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ABSTRACT: The intermediate (center of mass) recombination of object parameters is introduced in the evolu-
tion strategy with derandomized covariance matrix adaptation (CMA-ES). On various (unimodal) real space
fitness functions convergence properties and robustness against distorted selection are tested for different par-
ent numbers. Introducing (u/ur, A)-selection significantly improves robustness and has comparatively minor
influence on the convergence speed of the CMA-ES.

I. INTRODUCTION

In evolutionary computation usually the aspect of global search is emphasized. In contrast, to approach a
(global) optimum quickly, after its basin of attraction is found, convergence velocity of an evolutionary search
algorithm is important. In our opinion the importance of this aspect is, at least in continuous parameter
optimization problems, underestimated; in practical applications the optimum is not approached sufficiently—
’premature convergence’ can be observed. In evolution strategies (ESs) this problem is adressed by the adap-
tation of the mutation distribution, e.g. global or individual step size control [5; 6]. A generalized approach
to individual step size control adapts the coordinate system, in which the step size control takes place, as well
as the step sizes. This allows to generate any normal mutation distribution with zero mean.

Such a scheme was realized the first time in [6], putting n(n — 1) angles for rotating the coordinate system
under the control of mutation and selection. It is disappointing to notice, that this scheme highly depends
on orientation and permutation(!) of the coordinate axes [3; 4]. The rotations, performed in the canonical
planes, are the reason for that dependency. Consequently, the scheme lacks the ability to adapt for topologies
of quadratic functions which are badly scaled and not axis parallel orientated (e.g. functions 46 in Tablel,
Sect. IIT), resulting in a very poor performance [4].

A different approach to a generalized individual step size control is the (derandomized) covariance matrix
adaptation (CMA), introduced in [2]. The CMA is independent of the given coordinate system, reliably
adapts topologies of arbitrary quadratic functions and significantly improves convergence rates especially on
non-separable and/or badly scaled fitness functions.

In this paper we combine intermediate (center of mass) recombination of the object parameters with the
covariance matrix adaptation resulting in the (u/ur, A)-CMA-ES. Advantages of intermediate u/u; recombi-
nation can be twofold. On the one side theoretical results foresee a speed up of progress, assuming sufficiently
large problem dimension and optimal step length [5; 1]. On the other side robustness against selection error
should increase remarkably.

In Sect.II we introduce the (p/p1, A\)-CMA-ES. Section ITI discusses test functions. In Sect.IV simulation
results are shown and Sect. V provides concluding remarks.

II. ALGORITHM: THE (p/p1, A)-CMA-ES
Every new object parameter vector xfcg +) ,k=1...), of generation g+1 is generated by adding a realisation of
aN (0, 5(9)20(9)) distributed random vector. The vector is generated by linear transformation of z ~ N'(0, 1),

where I is the identity matrix. For k = 1...\ we yield

chgﬂ) - (X),(f) +6@BWDW g, (1)
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where

xsﬂgﬂ) € R™. Object variable vector of k*! individual at generation g + 1.

x) = m Zgge)lsel ng). Center of mass of the y selected (best) individuals of generation g. IY) is the set of
indices of the selected individuals at generation g, |Le| = p-
59 Step size.

B  Orthogonal n x n-matrix, which linearly transforms D) z. Columns of B(9) are eigenvectors of the
covariance matrix C9) (see also below). For any two columns b; and b, i # j, of B holds ||b;|| = 1
and (b;,b;) = 0 and therefore B-1 = BT.

D@  Diagonal nxn-matrix. The diagonal element dgf ) is the square root of an eigenvalue of the covariance
matrix C(9) (see also below). The corresponding eigenvector is the i*® column of B(9). That is, for
any column b of B®) holds C@b® = ¢ b

zr € R". k = 1...) realizations of a A(0,I) distributed random vector, i.e. components of z are
independent identically (0, 1)-normally distributed.

D scales the axes of the distribution; isodensity lines of Dz are coordinate axes parallel (hyper-)ellipsoids.
B determines the new orientation of this ellipsoid. The covariance matrix C determines B and D, and is
adapted by means of a so called evolution path [2], denoted by s.

m
SO = (1-0)-s 4 e Y0 (0P - ()9) @)
T
CUTD = (1= ceoy) - C9) + ooy - st9HY) (S(g+1)) (3)

where

s € R™. Sum of weighted center of mass differences. s represents the evolution path of the strategy.
¢ €]0;1]. 1/c corresponds to the accumulation time for s. For ¢ = 1, s(9+1) only depends on object
parameter vectors of generation g and g + 1.
¢y = y/c¢- (2 — ¢) normalizes the variance of s because 12 = (1 — ¢)? + 2.
C(9  Symmetric n x n-matrix, which is the covariance matrix of the normally distributed random vector
B@WDWz, where z ~ N'(0,I). C9 determines B and D) and C9) = BOD® (B(g)D(g))T.
Ceov € [0;1[. 1/ccov corresponds to the averaging time for the covariance matrix.

Notice, that independent of the size of u, only one covariance matrix is used.

The step size § is adapted separately, because changes of overall variance should be done on a much shorter
time scale than the adaptation of the covariance matrix. For step size adaptation (x)‘(,g +_ (x),(f ) is transformed
to reverse the scaling by D, done in (1). This allows to calculate the expected length of s;.

1 _1

st = (1-¢)-sl? +¢,-BW (D(g)) (B(y)) (\S{g (<X>£g+1) _ <X>’(Lg)) )
(g+1) <

st = 59 exp (D W) %)

where

ss € R" represents an evolution path, which is not scaled by D.
D! can easily be calculated by inverting the diagonal elements of D individually.
B! =BT.

D € ]0;1]. Parameter for damping the step size variation.

Xn = VN (1— & + 515-5) estimates the expected length of s; under random selection, which is then A/(0,T)
distributed.

Notice, that (2) and (4) are looking very similar.

The following parameter setting is chosen: ¢ = 1/y/n, ccoy = 2/(n? +n), D = 1/y/n and X = 10,
while start values are s(®) = 0, Sgo) =0 and C© =1. §© and (x)!* are chosen with respect to the fitness
function (cf. Table1). The comparatively small X is preferable because adaptation time mostly depends on the

generation number and improvement per generation usually scales sub-linear with increasing A (fixed n < 00).
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Table 1. Test Functions (to be minimized)

‘ Name H Formula, H 50 ‘ x) () ‘ fotop ‘
1) Sphere fsphere(x) =D 1, (z; — 1)? 1 0 10-10
: 3
2) Schwefel’s Problem fschwet(¥) =D iy (E; ) yi) 1 | ¥k, 0; | 10710
3) Rosenbrock’s Function frosen(Y) =200y (100 (yi* — yz+1) + (y; — 1)2) 0.1 0 1010
4) Ellipsoid fei(y) = E" (1000n 1y,) 1 |30, 0 | 10710
5) Cigar feigar(y) =91° + E, »(1000 yz) 1 [ Y 0 | 1071
6) Tablet Foablet (¥) = (1000 y1)? + 211:2 yi® 1 [ YF,0, 101
7) Different Powers Faittpow (¥) =0, | ,|2+1°' 0.1 | 7 0; | 10715
8) Parabolic Ridge foarab(¥Y) =—y1 + Do Yi” 1 0 -10°
9) Sharp Ridge fonarp(¥) = —y1 + 1000, y:2 1 0 —10°

To our experience, parameter settings are robust if ccoy K D < €, Ceov < 3/(n?2 +n), A > 8 and p < \/2.
Difficult problems and/or distorted selection may require smaller ccov and/or larger A than stated. For

=1 the algorithm is ezactly the same as in [2] if one chooses D = (1 — 7= + 57-7)/v/1 and ceov = 2/n%.

III. BUILDING SIMPLER TEST FUNCTIONS

According to [7] we want a test function to be nonlinear, non-separable, scalable and resistant to simple hill
climbing. In addition, we require an easy to analyze topology even for n > 3. The last point is often neglected,
but is important to reveal what demand on the search algorithm is actually tested by a specific function.

Table 1 gives the test functions used. Only topologies of functions 2, 3 and 7 are not completely transparent.
To yield non-separability for functions 4-9 we set y; := {(x,0;), where x is the object parameter vector to be
optimized. oy ...o0, is a randomly orientated orthonormal basis, fixed for each run.! For the canonical basis,
the argument reduces to y; = (x,0;) = z;. For a non-canonical basis only the sphere remains separable. All
results in this paper are independent of the basis actually chosen, i.e. valid for any basis! The axis scaling
between longest and shortest axis on problems 4-6 is 102, which is a reasonable supposition of misscaling for a
real world problem. Problem 6 (Tablet) can be interpreted as a sphere model with constraints in oy direction.
To solve the quadratic problems 46 should be a minimum demand on a search strategy in R". Even thought
this test suite demands comparatively simple search strategies (e.g. following a narrow valley or searching in
purely quadratic topologies) most ES variants will fail in solving these functions in reasonable time even for
small dimensions.

IV. RESULTS AND DISCUSSION

The (u/p1,10)-CMA-ES is compared to a simple (u/ur, 10)-ES with isotropic mutation distribution. For the
simple ES the CMA-ES algorithm of Sect.II is used setting c.,, = 0. This ES still significantly benefits
from the efficient global step size control in (4) and (5) then. For simulations with n > 50, the update of B
and D (CMA-ES) were not done at every generation but only at generations n,2n,3n, ... This reduces the
computational effort of the algorithm from O(n?) to O(n?) and may be done, if the computation time for the
algorithm exceeds the computation time for the fitness function evaluations, which is unusual in real world
problems. Updating the matrices every generation usually yields better results.

Diagrams of Fig.1 show the number of function evaluations to reach f5°P depending on pu for different
dimensions. Shown are mean values and estimated standard deviations from 2 to 30 runs. Where points of
graphs for the CMA-ES are missing, f5*°P was not reached in every run. The mutation distribution then
degenerates into a subspace because progress becomes too small and selection information covers the problem
topology insufficiently.? This only happens for large p especially in small dimensions.?> Unsurprisingly, the
effect is very similar to the effect seen for distorted selection. Due to limited computational time results for
ES with n > 5 on functions 4-9 are omitted. To avoid numerical precision problems on fsharp, a lower bound
for § was established at 10710 here.

!Each o; is equally distributed on the unit (hyper-)sphere surface, dependently drawn so that (0;,0;) = 0 if i # j. Algorithm:
FOR i =1 TO n 1) Draw components of o; N (0,1) i.i.d. 2) o; :=o0; — z;:i (0i,0;)0; 3) 0; := 0;/||o;|| ROF.

2For i — A selection information becomes zero.

3To prevent this effect, parameter ccov must be chosen smaller, if p > \/2.
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Figure 1. Simulations without selection error. Shown are mean values (2-30 runs) and standard deviations of function evaluations
to reach f5t°P (see Table1). Missing points of CMA-ES indicate that f5'°P was not reached reliably.

Convergence speeds of ES and CMA-ES are comparable only on problems 1-3, while on problem 3 (Rosen-
brock’s function) the CMA-ES is already considerably faster (factor > 10). On problems 4-8 ES takes between
10% and 10° times longer than CMA-ES to reach f5t°P for n = 5. Problem 9 (sharp ridge) is virtually un-
solvable for the simple ES. Speed up factors decrease to 1 for n — oo, if the convergence time scales better
than O(n?), the adaptation time for the covariance matrix (cp. results on Rosenbrock’s function vs. Schwefel’s
problem in Fig.1). In contrast, speed up factors increase (partly drastically), if f5t°P is chosen to be smaller.

While the covariance matrix adaptation (i.e. parameter ccoy) has a drastic effect on the performance, parent
number u, if chosen < 7, is uncritical for CMA-ES performance. Best and worst results for p < 7 differ by
a factor 3 at most. Depending on the problem and problem dimension best results are achieved always for
i between 1 and 3. Notice, that the speed up for 4 > 1 (e.g. on the sphere problem) can only be realized
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Figure 2. Simulations with distorted selection (n = 10). Shown are mean values (5 runs for ES, 50 runs for CMA-ES) of function
evaluations to reach f5t°P (see Table1). Missing points indicate that f5'°P was not reached reliably. Notice the different scalings
for the axis of ordinate.

because step size control (cf. equations (4) and (5)) adapts nearly optimal step size for any given u. Mutative
step size control reduces progress rates significanly by systematically adjusting the step size too small and fails
completely for g > A/2.

Selection distortion is introduced by exchanging adjacent individuals on the ranking scale before choosing
the first p individuals as new parents. Each possible exchange has equal probability. Results are shown in
Fig. 2 for different numbers of exchanges and n = 10 on frosen (ES and CMA-ES) and fon; (CMA-ES only).
Again, missing points indicate that f*°P was not reached in every run. The figure clearly reveals the advantage
of the (p/p1, A)-selection scheme and shows maximal robustness for y = 3 in all cases. Behavior on frosen and
feni is almost identical. CMA-ES is more sensitive to selection error than ES, because the covariance matrix
adaptation needs a larger amount of proper selection information.

V. CONCLUSION

The (u/p1, A\)-CMA-ES, where A > 10 and u < \/2, efficiently adapts the covariance matrix of the mutation
distribution of Evolution Strategies. The adaptation is independent of the chosen coordinate system. Com-
pared to an ES with only global and/or individual step size control, speed up factors between 10 and 10° can
be expected on non-separable and badly scaled objective functions. To fully exploit the advantages of the
method, at least X -n? (more precisely at least one to ten times \/ccoy) function evaluations must be done.
The disadvantage of the CMA-ES is the increased sensitivity to the amount of proper selection information.
Weak selection, distorted selection or low progress rates can result in a failure of the method caused by a
degeneration of the mutation distribution. Under distorted selection choosing p > 1 can partly make up for
this disadvantage. We recommend a (3/31,12)-CMA-ES as a fast and, for small A, most reliable method.
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