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Abstract

Noise is present in many real-world continuous optimization prob-
lems. Stochastic search algorithms such as Evolution Strategies (ESs)
have been proposed as effective search methods in such contexts. In
this paper, we provide a mathematical analysis of the convergence of
a (1+1)-ES on unimodal spherical objective functions in the presence
of noise. We prove for a multiplicative noise model that for a positive
expected value of the noisy objective function, convergence or diver-
gence happens depending on the infimum of the support of the noise.
Moreover, we investigate convergence rates and show that log-linear
convergence is preserved in presence of noise. This result is a strong
theoretical foundation of the robustness of ESs with respect to noise.

Keywords: Numerical optimization, Noisy optimization, Stochastic op-
timization algorithms, Evolution Strategies, Convergence, Convergence rates,
Markov chains, Borel-Cantelli Lemma.
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1 Introduction

In many real-world optimization problems, objective functions are perturbed
by noise. Evolutionary Algorithms (EAs) have been proposed as effective
search methods in such contexts [1, 2, 3]. A noisy optimization problem is
a rather general optimization problem where for each point x of the search
space, we can observe f(x) perturbed by a random variable or in other words,
for a given x, we can observe a distribution of possible fitness values. In this
paper, we will investigate a certain class of noisy problems, which use the
so-called multiplicative noise, where the noiseless objective function f(x) is
perturbed by the multiplication with a noise term independent of x and thus
of f(x). The plain multiplicative-noisy objective function F reads

F(x) = f(x)ξ . (1)

The noise random variable, ξ, is sampled independently at each new evalu-
ation of a solution point. The multiplicative noise model is well established
[4]. For the remainder we will assume f ≥ 0 and minimization. We will
conduct our subsequent analysis on an objective function g ◦F , where g is a
strictly increasing mapping which can take on any values in R (in particular
also g(0) can take on any value in R). The noise model makes the assumption
that the dispersion of the noise (e.g. the variance, given it exists) decreases
when the optimum is approached, just as the gradient diminishes in many
optimization problems when approaching the optimum. The assumption is
realistic in particular as f might be stricly larger than zero, in which case the
noise does not entirely vanish at the optimum (but the subsequently analyzed
model is more restrictive as the minimal value of f is zero). Consequently,
such noise models are also used to benchmark robustness of EAs with respect
to noise [5, 6].

A typical goal in noisy optimization is to converge to the minimum of the
averaged value of the observed random variable. If the expected value of the
noise in Eq. 1 is positive, this means minimizing f . Using a different statistic
than the expected value as minimization goal might lead to different results
(see below).

The focus in this paper is continuous optimization (here minimization)
where f maps a continuous search space, i.e., an open subset of Rd into R.
Evolution Strategies (ESs) are a class of EAs specifically designed for con-
tinuous optimization. In ESs a set of candidate solutions evolves by adding
Gaussian perturbations (mutations) to the current, optionally recombined
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solutions and selecting some of the new solutions. In state-of-the-art ESs,
the mutation operator is adaptive and the parameters defining the underlying
probability distribution are evolving. In the case of a Gaussian mutation op-
erator those parameters are the step length (or step-size) giving the general
scale of the search, and a covariance matrix whose eigenvectors correspond to
the principal directions of the underlying ellipsoidal probability distribution.
Adaptive step-size algorithms are described in [7, 8, 9], and a state-of-the art
method for adapting the covariance matrix is presented in [10].

The fundamental characteristic of step-size adaptive ESs is that they
can constantly increase the precision, i.e., they can approach an optimum
with arbitrary precision and, ideally, the time needed to gain one order of
magnitude is independent of the initial precision, i.e., the logarithm of the
distance to the optimum decreases linearly. Formally, log-linear behavior
(convergence or divergence) means that there exists a non-zero constant value
c such that the distance to the optimum, dn, at an iteration n satisfies

lim
n

1

n
ln(dn) = c . (2)

Convergence (resp. divergence) takes place if c < 0 (resp. c > 0). Log-linear
convergence has been theoretically investigated in the case of non-noisy ob-
jective functions. The results are twofold. First, for a fixed dimension d, con-
vergence of ESs cannot be faster than log-linear [11, 12]. Moreover, optimal
convergence rates are reached on spherical functions f(x) = g(‖x‖), where
g : [0,∞[7→ R is a strictly increasing function, x ∈ Rd and ‖.‖ denotes the eu-
clidean norm on Rd, for an (artificial) adaptive step-size algorithm where the
step-size is set at each iteration proportionally to the distance to optimum
[11, 12]. An algorithm using this optimal adaptation rule is termed scale-
invariant algorithm1. Second, log-linear convergence of a realistic adaptation
scheme has been proven for self-adaptive ESs on the sphere function [13, 14].
Log-linear convergence can also be seen from another perspective and be
formalized differently as “the expected time needed to halve the distance to
the optimum is proportional to n”. Log-linear convergence formulated in
this manner has been proven for the (1+1)-ES using a 1/5-success rule on
spherical functions and certain ellipsoidal functions [15, 16].

1Scale invariant algorithms have a central place in the theory of evolution strategies.
They have been widely investigated in the case of progress rate theory that examines the
one-step expected progress towards the optimum in the limit of the dimension to infinity.
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ESs in noisy environments have been studied by Arnold and Beyer for
multiplicative noise that writes

F(x) = ‖x‖2

(
1 +

2σ∗
ǫ

d
N (0, 1)

)
, (3)

where σ∗
ǫ characterizes the “normalized” standard deviation of the noise, d is

the search space dimension and N (0, 1) is the noise random variable which
follows a Gaussian distribution with zero mean and standard deviation one
[4, 17, 18, 19, 20]. Under the assumption that d goes to infinity, Arnold
and Beyer derive a positive expected quality gain for the elitist (1+1)-ES
[20]. This implies a decrease of the expectation of the square distance to the
optimum.

However, given Eq. 1, where f ≥ 0 and the noise random variable takes
values smaller than zero, we find a simple counterexample to the convergence
of the (1+1)-ES to the optimum of the noiseless part of the objective function.
Let f(x) = ‖x‖2 and ξ take three distinct values: 1+a, 1 and 1−a each with
probability 1/3, where a satisfies a > 1. For a given x ∈ Rd, the objective
function F(x) takes 3 different values (1 + a)‖x‖2, ‖x‖2, (1 − a)‖x‖2 (each
with probability 1/3). The last term is strictly negative if x is not zero.
Therefore, once a negative objective function value is reached, the (1+1)-ES
will never accept solutions closer to the optimum since they will always have
a higher objective function value. Only solutions with noise values of 1 − a
and a larger value of ‖x‖2 have a lower objective function value F(x) and can
therefore be accepted. These solutions are likely to occur and consequently,
the (1+1)-ES will diverge log-linearly, i.e., the logarithm of the distance to
the optimum will increase linearly. And yet, the expectation of F equals the
noiseless part of the function ‖x‖2.

Starting from the observation that even if the expectation of the noisy
function equals ‖x‖2 (where convergence is expected), divergence can be ob-
served, the question arises whether and when this example generalizes to
different settings. The objective of this paper is to address the question
of how the properties of the noise distribution relate to convergence or di-
vergence of the (1+1)-ES. The results will give particular insights into the
multiplicative noise model. The results presented here are an extension of
the results presented in [21].

The second question addressed, in case of convergence, is the actual con-
vergence rate on a noisy objective function. Is the log-linear convergence
rate of ESs preserved in the noisy case? A positive answer would be a strong
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support for the robustness of ESs in noisy environments. Those results are
not present in [21] and rely on the theory of Markov chains for continuous
state space.

The algorithm investigated in this paper is the scale-invariant (1+1)-ES
which is, in the case of the non-noisy spherical function, the ES allowing
to have the fastest convergence rate per fitness evaluation [19] (excluding
weighted recombination [22, 10, 23]). This paper is organized as follows:
in Sections 2.1 and 2.2, we present the mathematical formulation of the
objective function model and of the scale-invariant (1+1)-ES respectively.
In Section 3, we put our counterexample informally into a broader context
and present empirical results. In Section 4, we analyze the convergence of
the scale invariant (1+1)-ES. In Section 5, we find that the behavior of the
scale-invariant (1+1)-ES is log-linear when minimizing these noisy objective
functions. In Section 6 the results are discussed. Proofs are presented in the
appendix.

Preliminary notations

In this paper Z+ denotes the set of non-negative integers {0, 1, 2, . . .}, Z+
-1 =

Z+ ∪ {-1} and N denotes the set of positive integers {1, 2, . . .}. The unit
vector (1, 0, . . . , 0) ∈ Rd is denoted as e1. For a set A, x 7→ 1A(x) denotes the
indicator function that is equal to one if x ∈ A and zero otherwise. (Ω,A, P )
is a probability space: Ω is a set, A a σ-algebra defined on this set and P a
probability measure defined on (Ω,A). For p ∈ N, Rp is equipped with the
Borel σ-algebra denoted B(Rp). For a subset S ⊂ Rp, B(S) will denote the
Borel σ-algebra on S. If X is a random variable defined on (Ω,A, P ), i.e. a
measurable function from Ω to R, then, for B ⊂ R, B ∈ B(R), the indicator
function 1{X∈B} maps Ω to {0, 1} and equals one if and only if X(ω) ∈ B
for ω ∈ Ω: ω ∈ Ω 7→ 1{ω:X(ω)∈B}(ω). N (a, b2) denotes a normal distribution
with mean a and variance b2. N (0, Id) is the multivariate normal distribution
with mean (0, . . . , 0) ∈ Rd and covariance matrix identity Id.
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2 Mathematical model for the fitness func-

tion and for the (1+1)-ES

2.1 Fitness function model

The objective function investigated in [21] represents a sphere function per-
turbed by a multiplicative lower bounded noise. The noisy objective function
model investigated here generalizes this model in two respects. First, the
noiseless part of the function, originally the sphere function f(x) = ‖x‖2,
x ∈ Rd, d ∈ N, is replaced by a more general function f(x) = ‖x‖α, where
α > 0. Second, the function f is composed with a strictly increasing function
g : R → R, for example g(f) = tanh(f) + f/10 − 20. The investigated noisy
function model reads

F(x) = g (‖x‖αξ) , (4)

where ξ is a random variable modeling the noise, sampled independently at
each new evaluation of a point. We assume that the law of ξ, denoted Lξ has
a probability density function denoted pξ. We also assume that the support
of pξ is the range ]mξ,Mξ[ where −∞ ≤ mξ < Mξ ≤ +∞, and mξ 6= 0.

Remark 1 In the case where g equals the identity and α = 2, the model
defined in Eq. 4 is the one used in [21] (with a change of notation for ξ).
However, in [21] we made an additional assumption on the expectation of
the noise stating that 0 < E(ξ) < +∞. This assumption guarantees a finite
expectation of the noisy objective function and an agreement of the argmin2

of f with the argmin of the expected value of the noisy objective function.

2.2 The (1+1)-ES minimizing Eq. 4

Let (Nn)n∈Z+ , be a sequence of random vectors defined on (Ω,A, P ), inde-
pendent and identically distributed (i.i.d.) with common law the isotropic
multivariate normal distribution on Rd denoted by N (0, Id). The density
function of N (0, Id) is a d-dimensional function denoted pN . Let (ξn)n∈Z+

-1
be

a sequence of random variables defined on (Ω,A, P ) i.i.d. with common law
Lξ introduced in the previous section. We also assume that the sequences
(Nn)n∈Z+ and (ξn)n∈Z+

-1
are independent implying in particular that for each

n ∈ Z+, Nn and ξn are independent. In the sequel we might omit to indicate

2The argmin of a function x 7→ h(x) is defined as {y |h(y) = minx h(x)}.
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the definition domain of the indexes n that should be clear within the context
and denote for instance (Nn)n instead of (Nn)n∈Z+ .

The (1+1)-ES is a simple algorithm evolving a unique solution that is
a vector of Rd which is also called parent. The sequence of solutions (or
parents) generated is a sequence of random vectors denoted (Xn)n defined
on (Ω,A, P ). The sequence of noise associated with the sequence of parents
is denoted (On)n. Both (Xn)n and (On)n obey a recurrence relation that we
describe first step-by-step.

Let X0 ∈ Rd be the first sampled parent. We assume that ‖X0‖ > 0
almost surely and that X0, (Nn)n and (ξn)n are independent. The objective
function value associated with X0 equals g(‖X0‖αξ−1) and the selected noise
O0 = ξ−1. For this initialization step, the law of the random variable O0

equals Lξ, however as it will become clear later, for the other iterations
(n ≥ 1), On has different laws.

We assume now that (Xk)0≤k≤n−1 and (Ok)0≤k≤n−1 are given and we de-
scribe how the next iterates Xn and On are generated. First, the vector Xn

is perturbed by the addition of Nn scaled by a strictly positive real number
called step-size σn to create a new candidate solution called offspring that
writes Xn +σnNn. Because N (0, Id) is a spherical distribution, the algorithm
is called isotropic ES.

The efficiency of an isotropic ES is closely related to the adaptation
scheme of the step-sizes mutation sequence (σn)n. On an isotropic unimodal
function the optimal adaptation scheme of the sequence (σn)n of an isotropic
ES is given, according to [11, 12], by the (artificial) scale invariant adap-
tation rule in which the step-size is set proportionally to the distance to
the optimum, i.e., σn = σ‖Xn‖ (we assume here that the optimum is in
(0, . . . , 0) ∈ Rd) where σ is a strictly positive constant. The simplicity of
this step-size update rule renders the analysis easier to carry out than for
real step-size adaptation schemes [14]. Therefore the scale-invariant (1+1)-
ES is usually a good choice for the first theoretical investigations and is the
algorithm we will investigate in the sequel.

The fitness function value associated with the offspring Xn +σnNn equals
g(‖Xn + σnNn‖αξn). This offspring will become the new parent if and only
its fitness value is smaller than the one of its parent Xn.

Adding up the different steps, we can write the recurrence relations
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obeyed by (Xn)n and (On)n. First Xn+1 satisfies

Xn+1 =

{
Xn + σ‖Xn‖Nn if g

(∥∥∥Xn + σ‖Xn‖Nn

∥∥∥
α

ξn

)
< g (‖Xn‖αOn)

Xn otherwise ,

(5)
and the accepted noise On+1 of the new parent Xn+1 obeys:

On+1 =

{
ξn if g

(∥∥∥Xn + σ‖Xn‖Nn

∥∥∥
α

ξn

)
< g (‖Xn‖αOn)

On otherwise .
(6)

Since g preserves the ordering, it can be dropped in the acceptance condition
in Eqs. 5 and 6 and we can write equivalently

Xn+1 =

{
Xn + σ‖Xn‖Nn if

∥∥∥Xn + σ‖Xn‖Nn

∥∥∥
α

ξn < ‖Xn‖αOn

Xn otherwise ,
(7)

and for the accepted noise

On+1 =

{
ξn if

∥∥∥Xn + σ‖Xn‖Nn

∥∥∥
α

ξn < ‖Xn‖αOn

On otherwise .
(8)

3 Motivation: convergence or divergence?

In this section, the counterexample informally described in the introduction
is put into a broader context and sustained with some empirical results.

3.1 Elementary remarks on the noise model

We consider the noise model defined in Eq. 1, where f ≥ 0. In this case,
if E(ξ) > 0, the argmin of the expected value of F(x) equals the argmin of
f(x). The support of the noise random variable ξ admits mξ as infimum.
Therefore, because f is non-negative, mξf(x) is the infimum of the values
that can be reached by the noisy fitness function for different instantiations
of the random variable ξ for a given x.

Fig. 1 depicts a cut of f(x) = ‖x‖2 and mξf(x) for mξ equals 0.5 and
−0.5. The sign of mξ determines whether mξf(x) is decreasing or increasing:
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Figure 1: Dashed Lines: one dimensional cut of f(x) = ‖x‖2 along one
arbitrary unit vector. Solid (bent) lines: greatest lower bound of F(x), i.e.,
mξf(x) for mξ = 0.5 (left) and mξ = −0.5 (right). For a given x, the noisy-
objective function can, in particular, take any value between the dashed
curve and the solid curve. Given a fitness according to the solid horizontal
line, only values below this line are accepted as new parents. Thus, on the
left graph, θ represents an upper bound for ‖Xn‖ and on the right graph, A
represents a lower bound for ‖Xn‖, prohibiting convergence to x = 0.

for mξ > 0, mξf(x) is convex and converges to +∞ for ‖x‖ → ∞, and for
mξ < 0, mξf(x) is concave and converges to −∞ for ‖x‖ → ∞. Minimizing
mξf(x) in the case of mξ < 0 means that ‖x‖ is diverging to +∞ which is
the opposite of the desired behavior when minimizing the non-noisy function
f(x) = ‖x‖2. Referring to the example sketched in the introduction, ‖x‖2

and (1 − a)‖x‖2 for a = 1.5 are the curves represented in Fig. 1, right.

3.2 Experimental observations

We investigate now numerically how the infimum of the noise values might
affect the convergence. For this purpose we use a (1+1)-ES and a (1,5)-ES
both with scale-invariant adaptation scheme for the step-size.

We investigate the function F(x) = ‖x‖2ξ when the noise ξ is uniformly
distributed in the ranges [0.5, 1.5] and [−0.5, 2.5] respectively denoted U[0.5,1.5]

and U[−0.5,2.5]. This latter noise corresponds to the concave lower bound
−0.5‖x‖2 plotted in Fig. 1. In Figure 2, the result of 10 independent runs of
the (1+1)-ES (10 lower curves of each graph) in dimension d = 10 are plot-
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Figure 2: Distance to the optimum (in log-scale) versus number of evalua-
tions. Ten independent runs for the scale-invariant (1+1)-ES (10 lower curves
of each graphs) and (1,5)-ES (10 upper curves of each graph) with d = 10
and σ = 1/d. Left: f(x) = ‖x‖2. Middle: f(x) = ‖x‖2U[0.5,1.5]. Right:
f(x) = ‖x‖2U[−0.5,2.5].

ted for the non-noisy sphere (left), ‖x‖2U[0.5,1.5] (middle) and ‖x‖2U[−0.5,2.5]

(right). In both noisy cases the expected value of the function equals ‖x‖2

since E(U[0.5,1.5]) = E(U[−0.5,2.5]) = 1, however, we observe a drastic difference
between the two cases: the algorithm converges to the optimum for the noise
U[0.5,1.5] whereas the distance to the optimum increases (log)-linearly for the
noise with infimum −0.5. Comparing the left and middle figures, we can also
conclude as expected, that the presence of noise slows down the convergence
(here by a factor of about five). We conducted the same experiments for a
(1,5)-ES (10 upper curves of each graph) and observe the same two behav-
iors, convergence on ‖x‖2U[0.5,1.5] (middle) and divergence on ‖x‖2U[−0.5,2.5]

(right). However, contrary to what we will prove for the (1+1)-ES, we do
not state that “mξ = 0” is a limit value between convergence and divergence
in the case of a (1,λ)-ES. Indeed convergence and divergence depends on the
intrinsic properties of the noise, on λ and σ as well [19].

Last, we investigate numerically the (1+1)-ES where ξ is normally dis-
tributed with expectation one and in particular unbounded. This corresponds
to the case investigated in [20]. We display results for a standard deviation of
the Gaussian noise of 0.1, 2 and 10 in Fig. 3. Within the given time horizon
we observe convergence when the standard deviation of the noise equals 0.1
and divergence in the last two cases.
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Figure 3: Ten independent runs for the scale-invariant (1+1)-ES with a nor-
mally distributed noise: on f(x) = ‖x‖2N (1, σ2

ǫ ) with σǫ equals 0.1 (left), 2
(middle) and 10 (right) for d = 10 and σ = 1/d.

4 Theoretical analysis of convergence

In this section we provide a mathematical analysis of the results observed
experimentally for the scale-invariant (1+1)-ES and for the fitness function
model Eq. 4. We prove that convergence or divergence of the (1+1)-ES is
solely determined by the infimum of the support of the noise mξ (given finite
mξ 6= 0) and mξ = 0 is the limit case between convergence and divergence.
One important consequence of this result is that for any positive expected
value of the noisy function, for the same algorithm, divergence and conver-
gence can be observed, depending on the infimum of the noise distribution.

4.1 Positive lower bound: the convergent case

In this section, the infimum of the noise mξ is strictly positive.

Theorem 1 (Almost sure convergence) The (1+1)-ES minimizing the
noisy sphere (Eq. 4) defined in Eq. 5 converges if mξ > 0, in the sense
that, the sequences (F(Xn))n and (‖Xn‖)n converge respectively to a random
variable l ≥ g(0) and 0 almost surely. If in addition, the function g is
continuous in 0, the limit l equals g(0).

Proof: see page 27

As for the proof of [21, Proposition 1], the proof of this theorem is based
on the use of the Borel-Cantelli Lemma that we remind on page 27. The dif-
ference between the result in [21, Proposition 1] and the result of Theorem 1
is that the limit value of the sequence (F(Xn))n is zero in [21, Proposition 1],
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however, it depends here on the properties of the function g in the neighbor-
hood of zero.

4.2 Negative greatest lower bound: the non conver-
gent cases

We investigate here the case where mξ < 0. Negative noise values can be
sampled and will be sampled as stated in the following Lemma:

Lemma 1 Consider the sequences (Xn)n and (On)n defined respectively in
Eq. 5 and Eq. 6. There exists n1 ≥ 0 such that, for all n ≥ n1, On < 0.

Moreover, if mξ > −∞ then ‖Xn‖ ≥ A := ‖Xn1
‖
(

|On1
|

|mξ|

) 1

α

> 0 almost surely.

Proof: see page 31

Note that the lower bound A given in this lemma is represented in Figure 1
for α = 2. As a consequence of this lemma, for n ≥ n1, all accepted fitness
values are smaller than g(0) and associated with a negative noise value. This
also means for a new solution, that, given a negative noise value and therefore
the situation of its potential acceptance, solutions further away from the
optimum produce better fitness values and are more likely to be accepted.

4.2.1 Divergence case

In the case where mξ < 0 is finite, we have the following result:

Theorem 2 (Almost sure divergence) The (1+1)-ES minimizing the noisy
sphere (Eq. 4) defined in Eq. 5 diverges if mξ < 0 and mξ > −∞, in the
sense that the sequence (‖Xn‖)n diverges to +∞ almost surely.

Proof: see page 32

The proof of this theorem heavily relies on the fact that mξ is finite. In
the case where mξ = −∞, a weaker result can be derived though as presented
in the next section.
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4.2.2 Negative expected quality gain

We now investigate the case where the infimum of the support of the noise
mξ can equal −∞, i.e., −∞ ≤ mξ < 0.

Theorem 3 Consider the sequences (On)n and (Xn)n defined by the recur-
rence relations Eq. 5 and Eq. 6 for the minimization of the objective func-
tion defined in Eq. 4. If mξ < 0 then, for n ≥ n1 (where n1 is defined
in Lemma 1), the sequence of the expectations of the distances to the op-
timum of the non noisy objective function is increasing in the sense that

E
(

‖Xn+1‖2

‖Xn‖2 |Xn, On, ξn

)
≥ 1. Therefore, for n ≥ n1, E(‖Xn‖2) ≥ E(‖Xn1

‖2) >

0, and the sequence (E(‖Xn‖)2)n cannot converge to zero.

Proof: see page 33

Comparison with previous results Theorem 3 includes the particular
case of Gaussian noise where mξ = −∞. Therefore, the algorithm cannot
converge in the L2 norm in the case of Gaussian noise. This result implies a

negative expected quality gain E
(
1 − ‖Xn+1‖2

‖Xn‖2 |Xn

)
(see definition in [4]), op-

posed to the result of Arnold and Beyer [20] that derived a positive expected
quality gain for the objective function model defined in Eq. 3. Theorem 3
proves that the approximations used in [20] do not hold in finite dimensional
search spaces.

The results in [20] are presented with numerical experiments that seem
to backup the positive expected quality gain. But, for mξ < 0, a run of the
(1+1)-ES exhibits two entirely different phases: an initial transient phase
(before n1 in Lemma 1) and a final stationary phase. During the transient
phase all noise value realisations are positive and convergence can be ob-
served (as in Figure 3, left). The final stationary phase begins after the
first negative noise value has been sampled. In the stationary phase the
strategy diverges3 (as in Figure 3, right) for any σ > 0. In case of nor-
malized Gaussian noise [4], the behavior switches from the transient to the
stationary phase when ξ = 2σ∗

ǫ

d
N (0, 1) + 1 is negative for the first time.

The length of the transient phase follows a geometric distribution with mean

3More precisely, the strategy diverges, if the sequence On admits a stable distribution
(see below), which needs yet to be shown. If, in contrast, On diverges to infinity, the
update of Xn will stall and neither divergence nor convergence will occur.
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P (ξ < 0)−1 = CDFN (−d/(2σ∗
ǫ ))

−1 ∈]2,∞[, where CDFN denotes the cu-
mulative distribution function of the standard normal distribution. Most of
the experiments in [20] have been conducted with σ∗

ǫ ≤ 2 and d ≥ 40. For
such a configuration, the probability that a negative fitness value is sampled
is smaller than 10−23. Therefore, the probability to leave the transient phase
before n1 time steps is smaller than 1 − (1 − 10−23)n1 ≈ n110−23, i.e. even
after 1010 time steps the probability is as low as 10−13. Consequently, the
transient convergence is observed in such a setting. In contrast, for σ∗

ǫ = 2
and d = 10, the probability to remain in the transient phase even for only
1000 time steps is smaller than 1%.

5 Log-linear behavior for lower bounded noise

It is generally observed in the case of optimization with Evolution Strategies
(ES) and theoretically proven in the case of minimization of non-noisy sphere
functions, using either the artificial scale-invariant adaptation rule [13, 11, 12]
or the real self-adaptation rule [13, 14], that ESs converge (or diverge) log-
linearly in the sense of Eq. 2. In Fig. 2, we have observed log-linear behavior
for the (1+1)-ES minimizing a noisy spherical function. The goal of this
section is to prove this log-linear behavior when the noise is lower bounded,
i.e., mξ > −∞.

The main ingredient used in previous studies to prove log-linear behavior
is the law of large numbers (LLN): the LLN for independent random variables
in [13, 11], the LLN for orthogonal random variables in [12] and the LLN for
Markov chains in [14]. In our case, the correlation between the variables in
Eqs. 5 and 6 suggests the use of the LLN for Markov chains.

5.1 Motivations

Log-linear behavior means that, after an adaptation time, the sequence
(ln ‖Xn‖)n, where (‖Xn‖)n is defined in Eq. 5, increases or decreases linearly
with the number of iterations. This suggests that one has to investigate the
sequence (ln (‖Xn‖))n. The following proposition is the first step for proving
log-linear behavior. It expresses the term 1

n
ln (‖Xn‖/‖X0‖) as the sum of n

random variables divided by n. The same idea has been previously used in
[13, 14, 11, 12].
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Lemma 2 Let (Xn)n be the sequence of random vectors valued in Rd satis-
fying the recurrence relation (5). Then, for all n ≥ 1, the equality

1

n
ln

(‖Xn‖
‖X0‖

)
=

1

n

n−1∑

k=0

ln

(∥∥∥ Xk

‖Xk‖
+ σNk1∥∥ Xk

‖Xk‖
+σNk

∥∥α

ξk<Ok

ff
∥∥∥
)

(9)

holds almost surely.

Proof: see page 35

The previous lemma suggests the use of a LLN for proving the convergence
of the right hand side of Eq. 9. However, we are not going to apply directly
the LLN to the right hand side but will first exploit the invariance under
rotation of the multivariate normal distribution to simplify the right hand
side. This will be done at the price of losing the almost sure equality.

As we will see below, invariance under rotation implies that the sequence
(On)n is a Markov chain. A Markov chain (Φn)n taking values in Rp, p ∈ N,
is entirely characterized by its initial law, i.e., the law of Φ0 and its transition
kernel PΦ(., .) where for all x ∈ Rp, PΦ(x, .) is a probability measure and for
all A ∈ B(Rp), PΦ(., A) is a non-negative measurable function on Rp and for
all x ∈ Rp, for all A ∈ B(Rp)

PΦ(x,A) = P (Φ1 ∈ A|Φ0 = x) .

The sequence of random variables (On)n defined in Eq. 8 can be written in
a more compact manner as

On+1 = On + (ξn − On)1{‖ Xn
‖Xn‖

+σNn‖αξn<On} (10)

where O0 follows the law Lξ. The following proposition states that On is a
Markov chain, derives its transition kernel and shows a more convenient way
to generate a sequence following the same distribution as On.

Proposition 1 The sequence (On)n is a Markov chain with the same initial
law and transition kernel as the Markov chain (Zn)n defined as

Zn+1 = Zn + (ξn − Zn)1{‖e1+σNn‖αξn<Zn} (11)

where Z0 is distributed according to Lξ.
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For all n ∈ Z+, On and Zn ∈]mξ,Mξ[, their common initial law is Lξ

and their transition kernel P (., .) satisfies for all z ∈]mξ,Mξ[, for all A ∈
B(]mξ,Mξ[),

P (z, A) = P1(z, A) + δz(A)P2(z) (12)

where P1(z, A) equals P ({ξ0 ∈ A} ∩ {‖e1 + σN0‖αξ0 < z}), δz is the Dirac
measure centered at z and P2(z) = P (‖e1 + σN0‖αξ0 ≥ z).

Proof: see page 36

We now define the function F (Zn,Nn, ξn) as ln(‖e1 +σNn1{‖e1+σNn‖αξn<Zn}‖)
corresponding to the inner part of the right hand side of Eq. 9 where steps are
sampled from e1 and On is replaced by Zn. The following lemma makes the
connection between the term whose limit we want to investigate ( 1

n
ln ‖Xn‖)

and the sample average 1
n

∑n−1
k=0 F (Zk,Nk, ξk):

Lemma 3 For n ≥ 1, the following equation holds in distribution

1

n
ln

(‖Xn‖
‖X0‖

)
=

1

n

n−1∑

k=0

F (Zk,Nk, ξk) , (13)

where F is defined as

F (Zn,Nn, ξn) = ln
(
‖e1 + σNn1{‖e1+σNn‖αξn<Zn}‖

)
(14)

Proof: see page 37

Consequently, if the right-hand side of Eq. 13 converges almost surely to
a finite value γ, then 1

n
ln ‖Xn‖ will also converge (in probability) to γ. In

Proposition 1, we have established that (Zn)n is a Markov chain. Besides,
Eq. 13 expresses Zn+1 as a function of (Zn,Nn, ξn) where (Nn)n and (ξn)n are
independent sequences. Therefore, (Zn,Nn, ξn) is also a Markov chain. The
sample average 1

n

∑n−1
k=0 F (Zk,Nk, ξk) converges to a constant γ if the law of

large numbers (LLN) holds for the Markov chain (Zn,Nn, ξn)n. If in addition
γ 6= 0, then log-linear behavior holds in probability for the sequence (‖Xn‖)n

given in Eq. 5. We now understand that we need to establish a LLN for the
Markov chain (Zn,Nn, ξn)n in order to conclude the log-linear convergence
of (‖Xn‖)n. This is what we will do in the next section.
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5.2 Stability

We have argued that log-linear behavior will follow from establishing a LLN
for (Zn,Nn, ξn)n, however since (Nn, ξn) is independent of Zn, we will see that
the properties needed to establish a LLN for the Markov chain (Zn,Nn, ξn)n

follow from the properties needed to establish a LLN for the chain (Zn)n.
The chain (Zn)n satisfies a LLN if certain so-called stability criteria can be
proven. Before investigating stability criteria for the chain (Zn)n, we recall
some definitions and results about ϕ-irreducible Markov Chains that are used
in the sequel. We refer to Meyn and Tweedie [24] for a complete presentation
of this theory.

5.2.1 Basics about Markov chains and definitions

Given a Markov chain (Φn)n ⊂ Rp, with transition kernel PΦ(., .), the weakest
stability criterion is the so-called ϕ-irreducibility: a chain (Φn)n is irreducible
with respect to a measure ϕ if:

∀(x,A) ∈ Rp × B(Rp), ϕ(A) > 0,∃ n0 ≥ 0 such that P n0

Φ (x,A) > 0 , (15)

where P n0

Φ (x,A) equals P (Φn0
∈ A|Φ0 = x). Another equivalent defini-

tion for the ϕ-irreducibility of the Markov chain (Φn)n is: ∀x ∈ Rp,∀A ∈
B(Rp) such that ϕ(A) > 0, P (τA < +∞|Φ0 = x) > 0 where, τA is the
hitting time of Φn on A, i.e.,

τA = min{n ≥ 1 such that Φn ∈ A}.

If the last term of Eq. 15 is equal to one, the chain is recurrent. A ϕ-
irreducible chain (Φn)n is Harris recurrent if:

∀A ∈ B(Rp) such that ϕ(A) > 0; Px(ηA = ∞) = 1, x ∈ Rp ,

where ηA is the occupation time of A defined as ηA =
∑∞

n=1 1{Φn∈A}.
A chain (Φn)n which is Harris-recurrent admits an invariant measure, i.e., a
measure π on B(Rp) satisfying:

π(A) =

∫

Rp

PΦ(x,A)dπ(x), A ∈ B(Rp) .

If in addition this measure is a probability measure, the chain is called posi-
tive. Positive, Harris-recurrent chains satisfy the Strong law of large numbers
(LLN) as stated in [24, Theorem 17.0.1] and recalled here.
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Theorem 4 (LLN for Harris positive chains) Suppose that (Φn)n is a
positive Harris chain with invariant probability measure π, then the LLN
holds for any function G satisfying π(|G|) =

∫
|G(x)|dπ(x) < ∞, i.e.,

lim
n→∞

1

n

n−1∑

k=0

G(Φk) = π(G) . (16)

To show Harris-recurrence or positivity, it is possible to make use of practical
drift conditions. However, here, those stability criteria will be implied from
a stronger property called uniform ergodicity. A Markov chain (Φn)n is said
to be uniformly ergodic if it is positive Harris-recurrent and

lim
n→∞

supx∈Rp ‖P n
Φ(x, .) − π(.)‖ = 0 ,

where π is the invariant probability measure and ‖ν‖ = supg:|g|≤1|
∫

g(x)dν(x)|
is the so-called total variation norm. Uniform ergodicity can be shown using
the following theorem which is derived from a specific case of [24, Theo-
rem 16.2.1, Theorem 16.2.4].

Theorem 5 (Condition for uniform ergodicity) Suppose that there ex-
ists a finite non-trivial measure ν on B(Rp) such that a Markov chain (Φn)n

satisfies PΦ(x,A) ≥ ν(A) for all x ∈ Rp and A ∈ B(Rp). Then (Φn)n is
uniformly ergodic and thus positive and Harris-recurrent.

5.2.2 Stability

In the following, we study the Markov chain (Zn,Nn, ξn)n. Its stability will
follow from the use of Theorem 5 and consequently the LLN given in The-
orem 4 will hold for (Zn,Nn, ξn)n. Since (Nn, ξn) is independent of Zn, the
stability of (Zn,Nn, ξn)n will follow almost immediately from the stability of
Zn that we will investigate separately. The transition kernel of (Zn)n verifies
the following minorization condition:

Proposition 2 (Doeblin or minorization condition) Let mξ 6= 0, and
the non-trivial measure ν be defined as

ν(A) =

∫

Rd

∫ Mξ

mξ

1A(u)1{‖e1+σt‖αu<mξ}(u, t)pN (t)pξ(u)dudt .

Then, ∀z ∈]mξ,Mξ[,∀A ∈ B(]mξ,Mξ[) we have P1(z, A) ≥ ν(A).

18



Proof: see page 41

The following corollary holds as a direct consequence of the application
of Theorem 5 using the result of Proposition 2.

Corollary 1 If mξ 6= 0, the chain (Zn)n is positive Harris recurrent.

Proof: see page 42

From the previous corollary, we know that (Zn)n admits an invariant
probability measure. We will denote this measure as µ. Let νN be the
probability measure defined on B(Rd) associated with a multivariate normal
distribution, i.e. for all A ∈ B(Rd), νN (A) =

∫
A

pN (x)dx. Then for all
n ∈ Z+, P (Nn ∈ A) = νN (A) for A ∈ B(Rd). In the same way let νξ be the
probability measure defined on B(R) associated with the noise distribution,
i.e. for all A ∈ B(R), νξ(A) =

∫
A

pξ(x)dx.

Corollary 2 If mξ 6= 0, the chain (Zn,Nn, ξn)n is positive Harris recurrent
admitting the product measure µ ⊗ νN ⊗ νξ as invariant measure.

Proof: see page 42

We are now ready to state the main result of this section.

Theorem 6 The (1+1)-ES defined in Eq. 5 (and Eq. 6) minimizing the
noisy sphere (Eq. 4) converges almost surely to zero if mξ > 0 and diverges
almost surely to infinity when −∞ < mξ < 0. For mξ 6= 0, let γ be defined
as

γ :=

∫
E
(
ln ‖e1 + σN01{‖e1+σN0‖αξ0≤z}‖

)
dµ(z) (17)

where µ is the invariant probability measure of the Markov chain (Zn)n

(Eq. 11). Then γ is well defined, finite and the algorithm converges (or
diverges) log-linearly in the sense that:

1

n
ln ‖Xn‖ → γ (18)

holds in probability. Moreover, the convergence (or divergence) rate γ is
strictly negative if mξ > 0 and strictly positive if mξ < 0.
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Proof: see page 42

The convergence rate γ depends on σ. The following proposition estab-
lishes that the mapping σ → γ(σ) is continuous.

Proposition 3 The mapping σ 7→ γ(σ) is continuous on ]0, +∞[.

Proof: see page 46

6 Discussion

In this paper, we have developed a rigorous theory of convergence for the
(1+1)-ES together with convergence rates in noisy environments. Note that
other rigorous theoretical studies exist, however restricted to a discrete and
finite search space [25, 26]. We have analyzed the (1+1)-ES on a class of
unimodal and spherical noisy fitness functions. For this class, where the
noise is multiplicative, we have proven rigorously that even when the expected
fitness value is a positive function with a unique minimum, convergence and
divergence can happen. The result is largely independent of the type of
noise distribution and the limit between convergence and divergence is only
determined by the sign of the greatest lower bound of the support of the
noise distribution—after a first negative noise value is observed, the (1+1)-
ES cannot converge to the optimum. Previously obtained approximative
results that suggest convergence with Gaussian noise do not hold in finite
dimensional search spaces.

Though the proofs were carried out for the (1+1)-ES, i.e., an elitist evo-
lution strategy, the underlying mechanism suggests that similar results hold
for other algorithms. For a negative greatest lower bound of the noise dis-
tribution, the same divergent behavior is foreseeable for elitist algorithms in
general. We have seen with numerical simulations that the qualitative result
was the same also for non elitist selection (comma selection). However, the
limit case between convergence and divergence will be different, less easy to
specify and it will depend on strategy parameters. In particular, divergence
with comma selection can happen even when the lower bound of the noise
support is positive, and convergence can happen even when it is negative.

Another variant of the (1+1)-ES for noisy optimization is the (1+1)-ES
with reevaluation of the fitness of the parent, investigated in [27]. Arnold
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[4] conjectures that the best policy is to reevaluate the parent not in each
iteration. In any case, the (1+1)-ES with reevaluation loses its monotonicity
of the fitness value of the parent. Behavior and analysis of the (1+1)-ES
with reevaluation is closer to the (1,λ)-ES than to the (1+1)-ES without
reevaluation and less intricate, in particular if the parent is evaluated in each
iteration.

The divergent behavior of the (1+1)-ES for example on the classical noise
model

F(x) = f(x)(1 + σǫN (0, 1)) (19)

comes as a surprise. Whether the divergent behavior can be easily observed
in a simulation depends on the setting of the parameter σǫ. For σǫ ≥ 0.5 the
observation can be made easily (see Section 4.2.2 and Figure 3). We believe
that this observation must have been made before by other researchers, but
that it has been ignored due to the lack of a reasonable explanation and in
view of the fact that for smaller σǫ it could not be reproduced. This paper
explains the observation of divergence in a rigorous way.

The practical relevance of our analysis is limited for the following reasons.

1. The investigated (1+1)-ES lacks a realistic step-size adaptation proce-
dure. From the view point of choosing such a procedure the present
analysis investigates the best case scenario. Our justification for this
limitation is twofold. First, our knowledge on the functioning of step-
size adaptation procedures for the (1+1)-ES in the presence of noise is
rather limited and would deserve a considerable amount of empirical or
theoretical research on its own. Second, the best case scenario provides
a useful comparison for the evaluation of step-size adaptation proce-
dures to be developed. The rigorous analysis of the (1+1)-ES with
step-size adaptation will be more involved and therefore left to future
work.

2. Only spherical functions have been considered and for any sequence
converging to the optimum the noise level converges to zero. This scale-
invariance property is essential for proving log-linear convergence, but
not necessarily realistic in practice.

3. The (1+1)-ES is not the most promising strategy to be applied in noisy
environments. Non-elitist comma strategies are more advisable [4] and
also covariance matrix adaptation (CMA) is most likely advantageous
even under noisy conditions [28, 29].
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Our results reveal a potential limitation of the formulation of noisy ob-
jective functions. We feel that the observed divergence should primarily
be interpreted as deficiency of a multiplicative noise model with negative
greatest lower bound and give two reasons. First, we do not believe that in
practice worse solutions (in terms of their expected fitness value) tend to pro-
duce exceptionally good fitness values with a higher probability than better
solutions. Second, the underlying mechanism of divergence is not limited to
the (1+1)-ES but applies to any elitist algorithm.

Consequently, our result suggests an implication for the construction of
benchmark functions as for example the typical noisy benchmark Eq. 19. We
suggest to replace the typical model by

F(x) = f(x) exp(σǫN (0, 1)) . (20)

For small (positive) values of σǫ, both models are very similar and they align
for σǫ → 0, e.g. in the common analytical approach with σǫ ∝ 1/d and
d → ∞. For larger σǫ the new model seems more realistic because better
solutions also potentially deliver the best fitness values.

One important reason for the success of stochastic search algorithms like
evolution strategies is their fast convergence rate to the optimum (log-linear
convergence) empirically observed even on non-convex and rugged fitness
functions. Log-linear convergence is the lower bound for rank-based search
algorithms like ESs even in the non-noisy case [30]. In this paper, we have
proven that log-linear convergence (and divergence) for the (1+1)-ES are
preserved in the presence of noise. The class of functions considered includes
non-convex, non-differentiable and non-smooth functions even when the noise
is set to a non-zero constant. This remarkable result shows the robustness of
ESs in the presence of noise for the first time rigorously.
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Appendix

We provide in the appendix the proofs of the theorems stated in the core of
the paper. The proofs often require intermediate results, organized in lemmas
and propositions that are stated and proven before to tackle the proofs of
the main results.

Further notations The set of strictly negative real numbers is denoted
R∗

− and the set of strictly positive real numbers R∗
+. The offspring sampled

at iteration n is denoted X̃n, i.e., X̃n := Xn + σnNn. The smallest σ-algebra
on Ω such that a random variable X defined on (Ω,A, P ) is measurable with
respect to this σ-algebra is denoted σ(X), of course σ(X) ⊂ A. In a similar
way, the smallest σ-algebra such that X1, . . . , Xn are measurable with respect
to the σ-algebra is denoted σ(X1, . . . , Xn). In the sequel we will sometimes
abbreviate “almost surely” by “a.s.”.

The following technical lemma will be useful for several proofs.

Lemma 4 The sequence (Xn)n introduced in Eq. 5 satisfies: for every n ≥ 0,
‖Xn‖ 6= 0 almost surely.

Proof The result is proved by induction. The first parent is chosen ran-
domly with P (‖X0‖ = 0) = 0. Suppose that P (‖Xn‖ = 0) = 0. As the
offspring X̃n is obtained by adding to Xn a random vector admitting an
absolutely continuous distribution with respect to the Lebesgue measure
then P (‖X̃n‖ = 0) = 0. By induction hypothesis, P (‖Xn‖ 6= 0) = 1,
P (‖Xn+1‖ = 0) = P (‖Xn+1‖ = 0 ∩ ‖Xn‖ 6= 0). Besides, the probability
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P (‖Xn+1‖ = 0 ∩ ‖Xn‖ 6= 0) equals the sum of the probability of the event
A := (‖Xn+1‖ = 0) ∩ (‖Xn‖ 6= 0) ∩ (X̃n is accepted) and the probability of
the event B := (‖Xn+1‖ = 0)∩ (‖Xn‖ 6= 0)∩ (X̃n is not accepted). Moreover,
A = (‖X̃n‖ = 0)∩(‖Xn‖ 6= 0) and thus P (A) = 0. Also, the event (‖Xn+1‖ =
0)∩ (X̃n is not accepted) equals the event (‖Xn‖ = 0)∩ (X̃n is not accepted)
which implies that B = (‖Xn‖ = 0) ∩ (‖Xn‖ 6= 0) ∩ (X̃n is not accepted) is
the empty set and thus P (B) = 0. Since we have seen that P (‖Xn+1‖ = 0) =
P (A) + P (B), we thus obtain that P (‖Xn+1‖ = 0) = 0. �

Proofs of Theorem 1 and Theorem 2 heavily rely on the second Borel-
Cantelli Lemma that we recall below. But first, we need to introduce the
following formal definition of ‘infinitely often (i.o.)’:

Definition 1 Let qn be some statement, e.g. |an−a| > ǫ. We say (qn i.o.) if
for all n, ∃ m ≥ n such that qm is true. Similarly, for a sequence of events En

in a probability space, (En i.o.) equals {w|w ∈ En i.o.} = ∩n≥0 ∪m≥n Em =:
lim En.

Given this definition, the second Borel-Cantelli Lemma (BCL) states that:

Lemma 5 Let (En)n≥0 be a sequence of events in some probability space. If
the events En are independent and verify

∑
n≥0 P (En) = +∞ then P (lim En) =

1.

Proof of Theorem 1 (stated page 11)

Before to be able to prove Theorem 1, we need to establish three technical
lemmas.

Lemma 6 Let t ∈ R and let ht be the mapping from Rd to R defined for all
x ∈ Rd as ht(x) = E(eit‖x+σN‖) where N is distributed as N (0, Id). Then,
for all vectors u1, u2 with ‖u1‖ = ‖u2‖ = 1, ht(u1) = ht(u2) and thus without
loss of generality, for all u, ‖u‖ = 1,

ht(u) = E(eit‖e1+σN‖) =
1

(2π)d/2

∫

Rd

eit‖e1+σx‖e−
‖x‖2

2 dx

where e1 is the vector (1, 0, . . . , 0).
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Proof This result is a consequence of the fact that the standard d-dimensional
normal distribution N is spherical (isotropic). Let x ∈ Rd and ‖x‖ = 1,
ht(x) = E(eit‖x+σN‖). Let R be an orthogonal matrix such that Rx = e1.
Since R is an orthogonal matrix, ‖Ry‖ = ‖y‖ for all y ∈ Rd and therefore
‖x+σN‖ = ‖R(x+σN )‖ almost surely. Besides ‖R(x+σN )‖ = ‖e1+σRN‖
but since N is spherical, RN has the same law as N and thus ‖x + σN‖
and ‖e1 + σN‖ have the same distribution. Therefore they admit the same
characteristic function, i.e. E(eit‖x+σN‖) = E(eit‖e1+σN‖). �

Lemma 7 Let (Xn)n be the sequence of random vectors in Rd defined in Eq. 5
and (Nn)n be the relative sequence of independent random vectors following
the same distribution N (0, Id) used to define the sequence (Xn)n as shown in

Eq. 5. Then the variables Yn :=
∥∥∥ Xn

‖Xn‖ + σNn

∥∥∥, for n ≥ 0, are independent

and follow the same distribution as Y := ‖e1 + σN (0, Id)‖, where e1 is the
vector (1, 0, . . . , 0).

Proof For showing the independence of (Yn)n∈Z+ , we will prove that for
all n, for all t0 ∈ R, . . . , tn ∈ R, E(eit0Y0 . . . eitnYn) = E(eit0Y0) . . . E(eitnYn).
We will proceed by induction and suppose that for all t0 ∈ R, . . . , tn−1 ∈ R

E(eit0Y0 . . . eitn−1Yn−1) = E(eit0Y0) . . . E(eitn−1Yn−1) and prove that for all t0 ∈
R, . . . , tn ∈ R

E(eit0Y0 . . . eitnYn) = E(eit0Y0) . . . E(eitnYn).

Let ζn be the σ-algebra σ(X0,N0, X1,N1, . . . , Xn−1,Nn−1, Xn), let t0, . . . , tn ∈
Rn+1, then the following holds E(eit0Y0 . . . eitnYn) = E(E(eit0Y0 . . . eitnYn|ζn)).
Since eit0Y0 . . . eitn−1Yn−1 is bounded and ζn-measurable [31, p88, j]

E(eit0Y0 . . . eitnYn|ζn) = eit0Y0 . . . eitn−1Yn−1E(eitnYn|ζn) . (21)

Besides, E(eitnYn|ζn) = E
(
eitn‖ Xn

‖Xn‖
+σNn‖|ζn

)
. By independence of Nn,

E
(
eitn‖ Xn

‖Xn‖
+σNn‖|ζn

)
= htn(Xn/‖Xn‖) where htn is defined in Lemma 6.

Since the norm of the vector Xn/‖Xn‖ is 1 we know from Lemma 6 that

E
(
eitn‖ Xn

‖Xn‖
+σNn‖|ζn

)
= E(eitn‖e1+σN‖). Injecting this in Eq. 21, we obtain

E(eit0Y0 . . . eitnYn|ζn) = eit0Y0 . . . eitn−1Yn−1E(eitn‖e1+σN‖) (22)
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We will now use again Lemma 6 to prove that E(eitn‖e1+σN‖) = E(eitnYn):
We start by the right hand side of the equation and decompose it using the
conditional expectation with respect to σ(Xn) and obtain that

E(eitnYn) = E
[
E
(
eitn‖ Xn

‖Xn‖
+σNn‖|σ(Xn)

)]
. (23)

Moreover, by independence of Nn, E
(
eitn‖ Xn

‖Xn‖
+σNn‖|σ(Xn)

)
= htn(Xn/‖Xn‖).

Using again Lemma 6 we have that E(eitnYn) = E(eitn‖e1+σN‖). Injecting this
result in Eq. 22, we obtain the following equation

E(eit0Y0 . . . eitnYn|ζn) = eit0Y0 . . . eitn−1Yn−1E(eitnYn) . (24)

We take now the expectation of both sides of the previous equation and obtain
E(eit0Y0 . . . eitnYn) = E(eit0Y0 . . . eitn−1Yn−1)E(eitnYn). Moreover by induction
hypothesis we know that E(eit0Y0 . . . eitn−1Yn−1) = E(eit0Y0) . . . E(eitn−1Yn−1)
which thus imply that

E(eit0Y0 . . . eitnYn) = E(eit0Y0) . . . E(eitn−1Yn−1)E(eitnYn) ,

which achieves to prove the independence of (Yn)n∈Z+ . �

Lemma 8 If mξ > 0, the following points hold:

1. The sequence (‖Xn‖)n is upper bounded by θ := ‖X0‖
(

O0

mξ

) 1

α

> 0.

2. Let ǫ > 0 and β > 1 such that βmξ ∈ supp(ξ). For n ≥ 0, the event

En :=

({∥∥∥ Xn

‖Xn‖
+ σNn

∥∥∥
α

≤ ǫ

2βθαmξ

}
∩ {ξn ≤ βmξ}

)

verifies En ⊂ {‖Xn+1‖αOn+1 ≤ ǫ}.

3. For n ≥ 1, the events En are independent.

Note that the upper bound θ given in this lemma is represented in Figure 1
for α = 2.
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Proof 1. For n ≥ 0, F(Xn) ≤ F(X0), i.e., g(‖Xn‖αOn) ≤ g(‖X0‖αO0)
which implies that ‖Xn‖αOn ≤ ‖X0‖αO0 as g is increasing. Since On ≥ mξ,

‖Xn‖αmξ ≤ ‖Xn‖αOn ≤ ‖X0‖αO0 which gives that ‖Xn‖ ≤ ‖X0‖
(

O0

mξ

) 1

α

.

2. First, the event En is well defined as we can divide by ‖Xn‖ thanks to
Lemma 4 stating that ‖Xn‖ 6= 0 almost surely. Let ǫ > 0 and β > 1 such
that ]mξ, βmξ] ⊂ supp(ξ) (with βmξ < Mξ if Mξ < +∞). For n ≥ 0, the
event En implies for the offspring X̃n = Xn + σ‖Xn‖Nn created at iteration
n,

F(X̃n) = g

(
‖Xn‖α

∥∥∥ Xn

‖Xn‖
+ σNn

∥∥∥
α

ξn

)
≤ g

(
θα ǫ

2βmξθα
βmξ

)
.

The right hand side of this last term equals g( ǫ
2
) such that F(X̃n) ≤

g
(

ǫ
2

)
< g(ǫ). If this offspring is accepted then F(Xn+1) < g(ǫ), otherwise

the fitness is already smaller than g(ǫ) and we have also F(Xn+1) < g(ǫ)
which implies that ‖Xn+1‖αOn+1 ≤ ǫ.

3. For n ≥ 1, the event En is a function of the random variables Yn, ξn,
‖X0‖, ξ0. We have seen in Lemma 7 that (Yn)n≥0 are independent and a
similar proof leads to the conclusion that (Yn, ξn)n are independent. Also for
n ≥ 1, Yn, ξn are independent of X0, ξ0. Therefore (En)n≥1 are independent.
�

Proof of Theorem 1: Let (Un)n∈Z+ be the sequence defined for n ≥ 0
as Un := ‖Xn‖αOn. Then, for n ≥ 0, F(Xn) = g(Un). The sequence
(g(Un))n∈Z+ is decreasing and lower bounded by g(0) as, for n ≥ 0, g(Un) ≥
g(‖Xn‖αmξ) ≥ g(0). Therefore, it converges almost surely to a random vari-
able that we denote l and which verifies l(w) ≥ g(0) ∀w ∈ Ω. Moreover, the
sequence (Un)n∈Z+ is positive and is decreasing as the sequence (g(Un))n∈Z+

is decreasing and g is an increasing map. Therefore it converges to a positive
random variable almost surely. Let us show that the limit of the sequence
(Un)n∈Z+ is zero. Let ǫ > 0, we have to show that ∃ n0 ≥ 0 such that
Un ≤ ǫ for n ≥ n0. Since the sequence (Un)n∈Z+ is decreasing, we only
have to show that ∃ n0 ≥ 0 such that Un0

≤ ǫ. Let β > 1 and such that
]mξ, βmξ] ⊂ supp(ξ). In Lemma 8, we have defined the event En, shown that
it is included in the event {Un+1 ≤ ǫ} and proved that the events (En)n≥1

are independent. Moreover, P (En) = P (‖e1 +σNn‖α ≤ ǫ
2βθαmξ

)P (ξn ≤ βmξ)

(where θ is the random variable defined in Lemma 8) is a strictly positive con-
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stant for all n ≥ 1. Then
∑+∞

n=0 P (En) = +∞. This gives by BCL (Lemma 5)
that P (lim En) = 1. Therefore P (lim {Un+1 ≤ ǫ}) = 1. Since (Un)n is de-
creasing, ∃n0 such that ∀n ≥ n0, Un+1 ≤ ǫ. Therefore the sequence (Un)n

converges to zero. Consequently, the sequence (‖Xn‖)n converges to zero as
we have

0 ≤ mξ‖Xn‖α ≤ Un = On‖Xn‖α .

Finally, if g is continuous then the limit l of the sequence g(Un) equals g(0). �

Proof of Lemma 1 (stated page 12)

Let us show that ∃ p0 ≥ 0 such that ξp0
< 0 almost surely. We are going to

show this statement by contradiction. Suppose that ∀p ≥ 0, ξp ≥ 0. Then,
we have Mn := 1

n

∑n−1
p=0 1{ξp<0} = 0, for all n ≥ 0. Therefore Mn goes to

zero when n goes to infinity. However, by the law of large numbers (LLN)
for independent random variables, Mn converges to P (ξ0 < 0) when n goes
to infinity. As the limit of Mn is unique, this implies that P (ξ0 < 0) = 0
which is not true since mξ < 0. Consequently, there exits p0 ≥ 0 such that
ξp0

< 0. Now, we define n1 as n1 := 1 + min{p ∈ Z+ such that ξp < 0}. The
offspring where the first negative noise has been sampled will be selected
since it has a smaller fitness value than all the other individuals (that have
a positive fitness value). Therefore On1

< 0 which implies that F(Xn1
) =

g (‖Xn1
‖αOn1

) < g(0). Let n ≥ n1. The sequence (F(Xn))n is decreasing
such that F(Xn) ≤ F(Xn1

) < g(0). This implies that On < 0, otherwise
F(Xn) = g(‖Xn‖αOn) ≥ g(0) which can not hold, i.e. we have shown that
after the first individual with a negative fitness has been accepted, all other
accepted individuals have a negative fitness.

Let us show now that the sequence (‖Xn‖)n≥n1
is lower bounded. Because

of the ’+’ selection, we have:

∀n ≥ n1,F(Xn) = g (‖Xn‖αOn) ≤ F(Xn1
) = g (‖Xn1

‖αOn1
) .

As the map g is increasing and the noise is lower bounded by mξ, we have:

∀n ≥ n1, ‖Xn‖αmξ ≤ ‖Xn‖αOn ≤ ‖Xn1
‖αOn1

,

which gives ‖Xn‖ ≥ ‖Xn1
‖
(

|On1
|

|mξ|

) 1

α

for all n ≥ n1. �

31



Proof of Theorem 2 (stated page 12)

The proof of Theorem 2 requires the following lemma.

Lemma 9 Assume that mξ < 0. Consider the random variable n1 and the
quantity A defined in Lemma 1. Let m < ‖Xn1

‖αOn1
< 0 and β > 1 such

that
mξ

β
∈ supp(ξ) ∩ R∗

−. For n ≥ n1, the event Fn defined by

Fn :=

({
|1 − σ‖Nn‖|α ≥ |m|

|mξ|
β + 1

Aα

}
∩
{

ξn ≤ mξ

β

})

verifies Fn ⊂ (‖Xn+1‖αOn+1 ≤ m).

Proof Let (Un) be the sequence defined as Un := ‖Xn‖αOn. By Lemma 1,
∃ n1 ≥ 0, A > 0 such that Un < 0 and ‖Xn‖ ≥ A ∀n ≥ n1. We consider
n ≥ n1, then ‖Xn‖ > A. For all y ∈ Rd, ‖y‖ 6= 0, the reverse triangle
inequality implies4

∥∥∥ y

‖y‖ + σNn

∥∥∥ ≥ |1 − σ‖Nn‖| . (25)

Let β > 1 such that
mξ

β
∈ supp(ξ)∩R∗

−. Suppose that we have |1−σ‖Nn‖|α ≥
(β+1)|m|
Aα|mξ| and ξn ≤ mξ

β
< 0, then with Eq. 25 we have

‖Xn‖α
∥∥∥ Xn

‖Xn‖
+σNn

∥∥∥
α

|ξn| ≥ ‖Xn‖α|1−σ‖Nn‖|α|ξn| ≥ Aα (β + 1)|m|
Aα|mξ|

|mξ|
β

> |m| .

Therefore, the offspring X̃n is such that

F(X̃n) = g

(
‖Xn‖α

∥∥∥ Xn

‖Xn‖
+ σNn

∥∥∥
α

ξn

)
≤ g(m)

and thus F(Xn+1) ≤ F(X̃n) < g(m). This implies that Un+1 = ‖Xn+1‖αOn+1 ≤
m. Consequently, we have shown that for n ≥ n0, the event Fn is included
in the event {Un+1 ≤ m}. �

4The reverse triangle inequality states that for all x, y in Rd, |‖x‖ − ‖y‖| ≤ ‖x − y‖.
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Proof of Theorem 2: Let n ≥ n1 (n1 defined in Lemma 1). We will
show that the sequence (‖Xn‖)n diverges to +∞. First, we show that
Un = ‖Xn‖αOn diverges to −∞. This is equivalent to show that, for any
m < 0, ∃ n ≥ n1 such that Un ≤ m. Similarly to the proof of Theorem 1, the
Borel-Cantelli Lemma implies that we have P (Fn i.o.) = 1 (the event Fn be-
ing defined in Lemma 9) therefore Lemma 9 gives that P (Un+1 ≤ m i.o.) = 1.
Since Un is decreasing, Un converges to −∞. For all n ≥ n1, 0 ≥ On ≥ mξ,
then mξ‖Xn‖α ≤ Un = ‖Xn‖αOn for n ≥ n1. Consequently (‖Xn‖)n con-
verges to +∞ almost surely. �

Proof of Theorem 3 (stated page 13)

Note that the case −∞ < mξ < 0 leads to a divergence of the algorithm
as already stated in Theorem 2. Now we investigate the more general result
where −∞ ≤ mξ < 0. By Lemma 1, ∃ n1 ≥ 0 such that On < 0 for all
n ≥ n1 almost surely. For n ≥ 0, and thanks to Lemma 4 which allows to
divide by ‖Xn‖α almost surely, the acceptance event (see Eq. 7 and Eq. 8)
writes as

‖Xn‖α

∥∥∥∥
Xn

‖Xn‖
+ σNn

∥∥∥∥
α

ξn < ‖Xn‖αOn a.s. .

that can be simplified into
∥∥∥∥

Xn

‖Xn‖
+ σNn

∥∥∥∥
α

ξn < On .

For n ≥ 0, we have:

E

(‖Xn+1‖2

‖Xn‖2
|Xn, On, ξn

)
= E

(
1{‖ Xn

‖Xn‖
+σNn‖α

ξn>On} |Xn, On, ξn

)

+ E

(
‖Xn‖2‖ Xn

‖Xn‖ + σNn‖2

‖Xn‖2
1{‖ Xn

‖Xn‖
+σNn‖α

ξn<On} |Xn, On, ξn

)

As the multivariate normal distribution is isotropic, we get

E

(‖Xn+1‖2

‖Xn‖2
|Xn, On, ξn

)
= E

(
1{‖e1+σNn‖αξn>On} |On, ξn

)

+ E
(
‖e1 + σNn‖21{‖e1+σNn‖αξn<On} |On, ξn

)
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Let Nn,1 denote the first coordinate of the variable Nn. The quantity ‖e1 +
σNn‖2 equals 1 + 2σNn,1 + σ2‖Nn‖2 and we have

E

(‖Xn+1‖2

‖Xn‖2
|Xn, On, ξn

)
= 1 + σ2E

(
‖Nn‖21{‖e1+σNn‖αξn<On} |On, ξn

)

+ E
(
2σNn,11{‖e1+σNn‖αξn<On} |On, ξn

)

In the sequel, we suppose that n ≥ n1. Therefore, we have On < 0. Thus, in
the last equation, the event (‖e1 + σNn‖α ξn < On) is equivalent to the event
(ξn < 0 ∩ ‖e1 + σNn‖2 > A (On, ξn)) where A (On, ξn) is defined as A (On, ξn) :=(

|On|
|ξn|

) 2

α

. Therefore, we get

E

(‖Xn+1‖2

‖Xn‖2
|Xn, On, ξn

)
=

1 + σ21{ξn<0}E
(
‖Nn‖21{1+2σNn,1+σ2‖Nn‖2>A(On,ξn)} |On, ξn

)

+ 2σ1{ξn<0}E
(
Nn,11{1+2σNn,1+σ2‖Nn‖2>A(On,ξn)} |On, ξn

)

Now, we will show that M(On, ξn) := E
(
Nn,11{‖e1+σNn‖2>A(On,ξn)} |On, ξn

)
≥

0. The quantity M(On, ξn) can be rewritten as

M(On, ξn) =

∫

Rd

x11{‖e1+σx‖2>A(On,ξn)}(x)pN (x)dx . (26)

Let On and ξn be fixed and let (x1, . . . , xd) ∈ Rd. If x1 is such that

x1 < 0 and 1 + 2σx1 + σ2‖x‖2 > A (On, ξn)

then

1 + 2σ(−x1) + σ2

(
(x1)

2 +
d∑

i=2

(xi)
2

)
≥ 1 + 2σx1 + σ2‖x‖2 > A (On, ξn)

Let B (On, ξn, x) denote the quantity A(On,ξn)−1−σ2‖x‖2

2σ
. Then

B (On, ξn, (x1, x2 . . . , xd)) = B (On, ξn, (−x1, x2 . . . , xd)) , (27)

and we have

if x1 < 0 then 1{x1>B(On,ξn,(x1,x2,...,xd))} ≤ 1{−x1>B(On,ξn,(−x1,x2,...,xd))} . (28)

34



The quantity M(On, ξn) can be rewritten as

∫

Rd−1

[∫

R

x11{x1≤0}1{‖e1+σx‖2>A(On,ξn)}(x)p(x1)dx1

]
p(x2). . .p(xd)dx2. . .dxd

+

∫

Rd−1

[∫

R

x11{x1≥0}1{‖e1+σx‖2>A(On,ξn)}(x)p(x1)dx1

]
p(x2). . .p(xd)dx2. . .dxd.

where p(y) = 1√
2π

exp(−y2

2
) is the density of a normal distribution with mean

zero and standard deviation 1 (we have pN (x) = p(x1) . . . p(xd)). Applying
a change of variables in the second term (u1 = −x1, u2 = x2, . . . , ud = xd),
and using Eq. 27, one gets that M(On, ξn) equals

∫

Rd−1

[∫

R

x11{x1≤0}1{x1>B(On,ξn,x)}(x)p(x1)dx1

]
p(x2). . .p(xd)dx2. . .dxd

+

∫

Rd−1

[∫

R

−u11{u1≤0}1{−u1>B(On,ξn,u)}(u)p(u1)du1

]
p(u2) . . . p(ud)du2 . . . dud .

This gives M(On, ξn) =

∫

Rd−1

[∫

R

x11{x1≤0}
(
1{x1>B(On,ξn,x)}(x) − 1{−x1>B(On,ξn,x)}(x)

)
p(x1)dx1

]

p(x2). . .p(xd)dx2 . . . dxd .

By Eq. 28, one has x11{x1≤0}
(
1{x1>B(On,ξn,x)}(x) − 1{−x1>B(On,ξn,x)}(x)

)
≥ 0

for all x ∈ Rd . Consequently M(On, ξn) ≥ 0 which implies that

E

(‖Xn+1‖2

‖Xn‖2
|Xn, On, ξn

)
≥ 1 ∀ n ≥ n1 .

�

Proof of Lemma 2 (stated page 14)

Taking the norm in Eq. 7, we have for k ≥ 0

‖Xk+1‖ = ‖Xk + σ‖Xk‖Nn1{‖Xk+σ‖Xk‖Nk‖αξk<On‖Xk‖α}‖

35



Lemma 4 states that k ≥ 0, ‖Xk‖ 6= 0 almost surely. Then the previous
equation can be rewritten as

‖Xk+1‖ = ‖Xk‖
∥∥∥ Xk

‖Xk‖
+ σNk1∥∥ Xk

‖Xk‖
+σNk

∥∥α

ξk<Ok

ff
∥∥∥ a.s.

Taking the logarithm of the previous equation, one has for k ≥ 0

ln(‖Xk+1‖) = ln(‖Xk‖) + ln

(∥∥∥ Xk

‖Xk‖
+ σNk1∥∥ Xk

‖Xk‖
+σNk

∥∥α

ξk<Ok

ff
∥∥∥
)

a.s.

(29)
For n ≥ 1, we sum the equations (29) from 0 to n − 1 and divide by n, one
gets

1

n
ln

(‖Xn‖
‖X0‖

)
=

1

n

n−1∑

k=0

ln

(‖Xk+1‖
‖Xk‖

)

=
1

n

n−1∑

k=0

ln

(∥∥∥ Xk

‖Xk‖
+ σNk1∥∥ Xk

‖Xk‖
+σNk

∥∥α

ξk<Ok

ff
∥∥∥
)

.

�

Proof of Proposition 1 (stated page 15)

Let (Φn)n be a sequence of random variables and (tn)n a filtration adapted
to the sequence5. Let us remind that (Φn)n is a Markov chain with transition
kernel Q and initial law L if (1) for all n, Φn is tn measurable; (2) the random
variable Φ0 follows the law L; (3) for all measurable and bounded function
f , E(f(Φn+1)|tn) = Qf(Φn).

Let us take the filtration tn = σ(X0,N0, ξ0, . . . ,Nn−1, ξn−1). Then both
On and Zn are tn-measurable. Also O0 and Z0 are distributed as Lξ such
that (1) and (2) are satisfied.

Let f be a measurable and bounded function on R we want to show
that E(f(On+1)|tn) = Pf(On) and E(f(Zn+1)|tn) = Pf(Zn) where P is the
transition kernel given in Proposition 1. Let f be a measurable function,
then

E(f(On+1)|tn) = E(f((ξn − On)1{‖ Xn
‖Xn‖

+σNn‖αξn<On} + On)|tn)

5tn are σ-algebra such that tn ⊂ tn+1 and φn is tn-measurable.
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Since Nn and ξn are independent, the previous equation writes

E(f(On+1)|tn) = S(Xn/‖Xn‖, On)

where S(u, v) = E(f((ξn − v)1{‖u+σNn‖αξn<v} + v)). Using now the isotropy
of Nn, we have S(u, v) = S(e1, v) for all v (same proof as Lemma 6). Let
define Q(v) = S(e1, v) = E(f((ξn − v)1{‖e1+σNn‖αξn<v} + v)). We then have
E(f(On+1)|tn) = Q(On). Using the same argument we immediately obtain
E(f(Zn+1)|tn) = Q(Zn). The function Q can be simplified into

Q(v) = E(f(ξn)1{‖e1+σNn‖αξn<v}) + f(v)E(1{‖e1+σNn‖αξn≥v})

It remains now to compute Pf(x) where P is given in Proposition 1. By defi-
nition, Pf(x) =

∫
f(x′)P (x, dx′) =

∫
f(x′)P1(x, dx′)+f(x)E(1‖e1+σN0‖αξ0≥x).

Besides, P1(x,A) = E(1A(ξ0)1{‖e1+σN0‖αξ0<x}) and thus
∫

f(x′)P1(x, dx′) =
E(f(ξ0)1{‖e1+σN0‖αξ0<x}). Thus Q(v) = Pf(v) which achieves the proof of
(3). �

Proof of Lemma 3 (stated page 16)

Step 1: Let us define the sequences (X̃n)n and (Õn)n in the following way:

X̃n+1 = X̃n + σ‖X̃n‖Mn(X̃n)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn}

(30)

with X̃0 = X0 and where Mn(X̃n) is an orthogonal matrix that sends e1 on
fXn

‖fXn‖
. In the same way,

Õn+1 := (ξn − Õn)1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn}

+ Õn (31)

with Õ0 = O0. We are now going to prove

(i) for all n, (X̃n, Õn) and (Xn, On) have the same law;

(ii) for all n, X̃n and Xn have the same law;

(iii) for all n, Zn = Õn almost surely.
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Proof of (i): We will proceed by induction. Since (X̃0, Õ0) = (X0, O0), (i)

is true for n = 0. Assume now that (X̃n, Õn) and (Xn, On) have the same

distribution. Let us prove that (X̃n+1, Õn+1) and (Xn+1, On+1) have the same

distribution, i.e. let us prove that for t ∈ Rd, t′ ∈ R, E(eit.X̃n+1eit′Õn+1) =
E(eit.Xn+1eit′On+1) where the . denotes the usual scalar product in Rd. Ac-
cording to Eq. 30, and Eq. 31

E(eit.X̃n+1eit′Õn+1) = E

(
e

it.( fXn+σ‖fXn‖Mn( fXn)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn})

e
it′ fOn+(ξn− fOn)1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn}

)
(32)

Using tn = σ(X0,N0, ξ0, . . . ,Nn−1, ξn−1),

E(eit.X̃n+1eit′Õn+1) = E

(
E

(
e

it.( fXn+σ‖fXn‖Mn( fXn)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn})

e
it′ fOn+(ξn− fOn)1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn}|tn

))
(33)

Since (X̃n, Õn) is tn-measurable, the right-hand side of the previous equation
equals

E

(
eit. fXneit′ fOnE

(
e

it.(σ‖fXn‖Mn( fXn)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn})

e
it′(ξn− fOn)1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn}|tn

))
(34)

Since ξn and Nn are independent of tn, we have that

E

(
e

it.(σ‖fXn‖Mn( fXn)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn})

e
it′(ξn− fOn)1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn}|tn

)
= γ0(X̃n,M(X̃n), Õn) (35)

with γ0(u,A, o) = E
(
eit.(σ‖u‖ANn1{‖ u

‖u‖
+σANn‖αξn<o})eit′(ξn−o)1{‖ u

‖u‖
+σANn‖αξn<o}

)
.

By the isotropy of the distribution of Nn, γ0(u,A, o) = γ0(u, Id, o) for all
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u ∈ Rd, o ∈ R and any orthogonal matrix A and thus γ0(X̃n,M(X̃n), Õn) =

γ0(X̃n, Id, Õn). We have thus proven that

E(eit.X̃n+1eit′Õn+1) = E(eit. fXneit′ fOnγ0(X̃n, Id, Õn))

Using the same fastidious technique we can show that

E(eit.Xn+1eit′On+1) = E(eit.Xneit′Onγ0(Xn, Id, On)) .

By induction hypothesis, (Xn, On) and (X̃n, Õn) have the same law and there-

fore E(eit.Xneit′Onγ0(Xn, Id, On)) = E(eit. fXneit′ fOnγ0(X̃n, Id, Õn)) which in turn
implies that

E(eit.X̃n+1eit′Õn+1) = E(eit.Xn+1eit′On+1) .

Proof of (ii): We will show that E(eit.Xn+1) = E(eit.X̃n+1).

E(eit.X̃n+1) = E(E(e
it( fXn+σ‖fXn‖Mn( fXn)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn})|tn))

Since X̃n is tn-measurable,

E(eit.X̃n+1) = E(eit. fXnE(e
it.(σ‖fXn‖Mn( fXn)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn})|tn))

(36)
Since ξn and Nn are independent of tn, we have that

E(e
it.(σ‖fXn‖Mn( fXn)Nn1{‖ gXn

‖gXn‖
+σM( fXn)Nn‖αξn< fOn})|tn) = γ(X̃n,M(X̃n), Õn)

where γ(u,A, o) = E(eit.(σ‖u‖ANn1{‖ u
‖u‖

+σANn‖αξn<o})). By the isotropy of the
distribution of Nn, γ(u,A, o) = γ(u, Id, o) for all u ∈ Rd, o ∈ R and any

orthogonal matrix A and thus γ(X̃n,M(X̃n), Õn) = γ(X̃n, Id, Õn). Injecting
this in Eq. 36 we obtain that

E(eit.X̃n+1) = E(eit. fXnγ(X̃n, Id, Õn)) . (37)

Using (i) in the previous equation we obtain

E(eit.X̃n+1) = E(eit.Xnγ(Xn, Id, On)) . (38)
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We will now compute E(eit.Xn+1). From the definition of Xn we have

E(eit.Xn+1) = E(eit.(Xn+σ‖Xn‖Nn1{‖ Xn
‖Xn‖

+σNn‖αξn<On}))

and conditioning with respect to tn we obtain

E(eit.Xn+1) = E(E(eit.(Xn+σ‖Xn‖Nn1{‖ Xn
‖Xn‖

+σNn‖αξn<On})|tn)) (39)

= E(eit.XnE(eit.(σ‖Xn‖Nn1{‖ Xn
‖Xn‖

+σNn‖αξn<On})|tn)) (40)

Moreover, since Nn and ξn are independent of tn we obtain

E(eit.(σ‖Xn‖Nn1{‖ Xn
‖Xn‖

+σNn‖αξn<On})|tn)) = γ(Xn, Id, On)

and thus
E(eit.Xn+1) = E(eit.Xnγ(Xn, Id, On)) (41)

From Eq. 41 and Eq. 38, we thus have that E(eit.X̃n+1) = E(eit.Xn+1).

Proof of (iii): We will show by recurrence that Zn = Õn almost surely. Since

Õ0 = O0 = Z0 (iii) is true for n = 0. We assume now that Zn = Õn almost

surely. Let us simplify the notation for M(X̃n) that we now write Mn. Since

Mn is an orthogonal matrix6 ‖ fXn

‖fXn‖
+ σMnNn‖ = ‖MT

n (
fXn

‖fXn‖
+ σMnNn)‖

= ‖MT
n

fXn

‖fXn‖
+ σMT

n MnNn‖ = ‖MT
n

fXn

‖fXn‖
+ σNn‖. Since Mn is orthogonal

MT
n = M−1

n and since Mne1 = X̃n/‖X̃n‖, we have that MT
n

fXn

‖fXn‖
= e1. We

can thus simplify ‖MT
n

fXn

‖fXn‖
+ σNn‖ into ‖e1 + σNn‖. Therefore

Õn+1 = (ξn − Õn)1{‖e1+σNn‖αξn< fOn} + Õn

and thus by induction hypothesis

Õn+1 = (ξn − Zn)1{‖e1+σNn‖αξn<Zn} + Zn

which in turn imply that Õn+1 = Zn+1 almost surely.

Step 2: Applying Lemma 2 to the sequence (X̃n)n we obtain

1

n
ln

‖X̃n‖
‖X̃0‖

=
1

n

n−1∑

k=0

ln

(∥∥∥ X̃k

‖X̃k‖
+ σMkNk1∥∥ Xk

‖Xk‖
+σMkNk

∥∥α

ξk< fOk

ff
∥∥∥
)

(42)

6An orthogonal matrix M satisfies MT M = Id and thus M−1 = MT . Moreover for all
x ∈ Rd, ‖Mx‖ = ‖x‖.
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where we have dropped the dependence in X̃k in the matrix Mk for notation

convenience. As for (iii) we have that ‖ fXk

‖fXk‖
+ σMkNk‖ = ‖MT

k (
fXk

‖fXk‖
+

σMkNk)‖ = ‖e1 + σNk‖, and thus Eq. 42 becomes

1

n
ln

‖X̃n‖
‖X̃0‖

=
1

n

n−1∑

k=0

ln ‖e1 + σNk1{‖e1+σNk‖αξk< fOk}‖

almost surely. Since by Step 1 (iii), we have that Õk = Zk almost surely, we
obtain that

1

n
ln

‖X̃n‖
‖X̃0‖

=
1

n

n−1∑

k=0

ln ‖e1 + σNk1{‖e1+σNk‖αξk<Zk}‖ (43)

almost surely. By Step 1 (ii), we have that ‖X̃n‖ and ‖Xn‖ follow the same
law and thus

1

n
ln

‖Xn‖
‖X0‖

=
1

n

n−1∑

k=0

ln ‖e1 + σNk1{‖e1+σNk‖αξk<Zk}‖ (44)

holds in distribution. �

Proof of Proposition 2 (stated page 18)

Let us show that ν : B(]mξ,Mξ[) 7→ R+ ∪ {+∞} defined as

ν(A) =

∫

Rd

∫ Mξ

mξ

1A(u)1{‖e1+σt‖αu<mξ}(u, t)pN (t)pξ(u)dudt

is a finite measure. First, we have ν(∅) = 0. Second, if E1 and E2 are
two disjoint sets then ν(E1 ∪ E2) = ν(E1) + ν(E2) as the function 1E1∪E2

is
identically equal to 1E1

+ 1E2
when E1 ∩ E2 = ∅. Third,

ν(]mξ,Mξ[) =

∫

Rd

∫ Mξ

mξ

1{‖e1+σt‖αu<mξ}(u, t)pN (t)pξ(u)dudt ≤ 1 .

Now, if mξ = 0, the indicator function 1{‖e1+σt‖αu<mξ}(u, t) equals zero for
any t ∈ Rd and u ∈]0,Mξ[ almost surely. Therefore, ν is identically equal to
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zero. However, if mξ 6= 0, then, for A ∈ B(]mξ,Mξ[) with a strictly positive
Lebesgue measure, the set

A := {(u, t) ∈ (]mξ,Mξ[∩A) × Rd such that ‖e1 + σt‖αu < mξ}

has a strictly positive measure with respect to the Lebesgue measure defined
on B(Rd×]mξ,Mξ[). This implies that ν is not identically equal to zero if
and only if mξ 6= 0. Moreover, for t ∈ Rd, (u, z) ∈]mξ,Mξ[

2

‖e1 + σt‖αu < mξ ⇒ ‖e1 + σt‖αu < z

which gives that ∀z ∈]mξ,Mξ[,∀A ∈ B(]mξ,Mξ[), P1(z, A) ≥ ν(A). �

Proof of Corollary 1 (stated page 19)

By Proposition 2, the condition of Theorem 5 is satisfied for (Zn)n and thus
it is positive and Harris recurrent. �

Proof of Corollary 2 (stated page 19)

The product measure ν ⊗ νN ⊗ νξ where ν is given in Proposition 2 is a
minorization measure for the Markov chain (Zn,Nn, ξn)n and the product
measure µ ⊗ νN ⊗ νξ is an invariant probability measure for (Zn,Nn, ξn)n.
Therefore (Zn,Nn, ξn)n is positive Harris recurrent. �

Proof of Theorem 6 (stated page 19)

To establish the proof of Theorem 6, we need the following two lemma.

Lemma 10 Suppose that mξ 6= 0. The quantity γ defined as

γ :=

∫
E
(
ln ‖e1 + σN01{‖e1+σN0‖αξ0≤z}‖

)
dµ(z) (45)

where µ is the invariant probability measure of (Zn)n is well defined and
finite.
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Proof Let g : Rd ×R∗
+ ×R×R 7→ R be defined for (x, σ, y, z) in Rd ×R∗

+ ×
R × R by

g(x, σ, y, z) = ‖e1 + 1{‖e1+σx‖αy<z}(x, y, z)σx‖ .

Then the quantity γ corresponds to integrating the function ln(g) with re-
spect to the variables x, y and z. We notice that

g((x1, x2, . . . , xd), σ, y, z) = g((x1, ǫ2x2, . . . , ǫdxd), σ, y, z)

for all (ǫ2, . . . , ǫd) in {−1, +1}d−1 and (x1, x2, . . . , xd) in Rd. Therefore, we
can restrict the integration with respect to the variable x to the domain
D := R∗×]0, +∞[d−1, more precisely the quantity γ can be rewritten as

γ =
1

(2π)d/2

∫

D

∫ Mξ

mξ

∫ Mξ

mξ

ln (g(x, σ, y, z)) e−
‖x‖2

2 pξ(y)dxdydµ(z) .

where µ is the invariant probability measure of the Markov chain (Zn)n. We
introduce γ+ as:

γ+ =
1

(2π)d/2

∫

D

∫ Mξ

mξ

∫ Mξ

mξ

ln+ [g(x, σ, y, z)] e−
‖x‖2

2 pξ(y)dxdydµ(z) (46)

and γ− as:

γ− =
1

(2π)d/2

∫

D

∫ Mξ

mξ

∫ Mξ

mξ

ln− [g(x, σ, y, z)] e−
‖x‖2

2 pξ(y)dxdydµ(z) (47)

such that γ = γ+ − γ−. The quantities γ+ and γ− are well defined but could
be infinite. Using spherical coordinates (with d ≥ 2) we obtain after partial
integration

γ− =

(
1

2

) d
2 1

Wd−2Γ
(

d
2

)
∫ +∞

0

∫ π
2

0

∫ Mξ

mξ

∫ Mξ

mξ

ln− [h(r, θ, σ, y, z)] rd−1e−
r2

2 sind−2(θ)pξ(y) dr dθdydµ(z) , (48)

and

γ+ =

(
1

2

) d
2 1

Wd−2Γ
(

d
2

)
∫ +∞

0

∫ π

0

∫ Mξ

mξ

∫ Mξ

mξ

ln+ [h(r, θ, σ, y, z)] rd−1e−
r2

2 sind−2(θ)pξ(y) dr dθdydµ(z) , (49)
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where we have used the classical Wallis integral Wd−2 =
∫ π/2

0
sind−2 θ dθ and

the surface area of the d-dimensional unit ball Sd = 2πd/2/Γ(d
2
) where Γ()

denotes the Gamma function defined as Γ(z) =
∫∞
0

tz−1e−t dt and where h
is the positive function defined on R+ × [0, π] × R∗

+ × R × R by

h(r, θ, σ, y, z) = ‖1{‖σr−eiθ‖αy<z}(r, θ, y, z)σr − eiθ‖ .

For (r, θ, σ, y, z) in R+ × [0, π] × R∗
+ × R × R, we have

ln+(h(r, θ, σ, y, z)) ≤ ln+(1 + σr) ≤ σr (50)

and
ln−(h(r, θ, σ, y, z)) ≤ ln−(sin(θ)) . (51)

This gives

γ+ ≤
(

1

2

) d
2 σπ

Wd−2Γ
(

d
2

)
∫ +∞

0

rde−
r2

2 dr < +∞ ,

and

γ− ≤
(

1

2

) d
2 1

Wd−2Γ
(

d
2

)
∫ +∞

0

∫ π
2

0

ln− (sin(θ)) rd−1e−
r2

2 sind−2(θ) dr dθ

≤
(

1

2

) d
2 2

Wd−2Γ
(

d
2

)
∫ +∞

0

rd−1e−
r2

2 dr

∫ π
2

0

sind− 5

2 (θ) dθ < +∞ .

For the remaining case d = 1, we have

γ+ ≤ σ√
2π

∫

R

|x|e−x2

2 dx =
2σ√
2π

∫

R+

xe−
x2

2 < +∞ ,

For γ−, after a change of variables (v = σx), we get

γ− ≤ e−
1

2√
2π

∫ Mξ

mξ

∫ 0

−2

∫ Mξ

mξ

ln
(
|1 + 1{|1+v|αy<z}(v, y, z)v|

)

v
pξ(y)dvdydµ(z)

=
e−

1

2√
2π

∫ Mξ

mξ

∫ 0

−2

∫ Mξ

mξ

ln (|1 + v|)
v

1{|1+v|αy<z}(v, y, z)pξ(y)dvdydµ(z)

≤ e−
1

2√
2π

∫ Mξ

mξ

∫ 0

−2

∫ Mξ

mξ

ln (|1 + v|)
v

pξ(y)dvdydµ(z)

=
e−

1

2√
2π

∫ 0

−2

ln (|1 + v|)
v

dv < +∞ .
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Lemma 11 Suppose that mξ 6= 0. Then the quantity γ defined in Lemma 10
is such that γ < 0 if mξ > 0 and γ > 0 if mξ < 0.

Proof Let (an)n≥0 be a sequence of i.i.d. random vectors in Rd distributed
as N (0, Id). Let also (bn)n≥0 be a sequence of i.i.d. random variables with
law Lξ. We consider (Tn)n∈Z+ a Markov chain with transition kernel P (the
transition kernel of (Zn)n) and initial distribution µ, the invariant probability
measure of (Zn)n. By definition of the invariant measure, for all n, the law
of Tn is µ. As for Zn, the chain (Tn)n obeys the following induction relation:

Tn+1 =

{
bn if ‖e1 + σan‖αbn < Tn

Tn otherwise ,
(52)

and T0 distributed as µ. We also construct a sequence of random variables
(Mn)n∈N, in the following manner

Mn+1 =

{
‖e1 + σan‖α if ‖e1 + σan‖αbn < Tn ,

1 otherwise ,
(53)

The sequence (Mn)n satisfies Eµ,νN ,νξ
[ln(Mn+1)] = γ , where the notation

Eµ,νN ,νξ
reminds the different distribution of the random variables defining

Mn. We also define the sequence of random variables (Wn)n∈N as Wn+1 :=
Mn+1

Tn+1

Tn
. Then, for n ≥ 1, we have

Wn+1 =

{
‖e1 + σan‖α bn

Tn
if ‖e1 + σan‖αbn < Tn ,

1 otherwise .
(54)

Besides, if mξ > 0, bn > 0, and then Tn > 0 for all n ≥ 0. Consequently,
Wn ≤ 1 for all n ∈ N. Since Wn+1 = Mn+1

Tn+1

Tn
, we have that ln(Wn+1) =

ln(Mn+1) + ln(Tn+1) − ln(Tn). Therefore

Eµ,νN ,νξ [ln(Wn+1)] = Eµ,νN ,νξ [ln(Mn+1)] + Eµ[ln(Tn+1)] − Eµ[ln(Tn)] .

Since Eµ[ln(Tn+1)] = Eµ[ln(Tn)], we have

γ = Eµ,νN ,νξ [ln(Mn+1)] = Eµ,νN ,νξ [ln(Wn+1)]

= Eµ,νN ,νξ

[
ln

(
‖e1 + σan‖α bn

Tn

)
1{‖e1+σan‖α bn

Tn
<1}

]
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The right hand-side of the last equation is strictly negative as the events(
‖e1 + σan‖α bn

Tn
< 1
)

have a strictly positive measure and thus γ < 0 if

mξ > 0.
Consider now the case where mξ < 0. Similarly to the proof of Lemma 1,

there exists n0 ≥ 0 such that Tn < 0 for all n ≥ n0. This implies in particular
that the support of the µ is embedded in ]mξ, 0[ and thus that for all n ≥ 0,
Tn < 0. As in the previous case we have

Eµ,νN ,νξ [ln(Wn+1)] = Eµ,νN ,νξ [ln(Mn+1)] + Eµ[ln(−Tn+1)] − Eµ[ln(−Tn)] .

and thus γ = Eµ,νN ,νξ [ln(Mn+1)] = Eµ,νN ,νξ [ln(Wn+1)]. Therefore

γ = Eµ,νN ,νξ

[
ln

(
‖e1 + σan‖α bn

Tn

)
1{‖e1+σan‖α bn

Tn
>1}

]
. (55)

which is strictly positive since the events
(
‖e1 + σan‖α bn

Tn
> 1
)

have a strictly

positive measure. �

Proof of Theorem 6: The almost sure convergence or divergence was
already given in Theorem 1 and Theorem 2. Now, we investigate the conver-
gence (or divergence) rate.

Corollary 2 states that (Zn,Nn, ξn)n is positive and Harris recurrent,
moreover, Lemma 10 states that γ is well defined and finite. Therefore,
we can apply the LLN for Markov chains (Theorem 4), in the sense that the
right hand side of Eq. 13 converges almost surely to γ. Consequently the
left-hand side of Eq. 13, the sequence ( 1

n
ln ‖Xn‖)n, converges in distribution

to γ. As γ is a constant, the convergence of the sequence 1
n

ln(‖Xn‖)n to γ
holds also in probability. Finally, by Lemma 11, we have γ < 0 if mξ > 0
and γ > 0 if mξ < 0. �

Proof of Proposition 3 (stated page 20)

The convergence (or divergence) rate γ defined in Lemma 10 can be rewrit-
ten, according to the proof of Lemma 10, as γ = γ+ − γ− where γ+ and
γ− are positive finite quantities respectively defined in Equations 46, 49 and
Equations 47, 48 which have been given in the proof of Lemma 10. The
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continuity with respect to σ is shown using the Lebesgue dominated conver-
gence theorem (for continuity) on every range ]0,M [ and then for the whole
]0, +∞[ thanks to the inequalities given in Eq. 50 and Eq. 51. This gives the
result for d > 1.
For the case d = 1, the integrand in γ+ is continuous with respect to σ for

almost all (x, y, z) in R×]mξ,Mξ[×]mξ,Mξ[ and is dominated by 2√
2π

Sxe−
x2

2

for (x, σ, y, z) ∈ R+×]0, S]×[0, +∞[×]mξ,Mξ[×]mξ,Mξ[ which gives the con-
tinuity of γ+ with respect to σ by the Lebesgue dominated convergence the-
orem. For γ−, and after the change of variables v = σx, the integrand will be

dominated by e−
1
2√

2π

ln(|1+v|)
v

for (v, σ, y, z) ∈]−2, 0]×]0, +∞[×]mξ,Mξ[×]mξ,Mξ[

and the continuity of γ− with respect to σ follows from the dominated con-
vergence theorem. �
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