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Abstract—A new formulation for coordinate system inde-
pendent adaptation of arbitrary normal mutation distribu-
tions with zero mean is presented. This enables the evolu-
tion strategy (ES) to adapt the correct scaling of a given
problem and also ensures invariance with respect to any ro-
tation of the fitness function (or the coordinate system). Es-
pecially rotation invariance, here resulting directly from the
coordinate system independent adaptation of the mutation
distribution, is an essential feature of the ES with regard to
its general applicability to complex fitness functions. Com-
pared to previous work on this subject, the introduced for-
mulation facilitates an interpretation of the resulting muta-
tion distribution, making sensible manipulation by the user
possible (if desired). Furthermore it enables a more effec-
tive control of the overall mutation variance (expected step
length).

KeyW ords—Adaptation, covariance matrix, derandomized
adaptation, evolutionary algorithms, evolution strategy,
mutation distribution, self-adaptation, strategy parameters.

I. INTRODUCTION

Self-adaptation of the mutation distribution is an impor-
tant feature in evolution strategies (ESs). Without chang-
ing the mutation distribution over the generation sequence,
no adequate progress can be expected in general.! To carry
out a self-adaptation process, we assume no other problem-
specific knowledge than revealed by selection. Selection
information consists of all points so far selected in object
parameter space.? If self-adaptation is applied (cf. e.g. [8;
7; 1]), it is usually assumed implicitly, that it is useful to
favour reproduction of successful (i.e. selected) mutation
steps in the future — at first glance a quite reasonable
approach.

We suggest not to look at single mutation steps only, but
to consider a path the population takes over a number of
generations. We will call such a path an evolution path
of the ES. Using this information for step size adaptation
was proposed in [4], and it was consistently found to be
useful for the adaptation of the mutation distribution in
our research.

The evolution path mainly reveals information on cor-
relations between mutation steps successively selected in
the generation sequence. If successively selected mutation
steps are parallel correlated (scalar product greater zero),
the evolution path will be comparatively long. If succes-
sively selected mutation steps are anti-parallel correlated
(scalar product less than zero), the evolution path will be
comparatively short. Roughly speaking, parallel correla-

1The mutation is regarded to be the main operator in the ES.
2Object parameter space is a subspace of IR™.

tion means that successive steps are going into the same
direction, and thus the same distance could be covered by
fewer but longer steps. Anti-parallel correlation means,
that the steps cancel each other out. Both is inefficient
with respect to the single mutation step. Consequently, to
make single mutation steps most efficient, it is best to have
no correlation between the selected mutation steps in the
evolution path. It is important to notice that exactly the
same reasoning holds for any given projection of mutation
steps and evolution path as well. Projections may relate to
certain strategy parameters, e.g. to individual step sizes.

The geometrical interpretation is, that successively se-
lected mutation steps should be perpendicular to each
other (apart from stochastic deviations).

To remove correlations between successively selected
mutation steps, we suggest a fundamental adaptation
principle for the adaptation of the mutation distribution:
Reasonable adaptation has to reduce the difference between
the distributions of the actual evolution path and an evolu-
tion path under random selection, with respect to the pa-
rameters adapted. This reduces the correlation between se-
lected mutation steps, because they are uncorrelated under
random selection. The distribution of the actual evolution
path can only be estimated using the selection information
properly. Due to special properties of the normal distribu-
tion,® the distribution of the evolution path under random
selection looks like the mutation distribution with larger
variance.

Let us apply the principle to the self-adaptation of one
global step size §. In this case, §2 determines the overall
variance of the mutation distribution. If parallel correla-
tion between selected mutation steps makes the actual evo-
lution path longer than expected under random selection,
¢ is enlarged. If anti-parallel correlation between selected
mutation steps makes the actual evolution path shorter
than expected under random selection, § is reduced. On
the one hand, this follows our fundamental principle and
reduces the difference between the distributions discussed
above, with respect to their overall variance. On the other
hand, as substantiated by experiments, this leads to se-
lected steps being uncorrelated and adapts optimal step
size precisely. Using only the length of single mutation
steps for the adaptation (e.g. with mutative step size con-
trol) usually leads to a global step size smaller than opti-

3The mutation distribution is assumed to be a normal distribution
with zero mean.
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mal.

The principle still works, considering the shape of the
normal mutation distribution. If, for example, the evolu-
tion path is long with respect to a certain direction, the
distribution is elongated in this direction, making the mu-
tation distribution more similar to the evolution path. If
the evolution path is short, with respect to a certain direc-
tion, the distribution is flattened in this direction. Both
distribution changes tend to decrease correlations between
successively selected mutation steps.

In this paper we apply the principle to the adaptation
of arbitrary normal mutation distributions with zero
mean. One such adaptation scheme has been introduced in
[8], where the mutation distribution is changed by mutating
n (n —1)/2 rotation angles and n variances. We found this
scheme to be dependent on orientation and permutation(!)
of the coordinate axes by experiments [2]. The rotations,
performed in canonical planes, are the obvious reason for
that dependency. The generating set adaptation (GSA),
proposed in [2], adapts arbitrary normal mutation distri-
butions independently of the chosen coordinate system.

What do we expect from an adaptation scheme like
the CMA? On the one hand, with respect to the opti-
mization process, quadratic problems can in principle be
transformed into the hypersphere problem by the CMA [5].
Therefore, we expect the CMA to reliably adapt such prob-
lems. On the other hand, the adaptation process obviously
cannot look beyond the horizont of the distribution vari-
ance. Because overall variance is usually small compared
to the distance to optimum,* adaptation of the mutation
distribution is a pretty local process, and we do not ex-
pect to improve global performance properties of the ES,
especially with respect to multimodal objective functions.

In the next section, we present the covariance matrix
adaptation (CMA). The CMA is closely related to the
GSA as discussed in Sect. ITI. Section IV shows simulation
results for different (1,10)-ESs, including CMA and GSA,
while Sect.V gives a conclusion.

II. THE COVARIANCE MATRIX ADAPTATION (CMA)

Mutation steps of object and strategy variables will be
explained for the (1,))-ES. The extension to the (u,A)-ES
without recombination is straightforward. Because recom-
bination disturbs the adaptation process, the applicability
of any standard recombination scheme (cf. e.g. [1; 7]) on
strategy parameters seems questionable.

A. Object Variables

To carry out an arbitrarily normally distributed muta-
tion step with expectation 0, the N(0, I) distributed vector
z, where I denotes the identity matrix, is linearly trans-
formed by a n x n-matrix B. Bz is then N(0, BB") dis-
tributed.® Choosing B in a suitable way, any normal dis-
tribution with zero mean can be generated by this trans-
formation. To control overall variance of the mutation dis-
tribution, Bz is multiplied by the scalar §. The mutation

4This is true especially in high dimensional search spaces.
5BB! is the covariance matrix of the distribution.
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step for the object variable vector x for each descendant
k=1,..., A reads

™ =2F + 8BFz, | (1)
where

x = (x1,...,7,)" € R® Object variable vector to be
optimized. n is the dimension of the problem.
E Index for the parent (Elder).
N k=1,...,X Index for the descendant (Newer) k.
z=1(21,.--,2n)! ~ N(0, I) 2z; are independent
N(0,1) distributed. 2z, € R" (k = 1,...,) are
independent realizations of z.
0 >0 Global step size.
B € R™"™ Matrix, which linearly transforms z. B can
be seen as the basis on which the normal distribu-
tion works. See also Sect. IL.B.

B. Strategy Variables

The adaptation of the mutation distribution is separated
into two parts. First, a covariance matrix is adapted, with-
out taking into account overall variance®. Speaking about
the “covariance matrix of the mutation distribution” we
always refer to this matrix, which represents all correla-
tions and variance quotients of the mutation distribution.
Second, overall variance is adapted. The reason for ap-
plying two adaptation mechanisms are the fairly different
time scales on which these mechanisms should work: Over-
all variance should be able to change as fast as required on
the hypersphere problem. The covariance matrix can only
be adapted on a larger time scale, because selection infor-
mation for the adaptation of n (n + 1)/2 parameters must
be collected, before doing notable changes. Otherwise the
mutation distribution will degenerate into subspaces due
to stochastic fluctuations. Both time scale requirements
can be met by the suggested separated adaptation.

We call these adaptation mechanisms derandomized,
because on the one hand, strategy parameters are not sub-
ject to direct mutations, but to the same (although trans-
formed) stochastic variations as the object variables: The
random number z is the only stochastic source and the
same realization of z is used in (1), (2) and (4). On the
other hand, adaptation speed is suited to the number of pa-
rameters to be adapted. This essentially reduces stochas-
tic fluctuations of the strategy parameters, which may ruin
the adaptation process as well as the whole optimization.
For an introduction to the derandomized approach to self-
adaptation see [3].

We will first discuss the mutation of the covariance
matrix C, which determines B. The vector Bz is the
basic source for changing the covariance matrix. Actually,
we use a summation vector s, which is calculated by a
weighted sum of the mutation steps, the individual’s an-
cestors made over the passed generations. s represents the

SOverall variance of the N(0, A) distribution means 21 @ij.
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selected mutation steps over the generation sequence or, in
other words, an evolution path.

The normal distribution with zero mean, which most
probably (re-)produces s, is a line distribution along s with
variance ||s||2. This is the N(0, sst) distribution. To follow
the fundamental principle, stated in Sect.I, we adapt the
covariance matrix C of the mutation distribution making
the vector s more likely to appear. Summation in s, also
referred to as “cumulation”, and adaptation of C read

sNe= (1-¢)-s® 4 ¢y - Bz (2)

cN (1= Ceov) - C® + ooy - 8™ (s™)' (3)

where

¢ € ]0,1] determines the accumulation time for s.

¢- (2 — ¢) normalizes the variance of s by solving
the equation 12 = (1 — ¢)? + 2.
gstart — .

C € R™"™ Covariance matrix of the mutation distri-
bution. C determines B, so that Bz ~ N(0,C)
holds, that is C = BB!. C**** =T

Ceov € ]0, 1 determines the time of averaging the distribu-
tions ss’ over the generation sequence.

Cy =

0 does not appear in (2), because a possibly fast change
of § would distort the result of the summation otherwise.
For example, as long as § gets smaller by a factor less than
(1 — ¢) each generation, new information would not effect
s considerably.

Equation (3) is quite similar to the update rule of quasi-
Newton methods in classical optimization. In both cases
second order estimation of the problem topology is done.

While C determines B through C = BB?, the solution
of this equation is not unique. For the reason of global step
size adaptation (see below) we choose as column vectors of
B the eigenvectors of C, their lengths given by the square
root of the corresponding eigenvalues. The eigenvectors
can be seen as the result of a principle component analysis
of (exponentially decreasing weighted) evolution paths.

We give a geometrical idea of the resulting distribution
change, ignoring the initial distribution: A mutation step
at generation g + 1 is composed by g line mutations along
certain vectors sV, ..., s(9). More precisely, s ... 5@
are multiplied each with a N(0, 1) distributed random num-
ber and the results are added up. To produce the mutation
steps of the next generation, (1), ..., s(9 are shortened by
multiplication with (1—c) and a new vector s(91) is added
to the vector tupel. The GSA implements a similar geo-
metrical idea directly (see also Sect.III).

The global step size § is adapted in a quite similar
way, originally introduced in [4] and here referred to as
“cumulative step size adaptation”. Following the principle
of Sect.I, an evolution path (here the sum of “normalized”
mutation steps selected in the generation sequence) is, with
respect to its length, compared to the expected value un-
der random selection. Summation of mutation steps and
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adaptation of § read

s3* = (1—c¢)-8F + cu-Bjzy (4)
Moo= Eeexp (I8 l-%a)) )

where

B} € R™ " equals B¥ with normalized columns.
¢ € ]0,1] determines the accumulation time for s.
cu = /¢ (2 —c), see also ¢y in (2).
Sgtart = 0.
B Parameter for damping the step size variation be-
tween successive generations.

Xn =+vn (1 — & + 515>) approximates the expecta-
tion of the x,-distribution, which is the distribu-
tion of the length of a N(0, I) distributed random
vector in R™.”

Equation (4) looks almost exactly like (2). The only dif-
ference is the normalization of the columns in Bg, which
is important to derive the expected length of s5: Because
the columns of Bjs are normalized eigenvectors®, Bjz is
N(0, I) distributed. In this way, before selection takes
place, s5* is N(0, I) distributed, if s¥ is N(0, I) distributed
and its expected length is well-known. Parallel/anti-
parallel correlation between successively selected steps, as
well as selection of large/small steps enlarge/reduce the
variance of séN“’, if sel =1,..., denotes the index of the
selected descendant.

Equation (5) adapts 4, to reduce the difference between
the length of the actual “normalized” evolution path ||ss]|
and its expected length.

C. Discussion of Introduced Erternal Parameters

B > 0 determines the step size changing rate. Small val-
ues lead to small changing rates and scale down stochastic
fluctuations of the step size. We choose [ as small as possi-
ble, but as large as necessary to allow nearly optimal step
size changes on the hypershere problem. Smaller values
can be sensible to prevent premature decrease of the step
size. In any case, 8 has to be chosen considerably smaller
than ¢, to prevent oscillations due to the cumulation.

Ceov €0, 1[ determines the time horizont of C and 1/ccoy
can be regarded as life span. Roughly speaking, after 1/ccoy
generations about 2/3 of the original information has van-
ished. In general, the larger ccoy, the faster is the adap-
tation, and the smaller c.oy, the more reliable it becomes.
Because of the number of free parameters in C, ccoy should
be smaller than 10/n2. Otherwise, the amount of selection
information is not sufficient for the adaptation and the dis-
tribution degenerates into a subspace. To prevent oscilla-
tions due to the cumulation, c.o, has to be chosen clearly
smaller than c.

¢ €]0,1] determines the accumulation time for the evo-
lution paths s and ss. If ¢ = 1, no accumulation takes

"In implementations, obtain E (|| z||) by simulation and make sure that
xn = E(|l2]]).
8and because eigenvectors are orthogonal
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place. In this case correlation information is not utilized,
and step size adaptation declines with increasing problem
dimension, while adaptation of the distribution usually still
works, even though on a larger time scale. Small values of
¢ make s more accurate, because a lot of selection infor-
mation is accumulated then. On the other hand, if 8 or
Ccoy Mmust be chosen smaller than optimal due to a small ¢,
adaptation time increases.

As a compromise, we found ¢ = 1/4/n useful, while we
choose 8 = 1/n and ceoy = 2/n2.

ITI. RELATION TO PREVIOUS WORK

The CMA, introduced in Sect. I1, is closely related to the
generating set adaptation (GSA), described in [2]. The al-
gorithms, as described, yield only two differences. The first
relates to the global step size adaptation. In the CMA,
cumulative global step size adaptation can be used in a
sensible way. Choosing By with orthonormal columns and
accumulating the mutation steps By z (rather than z), cor-
relation between successive steps is meaningful and the ex-
pectation of the step length ||Bs z|| is known. In the GSA
the global step size adaptation is mutative (cf. Sect.IV).

Second, different weights are used for summing up the
distributions, which relate to the vector s in (3) or to
the generating vectors, respectively. In both schemes, the
weights are chosen mainly for the sake of implementational
simplicity. While the GSA uses equal weights, the expo-
nentially decreasing weights, as used in the CMA, seem to
be more natural, because more recent selection informa-
tion has a comparatively higher influence on the mutation
distribution here. The covariance matrices of the mutation
distributions of the two algorithms at generation g+1 > m,
where m is the number of vectors in the generating set, read

g

Céql\—/[i_i) = Ccov 2(1 - Ccov)giis(i)
i=1
+ (1 —ceov)? I (6)
1 < ;
Cén = — Y 89, (7)
i=g—m+1

where S € R™™ equals sN=«! (sNSE’)t at generation i.
Choosing parameter m = n? relates to ccoy & 1/n%. In
Fig.1 the weights at different generations are shown for
Ceov = 1/10 and m = 20.

The disadvantage of the CMA is, that eigenvalues and
~vectors of C have to be found in a numerical process.’
This process is O(n?), which is also the case for the GSA.

Advantages compared to the GSA are

e The required storage capacity is O(n?) rather than
O(n?).

e Cumulative global step size adaptation can be applied
easily.

e Threatening degeneration of the distribution can be
detected and avoided, for example by restricting the

9We used the C-routines tred2.c and tqli.c of [6] in double precision.

Allowing up to 300 iterations, we always had stable and consistent results
for matrix conditions up to 10%%.
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Fig. 1. Weight coefficients in (6) and (7), which constitute the co-
variance matrix for the covariance matrix adaptation (CMA, solid)
and the generating set adaptation (GSA, hatched) at generation
10, 40 and 100. The first bar reflects the weight for the initial dis-
tribution (CMA) or the sum of all weights, which correspond to
initialization vectors (GSA). ccov = 1/10 and m = 20.

relation between largest and smallest eigenvalue or set-
ting parameter c¢oy to smaller values.

e Searching for eigenvalues and —vectors every n'" gen-
eration merely has no substantial (negative) conse-
quences, because the time scale for notable changes
of C is n?. This makes CMA’s computational effort
O(n?), while there is no comparable technique avail-
able for the GSA.

e The use of the covariance matrix and its eigensystem
makes a further development of specialized adaptation
control mechanisms possible — or at least more con-
venient.

IV. SIMULATIONS

Simulations were done on two different objective func-
tions with n = 20:

1. An arbitrarily orientated hyperellipsoid [2]

fomi(z) = Xn: (10007 (a:,oi))z,

i=1

where (.,.) denotes the canonical scalar product and
01,...,0, is an arbitrarily orientated orthonormal ba-
sis. The axis ratio between i‘* and (i+1)*" axis is con-
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log (function value of f_elli)

10 i i

0 10000 20000 ~ 30000 40000 50000
function evaluations
Fig. 2. Simulations on the arbitrarily orientated hyperellipsoid feni, where n = 20. Starting point is (1,...,1)%, §%*™* = 0.1. The

different (1, 10)-ESs shown are described in the text.

stant, the condition of the hyperellipsoid is 10%. Vec-
tor o; is first generated with (0,1)-normally distributed
components. Then the projections on the previously
generated vectors o1, ..., 0;—1 are subtracted and nor-
malization is done.

2. The generalized Rosenbrock’s function

n—1

Frosen(@) = 3 (100 (22 — 2i11)” + (@i~ 1)?),

i=1

where multiple dependencies between parameters
arise.

Both functions are nonlinear, non-separable, scalable
and resistant to simple hill-climbing — the most desirable
properties of test problems, as pointed out in [9].

We compared the following five (1, 10)-evolution strate-
gies:

e ES-1 — A simple evolution strategy with damped mu-
tative global step size adaptation only (see below). No
further adaptation takes place and the mutation dis-
tribution is isotropic.

o ES-2 — A strategy like ES-1, here with cumulative
global step size adaptation.

e GSA — The Generating Set Adaptation (GSA) as de-
scribed in [2].

¢ CMA-1 — The CMA with damped mutative adapta-
tion of the global step size (see below). The only dif-
ference between CMA-1 and GSA are the summation
weights as discussed in Sect. ITI.

o CMA-2 — The CMA with cumulative global step size
adaptation as described in Sect.II (external parame-

ter setting see end of Sect.IL.C). The only difference
between CMA-2 and CMA-1 is the global step size
adaptation.

ES-1 and ES-2 are shown for comparison merely. The
damped mutative step size control of ES-1, GSA and
CMA-1 works as follows: The mutation step, for example
8 B¥z in (1), is multiplied by the step size changing factor
&k, and step size adaptation is done by 6N* = (&),
replacing (5). & equals 1.5 or 1/1.5 with equal probability,
and the damping parameter § is chosen 1/4/n.

On the hypersphere problem (not shown here) ES-2
performs best. Progresses of the other strategies are at
least 75% of the progress of ES-2 here.!®

Simulation runs on the arbitrarily orientated hyperellip-
soid fen; are shown in Fig.2. The standard deviations
for reaching the function value 1071° for GSA, CMA-1 and
CMA-2 are about 1000 function evaluations. Consequently,
the difference between these strategies is highly significant.
The difference between ES—1 and ES-2 as can be seen in
the figure, is not significant. In a (much) later stage of
optimization, a difference will become obvious and ES-2
reaches function value 1070 after about 4 - 107 function
evaluations, ES—1 after about 108 function evaluations.

Furthermore the simulation shows, that the adaptation
processes of the CMA and the GSA are looking quite sim-
ilar. The reason for the faster adaptation of CMA-1 than
GSA may not only be the different method of weighting.
Life spans 1/ccoy = n?/2 and m = 1.5n2 (cf. Sect. 1) are
not exactly comparable either.

10progress may be defined as expectation of log (fe"alsmr“/fe"alsw").
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Fig. 3. Simulations on the generalized Rosenbrock’s function

frosen, where n = 20. Starting point is 0, §5*** = 0.1. The differ-
ent (1,10)-ESs shown are described in the text. The lower diagram
is an enlarged detail of the upper one.

Cumulative global step size adaptation makes the adap-
tation process of the CMA about 25% faster (CMA-2 vs.
CMA-1).

In principle, adaptation time on fe; scales with n2, as
could be confirmed in simulations without cumulation, not
shown here.

After adaptation has been completed, the three algo-
rithms which adapt arbitrary distributions, realize progress
values comparable to those on the hypersphere problem.

Simulation runs on the generalized Rosenbrock’s func-
tion frosen are shown in Fig. 3 on two different time scales.
Again, the standard deviations for reaching the function
value 10710 for CMA-1, CMA-2 and GSA are about 10°
function evaluations. In this case, there is no significant dif-
ference between CMA-1 and GSA. Cumulative global step
size adaptation makes the adaptation process of the CMA
about 50% faster (CMA-2 vs. CMA-1) and significantly
speeds up the strategy with adaptation of just one global
step size as well (ES-2 vs. ES-1).

V. CONCLUSION

This paper aimed at two goals. First, we argued to utilize
the evolution path, i.e. a sum of successively selected muta-
tion steps, for the adaptation of the mutation distribution,
as proposed in [4]. This usually makes the adaptation faster
and more reliable. Second, we introduced the covariance
matrix adaptation (CMA), which uses the evolution path
to adapt arbitrary normal mutation distributions with zero
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mean. The CMA is a new formulation of the generating
set adaptation (GSA) proposed in [2] and reliably adapts
hyperellipsoids with high axis ratio. The adaptation is in-
dependent of the chosen coordinate system. Cumulative
global step size adaptation can be applied easily, which
can speed up the CMA by the factor two. Furthermore,
the CMA facilitates control and manipulation of important
distribution parameters. In conclusion we state

1. Adapting as many as n (n + 1)/2 free distribution pa-
rameters with constant population size usually leads
to adaptation times of O(n?).

2. In general, the CMA should be preferred to the GSA
for several reasons.
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