

APPROXIMATION OF THE TERM $(\mathbf{u} \cdot \nabla)\mathbf{u}$

For any \mathbf{v} , \mathbf{w} s.t. div $\mathbf{v} = 0$,

$$\int_{K} (\mathbf{v} \cdot \nabla) \mathbf{w} = \sum_{\sigma \in \partial K} \int_{\sigma} (\mathbf{v} \cdot \mathbf{n}_{\sigma \kappa}) \mathbf{w}, \ \forall K \in \mathfrak{M},$$

$$\int_{K^*} (\mathbf{v} \cdot \nabla) \mathbf{w} = \sum_{\sigma^* \in \partial K^*} \int_{\sigma^*} (\mathbf{v} \cdot \mathbf{n}_{\sigma^* \kappa^*}) \mathbf{w}, \ \forall K^* \in \mathfrak{M}^*.$$

$$\underline{\text{Definition: New operator } b_{\tau}(\mathbf{v}_{\tau}, \mathbf{w}_{\tau})} = \frac{1}{m_{\kappa}} \sum_{\sigma \in \partial K} F_{\sigma,\kappa}(\mathbf{v}_{\tau}) \mathbf{w}_{\sigma}, \quad \text{with } \mathbf{w}_{\sigma} = \frac{\mathbf{w}_{\kappa} + \mathbf{w}_{L}}{2}; \\
b_{\kappa^{*}}(\mathbf{v}_{\tau}, \mathbf{w}_{\tau}) = \frac{1}{m_{\kappa^{*}}} \sum_{\sigma^{*} \subset \partial \kappa^{*}} F_{\sigma^{*},\kappa^{*}}(\mathbf{v}_{\tau}) \mathbf{w}_{\sigma^{*}}, \quad \text{with } \mathbf{w}_{\sigma^{*}} = \frac{\mathbf{w}_{\kappa^{*}} + \mathbf{w}_{L^{*}}}{2}; \\
\text{where } F_{\sigma,\kappa}(\mathbf{v}_{\tau}) \sim \int \mathbf{v} \cdot \mathbf{n}_{\sigma\kappa} \quad \text{and } F_{\sigma^{*},\kappa^{*}}(\mathbf{v}_{\tau}) \sim \int \mathbf{v} \cdot \mathbf{n}_{\sigma^{*}\kappa^{*}}.$$

THE MESHES

											X	X	VA	Δ	'V	X	Δ	Δ.	'V	X	(1)	Δ	Ĺ¥	V	X	X
										٦	X	*	\mathcal{D}	A	Δ	Ж	D	\land	∇	X	Ø	V	\bowtie	D	ĸ	ζ
											\geq	\leftrightarrow	$\langle \nabla$	₩	D	X	\mathbb{Z}	X	\mathcal{P}	ĸ	\ominus	Æ	R	D¥	×	5
		+	+	\square			+	+		٦	X	Å	$\Delta $	¥¥	X	Ж	æ	K	\Rightarrow	₩	ж	⋇	R	\triangleright	Ă	5
_		+	+				+	+	+	┨	K	D	\Leftrightarrow	X	ĸ	$\mathbf{\nabla}$	⇇	₩	✻	Δ	X	\flat	\mathfrak{P}	()*	1	>
_		+	+	\vdash	-		+	+	+	┥	\mathbf{A}	\bigtriangledown	Ż	M	∇	${}^{\circ}$	$ \geq $	坏	⊁	ĸ	Ж	X	A	X	∇	\geq
_		+	+	\vdash	-	-	+	+	+	┥	S	A	Æ	*3	Δ	Æ	К	5¥	¥	Ы	\triangleleft	¥	⋇	₽¥	¥	2
_		+	+	\vdash	-	-	+	+	+	┥	X	*	X	Ж	Ř	K	Ж	\triangleright	X	\mathbf{X}	sf	₩	₩₹	\mathbf{X}	K)	<
_		+	+		-	_	+	+	+	┥		ĸ	Ж	Ж	R	Ž	\mathbf{V}	Ø	X	\mathbf{k}	Ю	Ŧ	✻	ĸ	≯	\leq
		+	+		-	_	+	+	+	-	\geq	\triangleleft	∇	Δ	\checkmark	ZΧ	\mathcal{D}	Rt	杰	Δ	Δ	Ť	Ā	Δ	≫	5
_		+	+	\vdash	-	_	+	+	+	-	K	Δ	Δ	K¥	Δ	Ж	k	\mathbf{X}	\overline{A}	R¥	X	X	Ж	Þ	Ť	Þ
_		+	+		_	-	+	+	+	-	K	Ы	Ж	N	\triangleleft	${\mathbb Z}$	Ж	Ю	()	X	$ \mathbb{X}$	Х	X	₽	X	>
		_	_		_		+	+	_	4	\leq	S	\checkmark	A	S	æ	ĸ	׳	✻	抝	X	¥	Ж	Ħ	\mathbb{X}	>
		+	+		_	_	+	+	_	4	X	\gg	K	X	Кł	(\mathbf{x})	5	X	X	\mathbf{X}	54	¥	X	X	X	2
		_	_		_		+	+	_	4	Ы	67	ĸ	杰	Z	Ž	⊯	\mathbf{V}	X	K2	Ø	${\mathbb T}$	\mathbf{X}	Σ	×	<
							\rightarrow	\perp		4		X	K	¥	X	ю	K	Δ	7	\mathcal{D}	K	Δ	XX	\mathcal{D}	K	2
											X	X	$\overline{\mathcal{A}}$	∇	Δ	X	\times	∇	Ň	\sim	\times	\vee	∇	\mathcal{T}	\sim	X

	Т
	T
	╀
+++++++++++++++++++++++++++++++++++++++	╀
++++++++++++++++++++++++++++++++++++	╋
	t
	$^{+}$
	+
(+++)(+++++)	ŧ
++++++++++++++++++++++++++++++++++++	Ŧ
++++++++++++++++++++++++++++++++++++	t
	ŧ
	Ŧ

Uniform cartesian Triangular 🔺 Quadrangles ♦ Locally refined •

ERROR ANALYSIS

• 2D Steady Stokes tests: Bercovier-Engelman test case

 $\theta = 0, \chi = 0, \nu = 1.$

$(\partial \mathcal{D}))^2$ and $\mathbf{u}_0 \in L^2(\mathcal{D})$.

DDFV FRAMEWORK

• The DDFV meshes: primal, dual and "diamond"

• Zoom on a diamond cell *D*:

• Discrete unknowns:

 $\mathbf{u}_{\boldsymbol{\tau}} = ((\mathbf{u}_{\boldsymbol{\kappa}})_{\boldsymbol{\kappa}}, (\mathbf{u}_{\boldsymbol{\kappa}^*})_{\boldsymbol{\kappa}^*}) \in (\mathbb{R}^2)^{\boldsymbol{\tau}} = (\mathbb{R}^2)^{\overline{\mathfrak{M}}} \times (\mathbb{R}^2)^{\overline{\mathfrak{M}^*}},$ $p_{\mathfrak{D}} = (p_D)_{D \in \mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}.$

• **Discrete gradient:** $\nabla^{\mathfrak{D}}$ constant on each diamond cell,

with

$$\begin{aligned} F_{\sigma,\kappa}(\mathbf{v}_{\tau}) &= -\left(F_{\mathfrak{s}_{KK^*},D}(\mathbf{v}_{\tau}) + F_{\mathfrak{s}_{KL^*},D}(\mathbf{v}_{\tau})\right) \\ F_{\mathfrak{s}_{KK^*},D}(\mathbf{v}_{\tau}) &= m_{\mathfrak{s}_{KK^*}} \frac{\mathbf{v}_{\kappa} + \mathbf{v}_{\kappa^*}}{2} \cdot \mathbf{n}_{\mathfrak{s}_{KK^*},D}. \end{aligned}$$

Properties:

- Conservativity: $0 = \operatorname{div}^{D} \mathbf{v}_{\tau} = \frac{1}{m_{D}} \sum_{\mathfrak{s} \in \partial D} F_{\mathfrak{s}, D}(\mathbf{v}_{\tau})$ $\Rightarrow \quad F_{\sigma,K}(\mathbf{v}_{\tau}) = -F_{\sigma,L}(\mathbf{v}_{\tau}) \text{ and } F_{\sigma^*,K^*}(\mathbf{v}_{\tau}) = -F_{\sigma^*,L^*}(\mathbf{v}_{\tau}).$
- Cancellation property:

$$\llbracket b_{\mathcal{T}}(\mathbf{v}_{\mathcal{T}}, \mathbf{w}_{\mathcal{T}}), \mathbf{w}_{\mathcal{T}} \rrbracket_{\mathcal{T}} = 0,$$
where
$$\llbracket \mathbf{u}_{\mathcal{T}}, \mathbf{v}_{\mathcal{T}} \rrbracket_{\mathcal{T}} = \frac{1}{2} \left(\sum_{\kappa \in \mathfrak{M}} m_{\kappa} \mathbf{u}_{\kappa} \cdot \mathbf{v}_{\kappa} + \sum_{\kappa^* \in \mathfrak{M}^*} m_{\kappa^*} \mathbf{u}_{\kappa^*} \cdot \mathbf{v}_{\kappa^*} \right)$$

mesh	errgu	erru	errp	ordp					
1	8.11406e-16	1.48627e-16	0.678997	nan					
2	3.39314e-15	3.47145e-16	0.379343	0.908988					
3	1.20171e-14	6.46699e-16	0.199709	0.965408					
4	5.95251e-14	1.74916e-15	0.102346	0.985671					
5	2.88888e-14	5.78869e-16	0.051792	0.993596					
6	5.07121e-14	1.10146e-15	0.0260502	0.99699					
7	1.38585e-13	4.21429e-15	0.0130635	0.998543					
Rectangular mesh for $\nu = 10^{-3}$									

- Robustness with respect to the invariance property → Test on the 2D steady Stokes system:

$$\begin{cases} \nabla^{D} \mathbf{u}_{\tau}(x_{L} - x_{K}) = \mathbf{u}_{L} - \mathbf{u}_{K}, \\ \nabla^{D} \mathbf{u}_{\tau}(x_{L^{*}} - x_{K^{*}}) = \mathbf{u}_{L^{*}} - \mathbf{u}_{K^{*}}, \end{cases}$$

$$\nabla^{D}\mathbf{u}_{\tau} = \frac{1}{2m_{D}} \left[m_{\sigma}(\mathbf{u}_{L} - \mathbf{u}_{K}) \otimes \mathbf{n}_{\sigma K} + m_{\sigma^{*}}(\mathbf{u}_{L^{*}} - \mathbf{u}_{K^{*}}) \otimes \mathbf{n}_{\sigma^{*}K^{*}} \right].$$

• Discrete velocity divergence on the diamond mesh:

$$\operatorname{div}^{D}\mathbf{u}_{\tau} = \operatorname{Tr}(\nabla^{D}\mathbf{u}_{\tau}), \quad \forall D \in \mathfrak{D}.$$

• Discrete divergence on the primal and dual meshes :

$$\operatorname{div}^{\boldsymbol{\kappa}}(\xi_{\mathfrak{D}}) = \begin{cases} \operatorname{div}^{\boldsymbol{\kappa}}(\xi_{\mathfrak{D}}) = \frac{1}{m_{K}} \sum_{\boldsymbol{\sigma} \in \partial K} m_{\boldsymbol{\sigma}} \xi_{D}.\mathbf{n}_{\boldsymbol{\sigma} \boldsymbol{\kappa}}, & \forall K \in \mathfrak{M}, \\ \operatorname{div}^{\boldsymbol{\kappa}^{\ast}}(\xi_{\mathfrak{D}}) = \frac{1}{m_{K^{\ast}}} \sum_{\boldsymbol{\sigma}^{\ast} \in \partial K^{\ast}} m_{\boldsymbol{\sigma}^{\ast}} \xi_{D}.\mathbf{n}_{\boldsymbol{\sigma}^{\ast} \boldsymbol{\kappa}^{\ast}}, & \forall K^{\ast} \in \mathfrak{M}^{\ast}. \end{cases}$$

Pressure gradient $\rightsquigarrow \quad \boldsymbol{\nabla}^{\boldsymbol{\tau}} p_{\mathfrak{D}} = \operatorname{div}^{\boldsymbol{\tau}}(p_{\mathfrak{D}} \operatorname{Id}).$

THE DDFV SCHEME

For $\mathbf{u}_{\tau}^{\mathbf{n-1}} \in (\mathbb{R}^2)^{\mathcal{T}}$ and $\mathbf{u}_{\tau}^{\mathbf{n}} \in (\mathbb{R}^2)^{\mathcal{T}}$ given, we define $(\mathbf{u}_{\tau}^{\mathbf{n+1}}, p_{\mathfrak{D}}^{n+1}) \in (\mathbb{R}^2)^{\mathcal{T}} \times \mathbb{R}^2$ $\mathbb{R}^{\mathfrak{D}}$ to be a solution to the following problem

$$\begin{split} \theta \frac{\frac{3}{2} \mathbf{u}_{\tau}^{\mathbf{n}+1} - 2\mathbf{u}_{\tau}^{\mathbf{n}} + \frac{1}{2} \mathbf{u}_{\tau}^{\mathbf{n}-1}}{\Delta t} &- \nu \operatorname{div}^{\tau} (\nabla^{\mathfrak{D}} \mathbf{u}_{\tau}^{\mathbf{n}+1}) \\ &+ \chi \mathbf{b}^{\tau} (2\mathbf{u}_{\tau}^{\mathbf{n}} - \mathbf{u}_{\tau}^{\mathbf{n}-1}, \widetilde{\mathbf{u}}_{\tau}^{\mathbf{n}+1}) + \nabla^{\tau} p_{\mathfrak{D}}^{n+1} = \mathbf{f}_{\tau}^{\mathbf{n}+1}, \\ \operatorname{div}^{\mathfrak{D}} (\mathbf{u}_{\tau}^{\mathbf{n}+1}) &= 0, \qquad \sum_{D \in \mathfrak{D}} m_{D} p_{D}^{n+1} = 0, \\ \mathbf{u}_{\partial \mathfrak{M}}^{\mathbf{n}+1} &= \mathbf{g}_{\partial \mathfrak{M}}^{\mathbf{n}+1}, \qquad \mathbf{u}_{\partial \mathfrak{M}^{*}}^{\mathbf{n}+1} = \mathbf{g}_{\partial \mathfrak{M}^{*}}^{\mathbf{n}+1}, \\ \operatorname{where} \qquad \widetilde{\mathbf{u}}_{\tau}^{\mathbf{n}+1} &= \begin{cases} (2\mathbf{u}_{\tau}^{\mathbf{n}} - \mathbf{u}_{\tau}^{\mathbf{n}-1}), & \text{if } \Delta t \|\mathbf{u}_{\tau}^{\mathbf{n}}\|_{L^{\infty}}^{2} \leq 2\nu, \\ \mathbf{u}_{\tau}^{\mathbf{n}+1}, & \text{otherwise.} \end{cases} \end{split}$$

 $\theta = 0, \chi = 0, \nu = 10^{-1}, 10^{-2}$ (dash line).

→ Test on the 2D steady Navier-Stokes system:

2D LID DRIVEN CAVITY TESTS

REFERENCES

- [1] B. Andreianov, and F. Boyer, and F. Hubert. Discrete Duality Finite Volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. In Numer. Methods Partial Differential Equations '07
- [2] F. Boyer, and S. Krell, and F. Nabet. Inf-Sup stability of the discrete duality finite volume method for the 2D stokes problem. In *Math. Comp.* '15
- [3] F. Boyer, P. Omnes. Benchmark for the FVCA8 Conference. Finite volume methods for the Stokes and Navier-Stokes equations. In *Finite Volumes for Complex Applications VIII '17*
- [4] F. Boyer, and F. Nabet. A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions. In M2AN '16
- [5] T. Goudon, and S. Krell. A DDFV Scheme for Incompressible Navier-Stokes equations with variable density. In *Finite Volumes for Complex Applications VII '14*
- [6] S. Krell. Stabilized DDFV Scheme for Incompressible Navier-Stokes. In *Finite Volumes for Complex Applications VI* '11
- [7] S. Krell. Stabilized DDFV Scheme for Stokes problem with variable viscosity on general 2D meshes. In Numer. Methods Partial Differential Equations '11