CMA-ES and Advanced Adaptation Mechanisms

Youhei Akimoto¹ & Nikolaus Hansen² 1. University of Tsukuba, Japan 2. Inria, Research Centre Saclay, France

akimoto@cs.tsukuba.ac.jp nikolaus.hansen@inria.fr

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan © 2018 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-5764-7/18/07. https://doi.org/10.1145/3205651.3207854

We are happy to answer questions at any time.

Topics

1. What makes the problem difficult to solve?

- 2. How does the CMA-ES work?
 - Normal Distribution, Rank-Based Recombination
 - Step-Size Adaptation
 - Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work effectively on their problem?

- Choice of problem formulation and encoding (not covered)
- Choice of initial solution and initial step-size
- Restarts, Increasing Population Size
- Restricted Covariance Matrix

Topics

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

- Normal Distribution, Rank-Based Recombination
- Step-Size Adaptation
- Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work effectively on their problem?

• Choice of problem formulation and encoding (not covered)

4

- Choice of initial solution and initial step-size
- Restarts, Increasing Population Size
- Restricted Covariance Matrix

Problem Statement

Continuous Domain Search/Optimization

Task: minimize an objective function (*fitness* function, *loss* function) in continuous domain

$$f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}, \qquad \mathbf{x} \mapsto f(\mathbf{x})$$

Black Box scenario (direct search scenario)

- gradients are not available or not useful
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- Search costs: number of function evaluations

Problem Statement

Continuous Domain Search/Optimization

Goal

- fast convergence to the global optimum
- or to a robust solution x
 solution x with small function value f(x) with least search cost

there are two conflicting objectives

- Typical Examples
 - shape optimization (e.g. using CFD)
 - model calibration
 - parameter calibration

curve fitting, airfoils biological, physical controller, plants, images

∃ ▶

 $\mathbf{A} \equiv \mathbf{A}$

=

- Problems
 - exhaustive search is infeasible
 - naive random search takes too long
 - deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms

What Makes a Function Difficult to Solve?

Why stochastic search?

 non-linear, non-quadratic, non-convex on linear and quadratic functions much better search policies are available

- ruggedness non-smooth, discontinuous, multimodal, and/or noisy function
- dimensionality (size of search space)

(considerably) larger than three

non-separability

dependencies between the objective variables

- ill-conditioning
- non-smooth level sets

gradient direction Newton direction

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

cut from a 5-D example, (easily) solvable with evolution strategies

Separable Problems Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

 \Rightarrow it follows that *f* can be optimized in a sequence of *n* independent 1-D optimization processes

Ъ.

 $\checkmark Q \bigcirc$

Non-Separable Problems

Building a non-separable problem from a separable one ^(1,2)

Rotating the coordinate system

- $f : \mathbf{x} \mapsto f(\mathbf{x})$ separable
- $f : \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x})$ non-separable

R rotation matrix

¹Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

 $f(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_i h_{i,i} (x_i - x_i^*)^2 + \frac{1}{2} \sum_{i \neq j} h_{i,j} (x_i - x_i^*) (x_j - x_j^*)$

 \boldsymbol{H} is Hessian matrix of f and symmetric positive definite

gradient direction $-f'(\mathbf{x})^{T}$ Newton direction $-\mathbf{H}^{-1}f'(\mathbf{x})^{T}$

Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) is necessary.

Non-smooth level sets (sharp ridges)

Similar difficulty but worse than ill-conditioning

1-norm

scaled 1-norm

1/2-norm

What Makes a Function Difficult to Solve?

... and what can be done

The Problem	Possible Approaches
Dimensionality	exploiting the problem structure separability, locality/neighborhood, encoding
III-conditioning	second order approach changes the neighborhood metric
Ruggedness	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
	population-based method, stochastic, non-elitistic
	recombination operator serves as repair mechanism
	restarts
	metaphors

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへぐ

Topics

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

- Normal Distribution, Rank-Based Recombination
- Step-Size Adaptation
- Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work effectively on their problem?

- Choice of problem formulation and encoding (not covered)
- Choice of initial solution and initial step-size
- Restarts, Increasing Population Size
- Restricted Covariance Matrix

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

O Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \ldots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$

2 Evaluate x_1, \ldots, x_{λ} on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ} deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$ Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **O** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ} deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$ Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **O** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ} deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **O** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ} deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

O Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$

2 Evaluate x_1, \ldots, x_{λ} on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ} deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

1 Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \ldots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$

2 Evaluate x_1, \ldots, x_{λ} on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ} deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **O** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f
- 3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ} deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **O** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f
- 3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

The CMA-ES

Input: $m \in \mathbb{R}^n$; $\sigma \in \mathbb{R}_+$; $\lambda \in \mathbb{N}_{\geq 2}$, usually $\lambda \geq 5$, default $4 + \lfloor 3 \log n \rfloor$

Set $c_m = 1$; $c_1 \approx 2/n^2$; $c_\mu \approx \mu_w/n^2$; $c_c \approx 4/n$; $c_\sigma \approx 1/\sqrt{n}$; $d_\sigma \approx 1$; $w_{i=1...\lambda}$ decreasing in i and $\sum_i^{\mu} w_i = 1$, $w_\mu > 0 \ge w_{\mu+1}$, $\mu_w^{-1} := \sum_{i=1}^{\mu} w_i^2 \approx 3/\lambda$

Initialize $\mathbf{C} = \mathbf{I}$, and $p_{\mathrm{c}} = \mathbf{0}, \, p_{\sigma} = \mathbf{0}$

While not *terminate*

$$egin{aligned} & x_i = m + \sigma y_i, & ext{where } y_i \sim \mathcal{N}_i(\mathbf{0},\mathbf{C}) ext{ for } i = 1,\ldots,\lambda & ext{sampling} \ & m \leftarrow m + c_m \sigma y_w, & ext{where } y_w = \sum_{i=1}^{\mu} w_{ ext{rk}(i)} \, y_i & ext{update mean} \ & p_\sigma \leftarrow (1 - c_\sigma) \, p_\sigma + \sqrt{1 - (1 - c_\sigma)^2} \sqrt{\mu_w} \, \mathbf{C}^{-rac{1}{2}} \, y_w & ext{path for } \sigma \end{aligned}$$

$$\begin{split} p_{\rm c} &\leftarrow (1 - c_{\rm c}) \, p_{\rm c} + \mathbf{1}_{[0,2n]} \big\{ \| p_{\sigma} \|^2 \big\} \, \sqrt{1 - (1 - c_{\rm c})^2 \sqrt{\mu_w}} \, y_w & \text{path for } \mathbf{C} \\ \sigma &\leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\| p_{\sigma} \|}{\mathbf{E} \| \mathcal{N}(\mathbf{0},\mathbf{I}) \|} - 1\right)\right) & \text{update of } \sigma \\ \mathbf{C} &\leftarrow \mathbf{C} + c_{\mu} \sum_{i=1}^{\lambda} w_{\rm rk}(i) \, (y_i y_i^{\rm T} - \mathbf{C}) + c_1(p_{\rm c} p_{\rm c}^{\rm T} - \mathbf{C}) & \text{update } \mathbf{C} \end{split}$$

Not covered: termination, restarts, useful output, search boundaries and encoding, corrections for: positive definiteness guaranty, p_c variance loss, c_{σ} and d_{σ} for large λ

Evolution Strategies

New search points are sampled normally distributed

 $x_i \sim m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and σ .

(日)

Why Normal Distributions?

widely observed in nature, for example as phenotypic traits

Only stable distribution with finite variance stable means that the sum of normal variates is again

normal:

$$\mathcal{N}(\mathbf{x}, \mathbf{A}) + \mathcal{N}(\mathbf{y}, \mathbf{B}) \sim \mathcal{N}(\mathbf{x} + \mathbf{y}, \mathbf{A} + \mathbf{B})$$

helpful in design and analysis of algorithms related to the *central limit theorem*

most convenient way to generate isotropic search points

the isotropic distribution does not favor any direction, rotational invariant

Maximum entropy distribution with finite variance the least possible assumptions on f in the distribution shape

Normal Distribution

probability density of the 1-D standard normal distribution

probability density of a 2-D normal distribution

E.

 $\checkmark Q (~$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(\mathbf{m}, \mathbf{C})$ is uniquely determined by its mean value $\mathbf{m} \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbf{C} .

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

The covariance matrix C

- determines the shape
- geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x m)^T C^{-1} (x m) = n\}$

...any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x - m)^T \mathbf{C}^{-1} (x - m) = n\}$

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$ holds for all A.

<ロ> < 団> < 団> < 豆> < 豆> < 三</p>

Multivariate Normal Distribution and Eigenvalues

For any positive definite symmetric C,

$$\mathbf{C} = d_1^2 \boldsymbol{b}_1 \boldsymbol{b}_1^{\mathrm{T}} + \dots + d_N^2 \boldsymbol{b}_N \boldsymbol{b}_N^{\mathrm{T}}$$

 d_i : square root of the eigenvalue of C

 b_i : eigenvector of C, corresponding to d_i

The multivariate normal distribution $\mathcal{N}(\boldsymbol{m},\mathbf{C})$

The (μ/μ , λ)-ES

Non-elitist selection and intermediate (weighted) recombination Given the *i*-th solution point $x_i = m + \sigma \underbrace{\mathcal{N}_i(\mathbf{0}, \mathbf{C})}_{=: \mathbf{v}_i} = m + \sigma \mathbf{y}_i$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

where

 $w_1 \ge \dots \ge w_\mu > 0, \quad \sum_{i=1}^{\mu} w_i = 1, \quad \frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

 $f(x_{1:\lambda}) \leq f(x_{2:\lambda}) \leq \dots \leq f(x_{\lambda:\lambda})$

Basic Invariance in Search Space

• translation invariance

is true for most optimization algorithms

Identical behavior on f and f_a

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \qquad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

$$f_{\mathbf{a}}: \mathbf{x} \mapsto f(\mathbf{x} - \mathbf{a}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0 + \mathbf{a}$$

No difference can be observed w.r.t. the argument of f

Summary

- 18

On 20D Sphere Function: $f(\mathbf{x}) = \sum_{i=1}^{N} [\mathbf{x}]_{i}^{2}$

• ES without adaptation can't approach the optimum \Rightarrow adaptation required

Evolution Strategies

Recalling

New search points are sampled normally distributed

 $\mathbf{x}_i \sim \mathbf{m} + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution and $m \leftarrow \sum_{i=1}^{\mu} w_i x_{i:\lambda}$
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update σ and C.

Methods for Step-Size Control

● 1/5-th success rule^{ab}, often applied with "+"-selection

increase step-size if more than 20% of the new solutions are successful, decrease otherwise

• σ -self-adaptation^c, applied with ","-selection

mutation is applied to the step-size and the better, according to the objective function value, is selected

simplified "global" self-adaptation

path length control^d (Cumulative Step-size Adaptation, CSA)^e self-adaptation derandomized and non-localized

E

^aRechenberg 1973, *Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution*, Frommann-Holzboog

^bSchumer and Steiglitz 1968. Adaptive step size random search. *IEEE TAC*

^CSchwefel 1981, *Numerical Optimization of Computer Models*, Wiley

^dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, *Evol. Comput. 9(2)*

eOstermeier *et al* 1994, Step-size adaptation based on non-local use of selection information, PPSN IV

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

 $\begin{array}{rcl} \boldsymbol{x}_i &=& \boldsymbol{m} + \sigma \, \boldsymbol{y}_i \\ \boldsymbol{m} &\leftarrow& \boldsymbol{m} + \sigma \, \boldsymbol{y}_w \end{array}$

< ∃ >

 $\checkmark Q (~$

loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)
Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, evolution path $p_{\sigma} = 0$, set $c_{\sigma} \approx 4/n$, $d_{\sigma} \approx 1$.

$$m \leftarrow m + \sigma y_{w} \text{ where } y_{w} = \sum_{i=1}^{\mu} w_{i} y_{i:\lambda} \text{ update mean}$$

$$p_{\sigma} \leftarrow (1 - c_{\sigma}) p_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} y_{w}$$

$$accounts \text{ for } 1 - c_{\sigma} \text{ accounts for } w_{i}$$

$$\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\|p_{\sigma}\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right) \text{ update step-size}$$

$$>1 \iff \|p_{\sigma}\| \text{ is greater than its expectation}$$

・・

Two-Point Step-Size Adaptation (TPA)

• Sample a pair of symmetric points along the previous mean shift

$$\boldsymbol{x}_{1/2} = \boldsymbol{m}^{(g)} \pm \sigma^{(g)} \frac{\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}{\|\boldsymbol{m}^{(g)} - \boldsymbol{m}^{(g-1)}\|_{\mathbf{C}^{(g)}}} (\boldsymbol{m}^{(g)} - \boldsymbol{m}^{(g-1)}) \qquad \|\boldsymbol{x}\|_{\mathbf{C}} := \boldsymbol{x}^{\mathrm{T}} \mathbf{C}^{-1} \boldsymbol{x}$$

• Compare the ranking of x_1 and x_2 among λ current populations

$$s^{(g+1)} = (1 - c_s)s^{(g)} + c_s \underbrace{\frac{\operatorname{rank}(x_2) - \operatorname{rank}(x_1)}{\lambda - 1}}_{>0 \text{ if the previous step still produces a promising solution}}$$

Update the step-size

$$\sigma^{(g+1)} = \sigma^{(g)} \exp\left(\frac{s^{(g+1)}}{d_{\sigma}}\right)$$

[Hansen, 2008] Hansen, N. (2008). CMA-ES with two-point step-size adaptation. [research report] rr-6527, 2008. Inria-00276854v5. [Hansen et al., 2014] Hansen, N., Atamna, A., and Auger, A. (2014). How to assess step-size adaptation mechanisms in randomised search. In Parallel Problem Solving from Nature–PPSN XIII, pages 60–69. Springer.

On Sphere with Low Effective Dimension

On a function with low effective dimension

• $f(\mathbf{x}) = \sum_{i=1}^{M} [\mathbf{x}]_i^2, \quad \mathbf{x} \in \mathbb{R}^N, \quad M \leq N.$

• N - M variables do not affect the function value

Alternatives: Success-Based Step-Size Control

comparing the fitness distributions of current and previous iterations

Generalizations of 1/5th-success-rule for non-elitist and multi-recombinant ES

- Median Success Rule [Ait Elhara et al., 2013]
- Population Success Rule [Loshchilov, 2014]

controls a *success probability*

An advantage over CSA and TPA: Cheap Computation

- It depends only on λ .
- cf. CSA and TPA require a computation of $C^{-1/2}x$ and $C^{-1}x$, respectively.

[[]Ait Elhara et al., 2013] Ait Elhara, O., Auger, A., and Hansen, N. (2013). A median success rule for non- elitist evolution strategies: Study of feasibility. In Proc. of the GECCO, pages 415–422. [Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proc. of the GECCO, pages 397–404. 41

Step-Size Control: Summary

Why Step-Size Control?

• to achieve linear convergence at near-optimal rate

Cumulative Step-Size Adaptation

- efficient and robust for $\lambda \leq N$
- inefficient on functions with (many) ineffective axes

Alternative Step-Size Adaptation Mechanisms

- Two-Point Step-Size Adaptation
- Median Success Rule, Population Success Rule

the effective adaptation of the overall population diversity seems yet to pose open questions, in particular with recombination or without entire control over the realized distribution.^a

^aHansen et al. How to Assess Step-Size Adaptation Mechanisms in Randomised Search. PPSN 2014

Step-Size Control: Summary

3.0 25 2.0

1.5

1.5

0.5

0.0 -0.5 -1.0

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

> 1.0

- 16 - 14 - 12 - 10 - 8 - 6 - 4 - 4 - 2

140

120 - 100

- 80 - 60

- 40 - 20

> - 1600 1400

> 1200 - 1000

- 800 - 600

400 - 200

14000

12000 10000

8000 6000

4000 - 2000

3.0

On 20D TwoAxes Function: $f(\mathbf{x}) = \sum_{i=1}^{N/2} [\mathbf{R}\mathbf{x}]_i^2 + a^2 \sum_{i=N/2+1}^{N} [\mathbf{R}\mathbf{x}]_i^2$, **R**: orthogonal

convergence speed of CSA-ES becomes lower as the function becomes ill conditioned $(a^2 \text{ becomes greater}) \Rightarrow$ covariance matrix adaptation required

Evolution Strategies

Recalling

New search points are sampled normally distributed

$$\mathbf{x}_i \sim \mathbf{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbb{C} \in \mathbb{R}^{n \times n}$ where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update C.

Rank-One Update

initial distribution, $\mathbf{C} = \mathbf{I}$

... equations

Rank-One Update

initial distribution, $\mathbf{C} = \mathbf{I}$

...equations ▲□▶▲□▶▲■▶▲≣▶ ■ ⑦९ペ

Rank-One Update

 y_w , movement of the population mean *m* (disregarding σ)

... equations

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽��♡

Rank-One Update

$$\boldsymbol{m} \leftarrow \boldsymbol{m} + \sigma \boldsymbol{y}_{w}, \quad \boldsymbol{y}_{w} = \sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i:\lambda}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\boldsymbol{0}, \boldsymbol{C})$$

mixture of distribution C and step y_w , C $\leftarrow 0.8 \times C + 0.2 \times y_w y_w^T$

... equations

 $\checkmark Q (~$

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rank-One Update

new distribution (disregarding σ)

... equations

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�?

Rank-One Update

new distribution (disregarding σ)

... equations

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�?

Rank-One Update

movement of the population mean *m*

... equations

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�?

Rank-One Update

mixture of distribution C and step y_w , C $\leftarrow 0.8 \times C + 0.2 \times y_w y_w^T$

... equations

Rank-One Update

new distribution,

 $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \mathbf{y}_w \mathbf{y}_w^{\mathrm{T}}$

the ruling principle: the adaptation increases the likelihood of successful steps, y_w , to appear again another viewpoint: the adaptation follows a natural gradient approximation of the expected fitness

Rank-One Update Initialize $m \in \mathbb{R}^n$, and $\mathbf{C} = \mathbf{I}$, set $\sigma = 1$, learning rate $c_{cov} \approx 2/n^2$ While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \\ \mathbf{m} \leftarrow \mathbf{m} + \sigma \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} \\ \mathbf{C} \leftarrow (1 - c_{\text{cov}})\mathbf{C} + c_{\text{cov}} \mu_{w} \underbrace{\mathbf{y}_{w} \mathbf{y}_{w}^{T}}_{\text{rank-one}} \quad \text{where } \mu_{w} = \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \geq 1 \end{aligned}$$

The rank-one update has been found independently in several domains^{6 7 8 9}

54

⁹Haario et al 2001. An adaptive Metropolis algorithm, JSTOR

⁶Kjellström&Taxén 1981. Stochastic Optimization in System Design, IEEE TCS

⁷Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation, ICEC

⁸Ljung 1999. System Identification: Theory for the User

 $\mathbf{C} \leftarrow (1 - c_{\mathrm{cov}})\mathbf{C} + c_{\mathrm{cov}}\mu_{w}\mathbf{y}_{w}\mathbf{y}_{w}^{\mathrm{T}}$

covariance matrix adaptation

- Iearns all pairwise dependencies between variables off-diagonal entries in the covariance matrix reflect the dependencies
- conducts a principle component analysis (PCA) of steps y_w, sequentially in time and space

eigenvectors of the covariance matrix **C** are the principle components / the principle axes of the mutation ellipsoid

Iearns a new rotated problem representation

components are independent (only) in the new representation...

Iearns a new (Mahalanobis) metric

variable metric method

approximates the inverse Hessian on quadratic functions

transformation into the sphere function

• for $\mu = 1$: conducts a natural gradient ascent on the distribution \mathcal{N}

entirely independent of the given coordinate system

Invariance Under Rigid Search Space Transformation

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

Invariance Under Rigid Search Space Transformation

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean *m*.

An exponentially weighted sum of steps y_w is used

$$\mathbf{p_c} \propto \sum_{i=0}^{g} (1-c_c)^{g-i} \mathbf{y}_w^{(i)}$$

exponentially fading weights

The recursive construction of the evolution path (cumulation):

$$p_{c} \leftarrow \underbrace{(1-c_{c})}_{\text{decay factor}} p_{c} + \underbrace{\sqrt{1-(1-c_{c})^{2}}}_{\text{normalization factor}} \underbrace{y_{w}}_{\text{input}} = \frac{m-m_{old}}{\sigma}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_c \ll 1$. History information is accumulated in the evolution path.

The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean *m*.

An exponentially weighted sum of steps y_w is used

$$\mathbf{p_c} \propto \sum_{i=0}^{g} (1 - c_c)^{g-i} \mathbf{y}_w^{(i)}$$

exponentially fading weights

The recursive construction of the evolution path (cumulation):

$$\begin{array}{rcl} p_{\mathbf{c}} & \leftarrow & \underbrace{(1-c_{\mathbf{c}})}_{\text{decay factor}} p_{\mathbf{c}} + \underbrace{\sqrt{1-(1-c_{\mathbf{c}})^2} \sqrt{\mu_w}}_{\text{normalization factor}} \underbrace{\mathbf{y}_w}_{\text{input}} = \frac{m-m_{\text{old}}}{\sigma} \end{array}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_c \ll 1$. History information is accumulated in the evolution path.

"Cumulation" is a widely used technique and also know as

- exponential smoothing in time series, forecasting
- exponentially weighted mooving average
- *iterate averaging* in stochastic approximation
- momentum in the back-propagation algorithm for ANNs

• . . .

"Cumulation" conducts a *low-pass* filtering, but there is more to it...

60

... why?

◆□▶ ◆□▶ ◆ = ▶ ◆ = ◆ ○ ○ ○

$$\mathbf{C} \leftarrow (1 - c_{\mathrm{cov}})\mathbf{C} + c_{\mathrm{cov}}\mu_{w}\mathbf{y}_{w}\mathbf{y}_{w}^{\mathrm{T}}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 • つへ ()

Utilizing the Evolution Path We used $y_w y_w^T$ for updating C. Because $y_w y_w^T = -y_w (-y_w)^T$ the sign of y_w is lost.

The sign information (signifying correlation between steps) is (re-)introduced by using the evolution path.

$$p_{c} \leftarrow \underbrace{(1-c_{c})}_{\text{decay factor}} p_{c} + \underbrace{\sqrt{1-(1-c_{c})^{2}}}_{\text{normalization factor}} y_{w}$$

$$C \leftarrow (1-c_{cov})C + c_{cov} \underbrace{p_{c} p_{c}}_{\text{rank-one}}^{\text{T}}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_{cov} \ll c_c \ll 1$ such that $1/c_c$ is the "backward time horizon".

$$\mathbf{C} \leftarrow (1 - c_{\mathrm{cov}})\mathbf{C} + c_{\mathrm{cov}}\mu_{w}\mathbf{y}_{w}\mathbf{y}_{w}^{\mathrm{T}}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 • つへ ()

Utilizing the Evolution Path We used $y_w y_w^T$ for updating C. Because $y_w y_w^T = -y_w (-y_w)^T$ the sign of y_w is lost.

The sign information (signifying correlation *between* steps) is (re-)introduced by using the evolution path.

$$p_{c} \leftarrow \underbrace{(1-c_{c})}_{\text{decay factor}} p_{c} + \underbrace{\sqrt{1-(1-c_{c})^{2}}}_{\text{normalization factor}} y_{w}$$

$$C \leftarrow (1-c_{cov})C + c_{cov} \underbrace{p_{c} p_{c}}_{\text{rank-one}}^{\text{T}}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_{cov} \ll c_c \ll 1$ such that $1/c_c$ is the "backward time horizon".

$$\mathbf{C} \leftarrow (1 - c_{\mathrm{cov}})\mathbf{C} + c_{\mathrm{cov}}\mu_{w}\mathbf{y}_{w}\mathbf{y}_{w}^{\mathrm{T}}$$

Utilizing the Evolution Path We used $y_w y_w^T$ for updating C. Because $y_w y_w^T = -y_w (-y_w)^T$ the sign of y_w is lost.

The sign information (signifying correlation between steps) is (re-)introduced by using the evolution path.

$$p_{c} \leftarrow \underbrace{(1-c_{c})}_{\text{decay factor}} p_{c} + \underbrace{\sqrt{1-(1-c_{c})^{2}}}_{\text{normalization factor}} y_{w}$$

$$C \leftarrow (1-c_{cov})C + c_{cov} \underbrace{p_{c} p_{c}}_{\text{rank-one}}^{T}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_{cov} \ll c_c \ll 1$ such that $1/c_c$ is the "backward time horizon". ▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧< Using an evolution path for the rank-one update of the covariance matrix reduces the number of function evaluations to adapt to a straight ridge from about $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.^(a)

^aHansen & Auger 2013. Principled design of continuous stochastic search: From theory to practice.

Number of *f*-evaluations divided by dimension on the cigar function $f(\mathbf{x}) = x_1^2 + 10^6 \sum_{i=2}^n x_i^2$ 10^4 $\mathbf{c_c} = 1$ (no cumulation) 10^4 $\mathbf{c_c} = 1/\sqrt{n}$ $\mathbf{c_c} = 1/n$

The overall model complexity is n^2 but important parts of the model can be learned in time of order n

Rank-µ Update

 $\begin{array}{rcl} \mathbf{x}_{i} &=& \mathbf{m} + \sigma \, \mathbf{y}_{i}, & \mathbf{y}_{i} &\sim & \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}) \,, \\ \mathbf{m} &\leftarrow & \mathbf{m} + \sigma \, \mathbf{y}_{w} & \mathbf{y}_{w} &= & \sum_{i=1}^{\mu} \, w_{i} \, \mathbf{y}_{i:\lambda} \end{array}$

The rank- μ update extends the update rule for large population sizes λ using $\mu > 1$ vectors to update C at each generation step.

The weighted empirical covariance matrix

computes a weighted mean of the outer products of the best μ steps and has rank $\min(\mu, n)$ with probability one.

with $\mu = \lambda$ weights can be negative ¹⁰

The rank- μ update then reads

$$\mathbf{C} \leftarrow (1 - c_{\rm cov}) \, \mathbf{C} + c_{\rm cov} \, \mathbf{C}_{\mu}$$

where $c_{\rm cov} \approx \mu_w/n^2$ and $c_{\rm cov} \leq 1$.

10 Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC. 🚊 🔗 🔍 🗠

new distribution

(日)

 \mathcal{A}

sampling of $\lambda = 150$ solutions where $\mathbf{C} = \mathbf{I}$ and $\sigma = 1$ calculating C where $\mu = 50$, $w_1 = \cdots = w_\mu = \frac{1}{\mu}$, and $c_{cov} = 1$

66

Rank- μ CMA versus Estimation of Multivariate Normal Algorithm EMNA_{global}¹¹

 m_{new} is the minimizer for the variances when calculating C

¹¹ Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102 9 0 0

The rank- μ update

- increases the possible learning rate in large populations roughly from $2/n^2$ to μ_w/n^2
- can reduce the number of necessary generations roughly from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)~^{(12)}$

given $\mu_w \propto \lambda \propto n$

Therefore the rank- μ update is the primary mechanism whenever a large population size is used

say $\lambda \geq 3 n + 10$

The rank-one update

• uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

Rank-one update and rank- μ update can be combined

... all equations

¹²Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evolutionary Computation*, 11(1), pp. 1-18 $\triangleleft \Box \triangleright \triangleleft \Box \triangleright \triangleleft \Xi \triangleright \triangleleft \Xi \triangleright \blacksquare \blacksquare \square \square$

The rank- μ update

- increases the possible learning rate in large populations roughly from $2/n^2$ to μ_w/n^2
- can reduce the number of necessary generations roughly from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)~^{(12)}$

given $\mu_w \propto \lambda \propto n$

Therefore the rank- μ update is the primary mechanism whenever a large population size is used

say $\lambda \geq 3 n + 10$

The rank-one update

• uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

Rank-one update and rank- μ update can be combined

^{...} all equations

The rank- μ update

- increases the possible learning rate in large populations roughly from $2/n^2$ to μ_w/n^2
- can reduce the number of necessary generations roughly from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)~^{(12)}$

given $\mu_w \propto \lambda \propto n$

Therefore the rank- μ update is the primary mechanism whenever a large population size is used

say $\lambda \geq 3 n + 10$

The rank-one update

• uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

Rank-one update and rank- μ update can be combined

... all equations

¹²Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evolutionary Computation*, 11(1), pp. 1-18 $\triangleleft \square \lor \triangleleft \square \lor \triangleleft \blacksquare \lor \triangleleft \blacksquare \lor \triangleleft \blacksquare \lor \lor \blacksquare \lor \lor \square$

Covariance Matrix Rank- μ Update

$$f_{\text{TwoAxes}}(x) = \sum_{i=1}^{5} x_i^2 + 10^6 \sum_{i=6}^{10} x_i^2$$

$$\lambda = 10$$
 (default for $N = 10$)

71

Covariance Matrix Rank- μ Update

 $f_{\text{TwoAxes}}(x) = \sum_{i=1}^{5} x_i^2 + 10^6 \sum_{i=6}^{10} x_i^2$

 $\lambda = 50$
Different Types of Ill-Conditioning

Cigar Type: 1 long axis = n-1 short axes

 $f(x) = x_1^2 + \alpha \sum_{i=1}^n x_i^2$ 1.0 0.5 0.0 -0.5 た1.0 1.0 0.5 -1.00.0 -0.5 0.0 -0.5 0.5 1.0-1.0

Discus Type: 1 short axis = n-1 long axes

73

Active Update

utilize negative weights [Jastrebski and Arnold, 2006]

Active Update (rewriting)

decreasing the variances in unpromising directions

$$\boldsymbol{C} \leftarrow \boldsymbol{C} + \boldsymbol{c_1} \boldsymbol{p_c} \boldsymbol{p_c}^T + \boldsymbol{c_\mu} \sum_{i=1}^{\lfloor \lambda/2 \rfloor} \boldsymbol{w_i} \boldsymbol{y_{i:\lambda}} \boldsymbol{y_{i:\lambda}^T} - \boldsymbol{c_\mu} \sum_{i=\lambda-\lfloor \lambda/2 \rfloor+1}^{\lambda} |\boldsymbol{w_i}| \boldsymbol{y_{i:\lambda}} \boldsymbol{y_{i:\lambda}^T}$$

increasing the variances in promising directions

- increases the variance in the directions of p_c and promising steps $y_{i:\lambda}$ $(i \leq \lfloor \lambda/2 \rfloor)$
- decrease the variance in the directions of unpromising steps $y_{i:\lambda}$ $(i \ge \lambda - \lfloor \lambda/2 \rfloor + 1)$
- keep the variance in the subspace orthogonal to the above

[[]Jastrebski and Arnold, 2006] Jastrebski, G. and Arnold, D. V. (2006). Improving Evolution Strategies through Active Covariance Matrix Adaptation. In 2006 IEEE Congress on Evolutionary Computation, pages 9719–9726.

On 10D Discus Function

10D Discus Function (axis ratio: $\alpha = 10^3$)

$$f(x) = \alpha^2 \cdot x_1^2 + \sum_{i=1}^n x_i^2$$

- Positive: wait for the smallest eig(*C*) decreasing
- Active: decrease the smallest eig(*C*) actively

Summary

Active Covariance Matrix Adaptation + Cumulation

$$\boldsymbol{C} \leftarrow (1 - c_1 - c_\mu + c_\mu^-) \boldsymbol{C} + c_1 \boldsymbol{p}_c \boldsymbol{p}_c^T + c_\mu \sum_{i=1}^{\lfloor \lambda/2 \rfloor} w_i \boldsymbol{y}_{i:\lambda} \boldsymbol{y}_{i:\lambda}^T - c_\mu^- \sum_{i=\lambda-\lfloor \lambda/2 \rfloor+1}^{\lambda} |w_i| \boldsymbol{y}_{i:\lambda} \boldsymbol{y}_{i:\lambda}^T$$

- $-|w_i| < 0$ (for $i \ge \lambda \lfloor \lambda/2 \rfloor + 1$): negative weight assigned to $y_{i:\lambda}$, $\sum_{i=\lambda-\mu}^{\lambda} |w_i| = 1$.
- $c_{\mu}^{-} > 0$: learning rate for the active update

These components complement each other

- cumulation: excels to learn a long axis, but inefficient for a large λ
- rank- μ update: efficient for a large λ
- active update: effective to learn short axes

An important yet solvable issue of active update

- The positive definiteness of C will be violated if c_{μ}^{-} is not small enough
- The positive definiteness can be guaranteed w.p.1 by controlling $c_{\mu}^{-}w_{i}$

Input: $m \in \mathbb{R}^n$; $\sigma \in \mathbb{R}_+$; $\lambda \in \mathbb{N}_{\geq 2}$, usually $\lambda \geq 5$, default $4 + \lfloor 3 \log n \rfloor$

Set $c_m = 1$; $c_1 \approx 2/n^2$; $c_\mu \approx \mu_w/n^2$; $c_c \approx 4/n$; $c_\sigma \approx 1/\sqrt{n}$; $d_\sigma \approx 1$; $w_{i=1...\lambda}$ decreasing in i and $\sum_i^{\mu} w_i = 1$, $w_\mu > 0 \ge w_{\mu+1}$, $\mu_w^{-1} := \sum_{i=1}^{\mu} w_i^2 \approx 3/\lambda$

Initialize $\mathbf{C} = \mathbf{I}$, and $p_{\mathrm{c}} = \mathbf{0}$, $p_{\sigma} = \mathbf{0}$

While not *terminate*

$$egin{aligned} & x_i = m{m} + \sigma m{y}_i, & ext{where } m{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}) ext{ for } i = 1, \dots, \lambda & ext{sampling} \ & m{m} \leftarrow m{m} + m{c}_m \sigma m{y}_w, & ext{where } m{y}_w = \sum_{i=1}^{\mu} m{w}_{ ext{rk}(i)} m{y}_i & ext{update mean} \end{aligned}$$

$$\boldsymbol{p}_{\sigma} \leftarrow (1 - \boldsymbol{c}_{\sigma}) \, \boldsymbol{p}_{\sigma} + \sqrt{1 - (1 - \boldsymbol{c}_{\sigma})^2} \sqrt{\mu_w} \, \mathbf{C}^{-\frac{1}{2}} \, \boldsymbol{y}_w \qquad \text{path for } \sigma$$

$$\begin{split} p_{\rm c} &\leftarrow (1 - c_{\rm c}) \, p_{\rm c} + \mathbf{1}_{[0,2n]} \big\{ \| p_{\sigma} \|^2 \big\} \, \sqrt{1 - (1 - c_{\rm c})^2 \sqrt{\mu_w}} \, y_w \quad \text{path for } \mathbf{C} \\ \sigma &\leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\| p_{\sigma} \|}{\mathsf{E} \| \mathcal{N}(\mathbf{0},\mathbf{I}) \|} - 1 \right) \right) \quad \qquad \text{update of } \sigma \end{split}$$

$$\mathbf{C} \leftarrow \mathbf{C} + c_{\mu} \sum_{i=1}^{\lambda} w_{\mathrm{rk}(i)} \left(\boldsymbol{y}_{i} \boldsymbol{y}_{i}^{\mathsf{T}} - \mathbf{C} \right) + c_{1} \left(\boldsymbol{p}_{\mathrm{C}} \boldsymbol{p}_{\mathrm{C}}^{\mathsf{T}} - \mathbf{C} \right) \qquad \text{update } \mathbf{C}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● ⑦ � ? ?

Not covered: termination, restarts, useful output, search boundaries and encoding, corrections for: positive definiteness guaranty, p_c variance loss, c_σ and d_σ for large λ

Topics

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

- Normal Distribution, Rank-Based Recombination
- Step-Size Adaptation
- Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work effectively on their problem?

- Choice of problem formulation and encoding (not covered)
- Choice of initial solution and initial step-size
- Restarts, Increasing Population Size
- Restricted Covariance Matrix

Default Parameter Values

CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

The following parameters were identified in carefully chosen experimental set ups.

- related to selection and recombination
 - λ : offspring number, new solutions sampled, population size
 - μ : parent number, solutions involved in mean update
 - w_i : recombination weights
- related to C-update
 - $1 c_c$: decay rate for the evolution path, cumulation factor
 - c_1 : learning rate for rank-one update of C
 - c_{μ} : learning rate for rank- μ update of C
- related to σ -update
 - $1 c_{\sigma}$: decay rate of the evolution path
 - d_{σ} : damping for σ -change

The default values depends only on the dimension. They do in the first place not depend on the objective function.

Parameters to be set depending on the problem

Initialization and termination conditions

The following should be set or implemented depending on the problem.

- related to the initial search distribution
 - $m^{(0)}$: initial mean vector
 - $\sigma^{(0)}$ (or $\sqrt{C_{i,i}^{(0)}}$): initial (coordinate-wise) standard deviation
- related to stopping conditions
 - max. func. evals.
 - max. iterations
 - function value tolerance
 - min. axis length
 - stagnation

Practical Hints:

- start with an initial guess $m^{(0)}$ with a relatively small step-size $\sigma^{(0)}$ to *locally* improve the current guess;
- then increase the step-size, e.g., by factor of 10, to globally search for a better solution.

Python CMA-ES Implementation

https://github.com/CMA-ES/pycma

pycma

A Python implementation of CMA-ES and a few related numerical optimization tools.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic derivative-free numerical optimization algorithm for difficult (non-convex, ill-conditioned, multi-modal, rugged, noisy) optimization problems in continuous search spaces.

Useful links:

- A quick start guide with a few usage examples
- The API Documentation
- Hints for how to use this (kind of) optimization module in practice

Installation of the latest release

Туре

python -m pip install cma

in a system shell to install the latest *release* from the Python Package Index (PyPI). The release link also provides more installation hints and a quick start guide.

Python CMA-ES Demo

https://github.com/CMA-ES/pycma

Optimizing 10D Rosenbrock Function

In [1]:	import cma	# import	
	<pre>opts = cma.CMAOptions()</pre>	# CMA Options	
	<pre>opts['ftarget'] = 1e-4</pre>	# - function value target	
	<pre>opts['maxfevals'] = 1e6</pre>	# - max. function evaluations	
	<pre>cma.fmin(cma.ff.rosen,</pre>	<i># Minimize Rosenbrock function</i>	
	x0=[0.0] * 10,	$\# - x0 = [0, \dots, 0]$	
	sigma0=0.1,	# - sigma0 = 0.1	
	options=opts)	# - other options	

```
(5 w,10)-aCMA-ES (mu w=3.2,w 1=45%) in dimension 10 (seed=909490, Mon Ap
r 16 13:39:57 2018)
Iterat #Fevals
                                                   min&max std t[m:s]
                 function value axis ratio sigma
          10 1.169928472214858e+01 1.0e+00 9.12e-02
                                                     9e-02
                                                          9e-02 0:00.0
    1
          20 1.363303277917634e+01 1.1e+00 8.33e-02
                                                     8e-02 8e-02 0:00.0
    2
    3
                                                     7e-02 8e-02 0:00.0
          30 1.232089008099892e+01 1.2e+00 7.55e-02
        1000 5.724977739870999e+00 9.1e+00 1.65e-02
                                                     7e-03 2e-02 0:00.1
  100
        2000 2.550841127554589e+00 1.5e+01 3.97e-02
                                                     1e-02 4e-02 0:00.2
  200
        3000 3.674986141687857e-01 1.5e+01 2.76e-02
  300
                                                     3e-03 2e-02 0:00.4
  400
                                                            2e-02 0:00.5
        4000 1.266345464781239e-03 5.0e+01 1.18e-02
                                                     8e-04
  420
        4200 7.039461687999381e-05 5.5e+01 4.04e-03
                                                     2e-04
                                                            5e-03 0:00.5
termination on ftarget=0.0001 (Mon Apr 16 13:39:58 2018)
final/bestever f-value = 2.804423e-05 2.804423e-05
incumbent solution: [ 0.9998542
                                  0.99996219 0.9999681
                                                          1.00000445 0.
99998977 0.99968537
  0.99954974 0.99918266 ...]
std deviations: [ 0.00023937 0.00022203 0.00024836
                                                      0.00024782
                                                                  0.0003
1258 0.00043481
  0.00078261 0.0014964
                        ...1
```

isation tend to do is itial) solution a. Then I (can) vely (by a pending on nitial pusly) and see or better (or

Python CMA-ES Demo

https://github.com/CMA-ES/pycma

Optimizing 10D Rosenbrock Function

Two approaches for multimodal functions: Try again with

- a larger population size
- a smaller initial step-size (and random initial mean vector)

Approaches for multimodal functions: Try again with

- the final solution as initial solution (non-elitist) and small step-size
- a larger population size
- a different initial mean vector (and a smaller initial step-size)

A restart with a **large population size** helps if the objective function has a **well global structure**

85

- functions such as Schaffer, Rastrigin, BBOB function 15~19
- loosely, unimodal global structure + deterministic noise

Hansen and Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions, PPSN 2004.

Fig. 1. Success rate to reach $f_{\text{stop}} = 10^{-10}$ versus population size for (a) Rastrigin function (b) Griewank function for dimensions n = 2 ('--O--'), n = 5 ('--×--'), n = 10 ('--□-'), n = 20 ('--+--'), n = 40 ('--◇--'), and n = 80 ('--▽--').

Approaches for multimodal functions: Try again with

- the final solution as initial solution (non-elitist) and small step-size
- a larger population size
- a different initial mean vector (and a smaller initial step-size)

A restart with a **small initial step-size** helps if the objective function has a **weak global structure**

functions such as Schwefel, Bi-Sphere, BBOB function 20~24

Restart Strategy

It makes the CMA-ES parameter free

IPOP: Restart with increasing the population size

- start with the default population size
- double the population size after each trial (parameter sweep)
- may be considered as gold standard for automated restarts

BIPOP: IPOP regime + Local search regime

- IPOP regime: restart with increasing population size
- Local search regime: restart with a smaller step-size and a smaller population size than the IPOP regime

Topics

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

- Normal Distribution, Rank-Based Recombination
- Step-Size Adaptation
- Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work effectively on their problem?

- Choice of problem formulation and encoding (not covered)
- Choice of initial solution and initial step-size
- Restarts, Increasing Population Size
- Restricted Covariance Matrix

Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems

- **①** $\mathcal{O}(N^2)$ Time and Space Complexities
 - to store and update $C \in \mathbb{R}^{N \times N}$
 - to compute the eigen decomposition of C
- **2** $O(1/N^2)$ Learning Rates for *C*-Update
 - $c_{\mu} \approx \mu_w/N^2$
 - $c_1 \approx 2/N^2$

Exploit prior knowledge on the problem structure such as separability

⇒ decrease the degrees of freedom of the covariance matrix for

- less time and space complexities
- a higher learning rates that potentially accelerate the adaptation

Variants with Restricted Covariance Matrix

CMA-ES Variants with Restricted Covariance Matrices

• Sep-CMA [Ros and Hansen, 2008]

• C = D. D: Diagonal

- VD-CMA [Akimoto et al., 2014]
 - ► $C = \mathbf{D}(\mathbf{I} + \mathbf{v}\mathbf{v}^{\mathrm{T}})\mathbf{D}$. **D**: Diagonal, $\mathbf{v} \in \mathbb{R}^{N}$.
- LM-CMA [Loshchilov, 2014]

$$\blacktriangleright C = \mathbf{I} + \sum_{i=1}^{k} \boldsymbol{v}_i \boldsymbol{v}_i^{\mathrm{T}} \cdot \boldsymbol{v}_i \in \mathbb{R}^N.$$

• VkD-CMA [Akimoto and Hansen, 2016]

$$\blacktriangleright C = \mathbf{D}(\mathbf{I} + \sum_{i=1}^{k} \mathbf{v}_i \mathbf{v}_i^{\mathrm{T}}) \mathbf{D}. \ \mathbf{v}_i \in \mathbb{R}^N.$$

[Ros and Hansen, 2008] Ros, R. and Hansen, N. (2008). A simple modification in CMA-ES achieving linear time and space complexity. In Parallel Problem Solving from Nature - PPSN X, pages 296–305. Springer.

[Akimoto et al., 2014] Akimoto, Y., Auger, A., and Hansen, N. (2014). Comparison-based natural gradient optimization in high dimension. In Proceedings of Genetic and Evolutionary Computation Conference, pages 373–380, Vancouver, BC, Canada.

- [Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proceedings of Genetic and Evolutionary Computation Conference, pages 397–404.
- [Akimoto and Hansen, 2016] Akimoto, Y. and Hansen, N. (2016). Projection-based restricted covariance matrix adaptation for high dimension. In Genetic and Evolutionary Computation Conference, GECCO 2016, Denver, Colorado, USA, July 20-24, 2016, page (accepted). ACM.

Separable CMA (Sep-CMA)

Demo: On 100D Separable Ellipsoid Function

- CMA needed 10 times more FEs + more CPU time
- However, Sep-CMA won't be able to solve rotated ellipsoid function as efficiently as it solves separable ellipsoid

Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

- Multivariate normal distribution to generate new search points follows the maximum entropy principle
- Rank-based selection implies invariance, same performance on g(f(x)) for any increasing g more invariance properties are featured
- Step-size control facilitates fast (log-linear) convergence and possibly linear scaling with the dimension in CMA-ES based on an evolution path (a non-local trajectory)
- Covariance matrix adaptation (CMA) increases the likelihood of previously successful steps and can improve performance by orders of magnitude

the update follows the natural gradient $\mathbf{C} \propto \mathbf{H}^{-1} \iff$ adapts a variable metric \iff new (rotated) problem representation $\implies f: \mathbf{x} \mapsto g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$ reduces to $\mathbf{x} \mapsto \mathbf{x}^{\mathrm{T}}\mathbf{x}$

Limitations

of CMA Evolution Strategies

• internal CPU-time: $10^{-8}n^2$ seconds per function evaluation on a 2GHz PC, tweaks are available 1000000 *f*-evaluations in 100-D take 100 seconds *internal* CPU-time

variants with restricted covariance matrix such as Sep-CMA

- better methods are presumably available in case of
 - partly separable problems
 - specific problems, for example with cheap gradients

specific methods

• small dimension ($n \ll 10$)

for example Nelder-Mead

small running times (number of *f*-evaluations < 100*n*) model-based methods

Thank you

Source code for CMA-ES in C, C++, Java, Matlab, Octave, Python, R, Scilab and Practical hints for problem formulation, variable encoding, parameter setting are available (or linked to) at <u>http://cma.gforge.inria.fr/cmaes_sourcecode_page.html</u>

Comparison during BBOB at GECCO 2010

24 functions, and 20+ algorithms in 20-D

 $) Q (\mathbf{P})$