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Abstract

A new adaptation scheme for adapting arbi-
trary normal mutation distributions in evo-
lution strategies is introduced. It can adapt
correct scaling and correlations between ob-
ject parameters. Furthermore, it is indepen-
dent of any rotation of the objective func-
tion and reliably adapts mutation distribu-
tions corresponding to hyperellipsoids with
high axis ratio. In simulations, the generat-
ing set adaptation is compared to two other
schemes which also can produce non axis-
parallel mutation ellipsoids. It turns out to
be the only adaptation scheme which is com-
pletely independent of the chosen coordinate
system.

1 INTRODUCTION

In evolution strategies (ESs), a mutation is usually
carried out by adding a N(0, A) distributed random
vector!. The symmetric and positive semi-definite
n X n-matrix A represents the parameters of the mu-
tation distribution. Assuming that the landscape of
the objective function is unknown, in general A has to
be adapted to get reasonable progress. The simplest
way of adaptation is to confine A to 62I, where I de-
notes the identity matrix and ¢ denotes a global step
size. Thus, § is adapted. The mutation distribution
remains isotropic, and the surfaces of isodensity are
hyperspheres. Global step size adaptation was intro-
duced by Rechenberg (1973) and Schwefel (1981) and
is, in its mutative form, widely used in the ES commu-
nity. Considering anisotropic distributions, we distin-
guish between two cases: The first, more specialized
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!j.e. a normal distributed random vector with expecta-
tion zero and covariance matrix A.

distribution has surfaces of equal density that are axis-
parallel hyperellipsoids. A is a diagonal matrix, and
there is still no correlation between coordinate axes.
The corresponding adaptation mechanism for n vari-
ances was proposed by Schwefel (1981). The second,
more general distribution can cause correlated muta-
tions in the given coordinate system. A may not be
diagonal anymore and has n(n +1)/2 free parameters.
The surfaces of isodensity are arbitrarily orientated
hyperellipsoids. A corresponding adaptation mecha-
nism was proposed by Schwefel (1981) and analyzed
by Rudolph (1992).

We will discuss three adaptation strategies, which can
produce correlated mutations in the given coordinate
system. They are described in Section 2. In Section 3,
we introduce four objective functions, which can be
used to reveal important aspects of coordinate system
dependence and adaptation possibilities of the algo-
rithms. Section 4 discusses corresponding simulation
runs which reveal the different behaviors of the adap-
tation schemes. A conclusion is given in Section 5.

2 ADAPTATION SCHEMES

First, we will present the generating set adaptation
(AI), a new approach to adaptation of arbitrary nor-
mal mutation distributions in (p,A)-ESs.  Subse-
quently, a second adaptation scheme (AII) will be in-
troduced, which cannot produce arbitrary mutation
distributions, but seems to operate quite well on sev-
eral objective functions which need correlated muta-
tions for reasonable progress. We call these schemes
derandomized, because the strategy parameters are
not subject to direct mutations, but to the same (al-
though transformed) stochastic variations as the ob-
ject variables. Any direct mutation-selection scheme
on strategy parameters is subject to considerable noise,
because selection works on the adjustment of the ob-
ject variables, while strategy parameters correspond



only in a loose (stochastic) way with object parameter
changes.? The concept of derandomization was intro-
duced by Ostermeier et al. (1994a). Both derandom-
ized schemes will be formally described in Section 2.5,
which, if the reader feels uncomfortable with the for-
malisms, can be skipped without breaking the conti-
nuity of the whole.

The third adaptation scheme (AIII) is due to Schwefel
(1981), who introduced the idea of adapting all param-
eters of the normal distribution in ESs. This scheme is
able to produce arbitrary mutation distributions, too.

None of these adaptation schemes causes additional
evaluations of the objective function. However, gener-
ating the mutation vector in AI and AIII takes com-
putational time in order of n®. While in Schwefel’s
algorithm different kinds of recombinations are widely
used, no sensible recombination operator is defined for
the two derandomized schemes yet.

2.1 DERANDOMIZED ADAPTATION OF
THE GENERATING SET (AI)

In the following, we try to reveal the mechanism of
the generating set adaptation (AI) rather than being
mathematically rigorous. To keep things clear, we con-
sider the situation for one parent (u = 1).

Often, a mutation step is carried out by adding a nor-
mal distributed random vector z’ on the object vari-
able vector with

ZIZ:5'(21b1+...+Z"b"), (1)
where
n  number of object variables (dimension of the
problem),
6  global step size,
z; ~ N(0,1) fori=1,...,n, independent, (0,1)-

normal distributed random numbers,
b; := e; ith standard basis vector in IR™.

2" is N (0, 021) distributed. To get an anisotropic axis-
parallel mutation ellipsoid, we can multiply each z; b;
in equation (1) by a different individual step size o;.
Furthermore, we can modify the distribution of 2’ by
exchanging the b; — thereby detaching z' from the
given coordinate system. In this way, on the one hand
any normal distribution can be produced. To see that,
just consider sets of orthogonal b;. On the other hand
the distribution is always normal, because (singular)
normal distributions are summed up.

2E.g. a small mutation step in one coordinate is not nec-
essarily produced by a corresponding small step size. Actu-
ally, mutation step length depends on step size and random
number realization of the normal distributed mutation.
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The Adaptation Process

Adaptation, independent of the coordinate system,
will be achieved by successively exchanging the b; in
equation 1. Therefore, we are looking for a new vector
to modify the mutation distribution in an appropriate
way. We assume that the alteration of the best mu-
tation distribution is slow concerning the generation
sequence. Then the current “best” mutation step zge
— i.e. the difference between object variable vectors of
selected offspring and parent — yields most informa-
tion obtainable about the best mutation distribution.
Using zge1 in exchange for one b; leads to the highest
possible probability of producing mutation steps simi-
lar to zge in the future. Successively generating all b;
that way, mutation distribution depends on the land-
scape of the objective function, but is independent of
the given coordinate system. To implement the adap-
tation mechanism, we take into account the following:

e We use not only n but — according to the number
of free parameters to adapt — n? to 2n? vectors
b;. The vectors constitute a memory of selected
mutation steps. The usefulness of such a mem-
ory had been suspected by Rudolph (1992). Of
course, the necessary information can be collected
in one generation as well as in the generation se-
quence by simply raising p, i.e. the number of
selected individuals per generation.

In spite of using more than n vectors, all prop-
erties mentioned above are preserved. Especially,
all produced distributions are normal, and all nor-
mal distributions with mean § can be produced.

e Only the oldest b; will be exchanged. Thereby the
most up-to-date information is always preserved.

e In addition, a separate global step size adapta-
tion takes place. Thus, the size of the muta-
tion step can be adjusted in a much shorter time
scale than by adaptation of the generating sys-
tem alone. The global step size adaptation is mu-
tative, and the transmitted step size variations
are damped by exponent [ to suppress stochastic
fluctuations. Section 2.5.1).

e The new b; is calculated as (exponentially de-
creasing) weighted mean of all mutation steps of
the individual’s history, that is, all “best muta-
tions” selected so far are accumulated. This accu-
mulation yields non-local® selection information,
whereby the sign? of the selected mutation steps

3i.e. non-local in time and (object parameter) space,

where time refers to the generation sequence.
4i.e. whether the vector is orientated as it is, or whether
it is orientated in the opposite direction.



influences the adaptation, because the weighted
sum is not independent of the signs of the con-
tributing vectors. The signs of the b; themselves
are insignificant, because they will be multiplied
by N(0,1) distributed random numbers.

The first point is essential, because the distribution
tends to degenerate if there are too few vectors (with-
out selection pressure, it tends to degenerate anyway).
Damping of the transmitted global step size variation
and accumulation of selection information are uncrit-
ical features and could be omitted. Storage capacity
for the algorithm can be reduced from O(n?) to O(n?)
by using a weighted sum of the covariance matrices of
the random vectors 2z zge1, with z ~ N(0, 1) for all zge,
as covariance matrix of the adapted mutation distri-
bution instead of storing the b;. The corresponding
changes of the algorithm will not be discussed here.

2.2 DERANDOMIZED ADAPTATION OF
n INDIVIDUAL STEP SIZES AND
ONE DIRECTION (AII)

The derandomized adaptation of n individual step
sizes (standard deviations) and one direction (AII) is
an extension of the derandomized individual step size
adaptation introduced by Ostermeier et al. (1994a,
1994b). In AII, the mutation distribution results from
adding an uncorrelated normal distribution with axis-
parallel hyperellipsoids as isodensity surfaces and an
arbitrary one-dimensional (singular) normal distribu-
tion, namely a line mutation with expectation value
zero. The first contribution is due to n individual step
sizes, the second one to the adapted direction. Direc-
tion adaptation is done, basically speaking, by adding
up the selected mutation steps in the generation se-
quence (accumulation). In other words, the line be-
tween great-great-grandparent and descendant serves
as basis for direction adaptation. For individual step
size adaptation, the main functional difference to a
conventional mutative adaptation scheme is the damp-
ing of step size variations before transmitting them to
the descendant (parameter Sinq in Section 2.5.2). Due
to the axis-parallel contribution, the resulting distribu-
tion is not independent of the coordinate system. Fur-
thermore, not every normal distribution can be pro-
duced.

2.3 ADAPTATION OF n STANDARD
DEVIATIONS AND n(n — 1)/2
ROTATION ANGLES (AIII)

Every n-dimensional normal distribution can be de-
termined uniquely by n variances 0;2 and n(n — 1)/2
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rotation angles w;. The covariance matrix A can be
determined by applying n(n — 1)/2 elementary rota-
tion matrices in a fixed order on the diagonal matrix
((U,'k)) = ((61'19 0'1')), where §;;, € {0,1} is the Kro-
necker symbol delta.? The matrix ((o;;)) represents
an axis-parallel mutation hyperellipsoid, which is ro-
tated subsequently in every canonical plane. Schwe-
fel (1981) proposed an adaptation scheme where the
standard deviations o; and the rotation angles w; are
mutated in the following way:

oot

) = o

z Z;

w§g+1) — (wj(-g) + 24 + 7r) mod 27 — 7

where
g generation,

z~ LN (0, (1/\/2n)2) logarithmic normal dis-
tributed, one realization for all o; of one gene-
ration g.

2
zi~ LN (0, (1/\/2\/5) ) fori=1,...,n,
2§ ~ N(O, (%w)z) forj=1,...,n(n—-1)/2.

This adaptation scheme can produce any normal dis-
tribution with expectation 0.

2.4 GENERATING A DISTRIBUTION

To convey the idea how the different mechanisms pro-
duce a distribution, we give an example for the dis-
tribution N ((g), (% }g)) in R2. The three different
methods to produce this distribution and its one-o
isodensity ellipsoid are shown in the following three
figures. With respect to AIl, n = 2 is a very special
case, because every distribution can be generated in
R2, whereas for n > 3 this is not true anymore.

Figure 1 shows a generating set consisting of the vec-
tors by,...,bs. Adding up line mutations with re-
spect to these vectors as in equation (1), where § = 1,
leads to the shown distribution. Of course there are
infinitely many vector sets which result in the same
distribution.® In AT, the adaptation process simply re-
places one of the vectors b; with zg each generation
(cf. Section 2.1). According to AIl, Figure 2 shows one
example for choosing two individual step sizes d; and
d2, each determining the length of an axis-parallel vec-
tor, and the direction vector . Again, adding up these
vectors, each multiplied by a N(0,1)-distributed ran-
dom number, results in the solid isodensity ellipsoid.

SIf B is the result of the rotations, then A = BB®.

5The only vector set which generates the shown distri-
bution and forms an orthogonal basis consists of the two
thin lined vectors in Figure 3.



Figure 1: AT — A Generating Set and the Re-
sulting Distribution

Figure 2: AIl — The Distribution Produced by
Individual Step Sizes And One Direction

Figure 3: AIIIl — The Distribution Produced by
Standard Deviations And Rotation Angle(s)

The dashed ellipsoid refers to the distribution result-
ing without direction vector. The adaptation process
operates on 81, 62 and r. In AIII, the mutation dis-
tribution is constructed by rotating an axis-parallel
distribution. Correspondingly, the dashed ellipsoid in
Figure 3 is rotated by w; = (29.6/180)n. The adapted
parameters here are the standard deviations o; and
o2, which correspond to the vector lengths, and the
rotation angle w;.
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2.5 ALGORITHMS FOR AI AND AII

In this section, the algorithms AI and AII (cf. 2.1 and
2.2) are formally described for A > p > 1. All random
numbers used are independent, and index k denotes
one realization for each k = 1,..., . All vectors are
column vectors and printed in bold faces. The follow-
ing symbols are used repeatedly:

n  number of object parameters (dimension of the

problem),
I identity matrix,
= (x1,...,7,)' € R™ object variable vector,

E; index for j-th parent (Elder), j =1,...,pu,
N index for k-th offspring (Newer), k =1,..., A,
(r =1,...,u with equal probability,

(2—¢)/c normalizes the variances of the
left hand side, e.g. in equation (3), the factor
¢u adjusts the variance of b to that of £ y.

Cy =

For easier reading it is helpful to remove the non-
essential accumulation by setting ¢, = ¢ := 1 and
rewriting the equations (3), (4) and (5). Furthermore,
if u =1, the index ( can be ignored.

2.5.1 Reproduction Scheme of AI

For k=1,..., ) (i-e. for each offspring)
1. Realization of a normal distributed vector y:
Y, = cm BP% 2 (2)
= E
= Cm Z(zk)j b]- e
i=1

2. Mutation of object and strategy parameters:

Ve = 2P 4 5P gy,
Ve = P ()"

E
bt = (1=0)-b™ +e(cubeys)  (3)
b = b fori=1,...,m—1

where

& =1.5, 1/1.5 with equal probability ~ £ is the step
size variation factor.

z=(21,--,2m)t ~ N(0, I)

0 global step size,

B = (by,...,by) € R" x R™ matrix of the gen-
erating set consisting of vectors b; € R™. B
transforms z from R™ into IR™. Initialization:
b = {§ and by?,...,bE ~ N(0,(1/n) I), ie.
components of b; N (0, (1/4/n)?) distributed.

b; € R™ vector of the generating set, see B.

ie. z; ~ N(0,1),



m € {n?,...,2n%} number of vectors of the gen-
erating set. The larger m, the more reliable,
the smaller m, the faster is the adaptation. For
simulations we have used m = 1.5n2.

em = (1/4/m) (1 + 1/m) adjusts the length of y
in equation (2) so that ||y|| = ||b;|| holds and
without selection, the length of all b; remains
about constant. The factor (14 1/m) serves as
approximation for small m.

c¢=1/y/n found by simulations. ¢ determines the
accumulation time.

B=1/y/n found by simulations. 3 determines
the damping of the transmitted step size
variation.

There are two stochastic sources in the reproduction
scheme: z and €. The realization of both is used for ob-
ject and strategy parameter mutation simultaneously.

2.5.2 Reproduction Scheme of AII

The description of adaptation scheme AII has been
modified compared to Ostermeier et al. (1994b), but
the adaptation process of the individual step sizes is
virtually identical.

Fork=1,...,Aandi=1,...,n

1. Mutation of the object variables (component-
wise)

B E B
A A o e AL e

2. Adaptation of the individual step sizes
sV = (1-c) 8% +c-(cy2¥) (4)
“global step sife” adaptation
exp {8 (™| = %)}
exp {Bina( |sN*| - )?1)}J

individual step size adaptation

N, B¢,
oM = gl

3. Direction adaptation

E
s Ne = max{ él—c) s 4 ¢ (ey 20 F) %)
o= (1—c¢) 6.7 rP 4 (™ — )
e = /|||
6.5 exp {8, (Isw™ | —%1)},
6N = max{ ;H(stﬂ (B (s )}
3
where

z2=(21,...,22)! ~N(0, I) ie. 2z~ N(0,1)
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zr ~ N(0,1) random number for direction muta-
tion,
s € R® weighted sum of all realized random

vectors z in the individual’s history (accumu-
lation). s is used for adaptation of individual
step sizes. Initialization with 0.

s weighted sum for adaptation of step size 4,
(see also s). Due to direction adaptation, val-
ues less than zero are unreasonable.

6 =(61,-..,0,) € R® vector of individual step
sizes,

8- step size for direction. If §, < ||4]|, adapta-
tion would become a random walk due to a
lack of selection relevance.

r € R® direction vector, used to produce a line
mutation,

Xn=vn (1— 1= + 37z) approximates the ex-
pectation of the x,-distribution,

X1 =+/2/m expectation of the y;-distribution,

cc ; 3 /71]/ n parameters, found by simula-

52 2/n tions. If 8 = 0, no adaptation
Bina = 1/(4n) of the corresponding step size(s)
IET _ J{n) takes place.

2.5.3 Discussion of Parameters

¢, ¢, € ]0;1] determine the accumulation time.
Roughly speaking, after 1/c generations about 2/3 of
the original information has vanished. If ¢ = 1, no
accumulation takes place. Accumulation is essential
for direction adaptation, because it is the only way to
gather the needed selection information here. There-
fore, difficult problems may require longer accumula-
tion time which can be achieved by decreasing c,.

B, Bind, Br € [0;1] are parameters for damping the step
size variation transmissions. Increasing them leads
to a faster, decreasing them leads to a more reliable
adaptation of the corresponding strategy parameters.
Therefore, if one 6; drifts away, Binq should be de-
creased.

3 OBJECTIVE FUNCTIONS

The three adaptation schemes have been tested with
the following objective functions, where n = 20. First,
as a suitable objective function to test scaling proper-
ties and coordinate system independence, we propose
an arbitrarily orientated hyperellipsoid with a given
ratio between longest and shortest axis (1000 here)
and constant ratio between “adjacent” axes (1.44 for
n = 20 here). We do not use 322, ((i)>32;)?, because



it looks too much like an ellipsoid with just one long
axis: the ratio between the first two axes is 4.9 : 1, but
1.3 : 1 and 1.1 : 1 between the middle-most and the
last both, respectively.

Qi(z) = ; (100011'—11 w)z
Q) = 3 (10005 (@,09)”
i=1

where (.,.) denotes the canonical scalar product, and
the vectors o0y,...,0, € IR" form an orthonormal ba-
sis with random orientation. ()1 is an axis-parallel, ()2
a randomly orientated hyperellipsoid. We produce the
ith basis vector o; first as a vector with N(0,1) dis-
tributed components, then subtract all its projections
on the previously produced basis vectors and normal-
ize the result. Using (x,0;) instead of z; can bring
any objective function with domain in a subset of R™
into coordinate system independent orientation!

Second, we prefer a slightly different generalization of
Rosenbrock’s function than Schwefel (1981) sug-
gested, where all z,, ..., z, were interchangeable with-
out changing the function at all. In our case, every z;
is correlated to its “neighbors” z;_; and x;41:

n—1
Qg(m) = Z (100 (.’L‘i2 — .’Ei+1)2 + (.CL', — 1)2)
Q4(.’13) = i (100 (Z‘i2 - .'17571)2 + (.731 - 1)2>

The only difference between Q3 and ()4 is the re-
versed order of variables. During first stage of simu-
lation, Rosenbrock’s function requires continuous re-
adaptation of the mutation distribution to achieve
maximal progress.

4 SIMULATIONS AND
DISCUSSION

The derandomized schemes AI and AIl have been
tested with a (1,10)-ES. Due to the adaptation mecha-
nism, AIIT needs larger population sizes and has been
tested with a (15,100)-ES with intermediate recombi-
nation for object and strategy parameters, i.e. arith-
metic mean of corresponding object and strategy vari-
ables of two parents. Other types of recombination
(discrete, without) on object and strategy parameters
do not improve the results. All simulations shown are
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typical out of at least five (AIII) or ten runs, and vari-
ances of these five or ten runs are clearly less than
differences between shown simulations with different
strategies. Single runs are chosen to show effects of
the adaptation process, especially changes of progress
over time.

Simulation results for the hyperellipsoid (Figure 4) and
Rosenbrock’s function (Figure 5) show that the gener-
ating set adaptation (AI) reliably adapts the mutation
distribution to different objective function landscapes.
Arbitrary, even rotated, hyperellipsoids are virtually
transformed into the hypersphere: after the adapta-
tion phase, the strategy realizes 80% of the progress
rate that is possible with optimal mutation distribu-
tion. Corresponding with the theoretical considera-
tions, AI is independent of rotations of the objective
function (see Figure 4) and permutations of the coor-
dinate axes (see Figure 5).

The disadvantage of Al is that the adaptation process
takes a comparatively long time. On the hyperellip-
soid, it takes about 4 - 10* function evaluations (de-
scendants), as can be seen in Figure 4. Because of
the number of free parameters of an arbitrary normal
distribution, the adaptation time scales with n2.

The adaptation process is faster when using AII. The
mutation distribution is given by 2n free parameters,
and the adaptation time scales with n. When adapta-
tion is completed, the progress rate for the axis-parallel
hyperellipsoid and for Rosenbrock’s function are the
same as with AIL. Nevertheless, only special mutation
distributions can be generated and, as expected, the
algorithm is not independent of rotations of the ob-
jective function: Results on the arbitrarily orientated
hyperellipsoid are significantly worse than on the axis-
parallel one (see Figure 4).

Surprisingly, Schwefel’s algorithm (AIIl) depends
drastically on rotations of the objective function and
fails in adapting the arbitrarily orientated hyperellip-
soid (see Figure 4). Even permutation of the coordi-
nate axes affects the algorithm remarkably (see Fig-
ure 5). To verify this, we consider for £k = 1,...,10
the objective functions

10
g = o+ ) (100z;)”.
ik
The landscapes of these hyperellipsoids are identical.
The iso-fitness surface of each g looks like a (10-
dimensional) cigar which is parallel to the k-th coor-
dinate axis and has a ratio of 100:1 between length
and diameter. For g5, the progress rate of AIII turns
out to be almost 10 times slower than for qi9. For
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Figure 4: Simulation On the Hyperellipsoid. O : AI, & : ATl 7 : AIIL, @ : (1,10)-ES with global step
size adaptation. For every adaptation scheme one simulation with canonical (Q1) and with randomly
orientated orthonormal basis (Q2), respectively, is shown. An additional run of the simple isotropic
(1,10)-ES with global step size adaptation only, but correctly scaled individual step sizes (®) on @ is
shown for comparison. It illustrates nearly maximal progress for this type of strategy. Starting point

of the simulation was (1,...,1)%.
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Figure 5: Simulation On Rosenbrock’s Function. O : AL, & : AIl, vy : AIIL, @ : (1,10)-ES with global
step size adaptation. For every adaptation scheme one simulation with Q3 and @4, respectively, is
shown. For & (AIl) and @ both simulation runs are practically identical. For 7 (AIII), in the final
stage, progress rates differ by a factor seven. Starting point of the simulation was 0.



cigars in non axis-parallel positions,” the progress is
even slower.

We interpret this behavior as caused by minor selection
relevance of the angle positions, which for that reason
are subject to serious stochastic fluctuations and per-
form almost random walks. Therefore, each angle w;
should be equally distributed in the interval [—7;n].
What kind of mutation distribution does the rotation
procedure generate if this interpretation is correct?

To answer this question, we take a standard basis vec-
tor e;, © = 1,...,n with equal probability, and trans-
form it by elementary rotation matrices as described
in Section 2.3, using in [—7; 7] equally distributed ro-
tation angles. The angle a between the resulting vec-
tor and all coordinate axes, some diagonals and some
random vectors is recorded. Relative frequencies of
cos(a) > 0.8 are shown for n = 20 and 5 - 10° trials
in Table 1. Obviously, an arbitrary unit vector is ro-

Table 1: Relative Frequencies of cos(a) > 0.8

| Direction | Rel. Freq. |
Axis with highest probability | 1.5-1072
Axis with lowest probability | 2.5-10~*
Average of 20 random vectors | 8.3-107°
Average of 20 diagonals 3.2-1077

tated into random or (nearly) diagonal position with
considerably lower probability than into any (nearly)
axis-parallel one. Furthermore, different axes have sig-
nificantly different frequencies. This means that most
of the axes of the distribution according to the diago-
nal matrix ((o;x)) (cf. Section 2.3) are rotated in nearly
axis-parallel positions again. Furthermore — depend-
ing on the order of the rotations — some coordinate
axes are preferred to be parallel to the resulting mu-
tation distribution which in consequence has compar-
atively high densities near some distinguished coordi-
nate axes. This can explain all simulation results quite
well. Consequently the assumption of random walks
on the angles seems conclusive.

5 CONCLUSIONS

This paper focuses on the adaptation of an arbitrary
normal mutation distribution in evolution strategies
and discusses two different schemes for this purpose:
The generating set adaptation (AI), newly introduced
here, proves to adapt all parameters of the normal

"We have shown in Section 3, how to orientate a func-
tion arbitrarily.
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mutation distribution reliably and independent of the
coordinate system to an arbitrarily orientated hyper-
ellipsoid even with high axis ratio. The adaptation
of n variances and n(n — 1)/2 rotation angles (AIII)
turns out to be highly dependent on the chosen coor-
dinate system, and cannot adapt arbitrary orientated
hyperellipsoids. Because of its dependence on coordi-
nate axis permutation, reproducibility depends on us-
ing identical order of objective variable definition and
of rotation, respectively.

A general disadvantage of both adaptation schemes is,
that the amount of selection information (i.e. the num-
ber of selected points in parameter space), which has
to be gathered for a reliable adaptation, is of order n2.
Therefore in practical applications, it may be useful
to restrict oneself to the adaptation of 2n, n or just
one (free) parameter(s), which could correspond to the
adaptation of n variances and one direction (AII), n
variances, or just the global step size, respectively. Es-
pecially AII should be taken into account, if the com-
putational cost of the evaluation of a non-separable
objective function is high, because it adapts its strat-
egy parameters in a much faster time scale than AT and
ATII and still works well on many of these functions.
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