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ABSTRACT

This paper presents an analysis of the local serial rate of progress with respect to the number
of offspring X for the (1,\)-evolution strategy. It is shown that local serial progress is maximized
when the expected progress of the second best offspring is zero. The theoretical results lead to a
simple but efficient adaptation rule for A\, which needs no extra fitness function evaluations and
only small computational expense. Simulations of the A-adaptation on simple test functions are

shown.
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1. Introduction

In most applications of evolution strategies (ESs),
the number of offspring A is held fixed through-
out optimization. Based on results yielded for a
spherical objective function in [7], its value can be
chosen such that the serial rate of progress (e.g.
the expected fitness gain per function evaluation) is
optimal with respect to the hyper-sphere problem.

One idea of A-adaptation, sketched out by Schwe-
fel [7] and successfully applied by Herdy [2], pro-
poses a mutative adaptation in a two-level ES,
where on the upper level, called population level,
A is treated as a variable to be optimized while on
the lower level, called individual level, the object
parameters are optimized. After isolating the pop-
ulations for a given number of function evaluations,
a selection between populations takes place. Thus,
the best value of A with regard to the quality gain
per function evaluation is detected and inherited to
the next set of populations. The drawback of this
algorithm is that the computational expense rises
by the factor number of populations.

Optimizing internal strategy parameters, like the
number of offspring, by mutation and selection on
the individual level turns out to be difficult, because
within one generation the relevance for selection
due to internal strategy parameters may be quite
low, and stochastic fluctuations of these parame-
ters may deteriorate the whole optimization. In
principle, this problem can be overcome by produc-
ing high variations between the strategy parameter
realizations within one population (to rise the se-
lection relevance) and small variations of the strat-

egy parameters between succeeding populations (to
reduce stochastic fluctuations), as pointed out in
[3]. When adapting parameters of the mutation
distribution (e.g. step sizes), this is often achieved
by using large populations and recombination tech-
niques, but can also be done independent of the
population size by the so called derandomization of
the adaptation process [3].

In this paper, we do not deal with mutative pa-
rameter control. Instead, we will introduce a de-
terministic adaptation scheme for the number of
offspring based on theoretical considerations on the
relation between serial rates of progress for the ac-
tual number of offspring A, for A — 1 and for the
optimal number of offspring.

2. Theoretical Analysis

2.1. Motivation

To optimize the local serial progress (i.e. progress
per fitness function evaluation) in a (1,A)-ES with
respect to the number of offspring A, it would be
ideal to know the progress-rate as a function of
Al In practical applications it may be sufficient
to estimate the “gradient” of this progress function
at the current A, to get the right direction for A-
adaptation. The fitness gain of the fittest offspring
can be used to estimate the progress for current
A. To estimate the progress for A — 1, we can

IProgress-rate means the expected progress of the se-
lected (i.e. fittest) offspring with respect to the current par-
ent. For example, the expected difference between the fitness
values of the fittest offspring and the parent can be consid-
ered as progress-rate.



remove one offspring and use the fitness gain of
the remaining fittest. The choice of the offspring
to be removed has to be independent of its fitness.
Repeating the estimating process with different off-
spring will raise the estimation quality. It can be
expected that removing every offspring exactly once
and calculating the mean of the fitness gains is
the best estimator. This basic idea (pursued in
Lemma 1) lays the foundation of the theoretical
results, which are now briefly summarized:

1. The serial progress-rate as a function of A is
either a function with exact one (local and
global) maximum or a strictly monotonically
increasing function.

2. The serial progress-rate of a (1,A)-ES increases
with the reduction of A, exactly when the
progress-rate of the second fittest offspring is
greater than zero.

3. The serial progress-rate of a (1,A)-ES decreases
with the reduction of A, exactly when the
progress-rate of the second fittest offspring is
less than zero.

In the following, first we will prove a theorem,
which gives us 2. and 3. The Corollary 1 then proves
1. Important notations and definitions given in the
following section are summarized in Appendix A.

2.2. Theoretical Results

Let 9 = x € R™ be the object variable vec-
tor of the parent in generation g. Offspring are
produced by adding (multi-)normally distributed
random numbers on & and can be interpreted as
A independent and identically distributed random
vectors Xq,...,X .

Let f : R* — R be the fitness function to be
maximized and F; := f(X;) € R the fitness value of
offspring 4, which is a random variable as well. Then
Fy,..., F\ rearranged in descending order of magni-
tude will be written as Fi.y,. .., F).\, denoting the
order statistics of F;. Furthermore, we define X ;.
to be the it! fittest offspring, so that f(X;.») = Fj.x
holds (in case of equal fitness the offspring may be
ordered arbitrarily).

The progress function R* x R* — R,
(x,X) — ®(x, X) =: &(X) defines the progress of
offspring X with respect to parent . The progress
of the fittest individual implies the actual progress
of the ES and will be denoted by ®;.5 := ®(X.y).
For the moment, there will be no more requirements
on the definition of ®;.5. Especially we do not
assume that, in general, the fittest individual will
have the largest progress, that is $1.) > ... > &)y,
where ®;., := ®(X;.,), may not hold. The only
connection between f and ®;. is, that the selection
criterion f determines the argument of ® for @;.).
The reason for not assuming any direct relation be-

tween f and @ is to keep generality, e.g. permitting
noisy fitness evaluation.

The progress-rate @15 of the (1,A)-ES will now
be defined by the expected progress of the fittest
offspring, while the progress-rate of the ‘" fittest
offspring will be denoted by @;x = E[®(X )],
i=1,...,A. Now we can turn to the first lemma, a
recurrence relation between ;.) and ¢1.x—1, which
was stated before by Rechenberg [6] in the special
case of linear fitness functions.

Lemma 1 For A > 2 holds the relation:
Apraa—1 = pax + (A= 1) o1

Proof Let @f’i be the progress of the (1,))-ES,
if the " offspring? is removed before selection,
and <I>[1’:]/\ the progress of the (1,A\)-ES, if the it}
fittest offspring is removed before selection. Ob-
viously, removing the i*? offspring is the same as
producing only A — 1 offspring;:

ol =®,  Vi=1,...,A (1)
Furthermore it holds
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because the LHS is a rearrangement of the RHS.
With linearity of the expectation value we yield

Apracr = E[A®1a]

A
eq. (1) 7
< e[y aly
=1
A
eq. (2) 3
y E[zcbaa]

i=1

A
= S efall)]
i=1
= P2:\ + ()\ - ]-) P1:A

O

This kind of recurrence relation is well known in
order statistics and of course is true for the rela-
tion between E[Fi.x_1] and E[Fi.\] (see e.g. [1]),
but the equation holds also for any function from
the domain of the order statistics Fj.,,,, as shown
in Lemma 1. Now we can prove a theorem on
the relation of the serial progress-rates p1.)/\ and

pra1/(A—1).3

2This is the offspring X;, which — for example — may
always be produced as the tP.

3If @q.» is less than zero, this definition of the serial
progress-rate — which is to be maximized — intuitively
makes no sense. Nevertheless, the theoretical results even
hold in that case and furthermore show that this fact is
irrelevant.




Theorem 1 The serial progress-rate for A — 1 off-
spring is less/equal/greater than the serial progress-
rate for X offspring, exactly when the progress-rate
of the second fittest offspring is less/equal/greater
than zero.

Proof

PLa-1 5 P12
-1 <

= Apia1 2

Lemma 1

(A - ]-) P1:x
warx+A=1)p1a 2 (A —1) p1:a
= 220

where 2 means “is greater than or equal or less
than, respectively” and A > 2. O

Exactly when the progress-rate of the second
fittest offspring is greater than zero, it is better
to produce only A — 1 than A offspring. Progress
of the second best offspring can be seen as wasted
progress.

Now we want to characterize the local, serial
progress-rate 38l := ;.3 /) as a function of .
We will prove that ¢$%al()\) is a function with-
out local maxima and, apart from the global op-
timum, strictly monotonic. To show this, we have
to make a slightly stronger assumption on ®: The
more offspring are produced, the higher should be
the expected progress of the ES, i.e. it holds for
all A € N : E[®1.)] < E[®1:a41], and especially
E [®2.2] < E[®2:1+1] as used in the proof of Corol-
lary 1. If we assume a given optimization problem
and a corresponding progress function, then main-
taining this inequation is a necessary requirement
on the fitness function for doing reasonable opti-
mization with any selection scheme.

Let Aoptmin < < Aoptmax be all the off-
spring number of one global maximum of ¢;.) ()
(in case of existence). If the maximum is isolated,
let Aoptmin = Aoptmax by definition. For notational
convenience we assume Aoptmin > 2 and permit

Xoptmax = ©00. Due to this definition it holds
p

serial serial _ __ ,~serial :
Plidepimin—1 < Plideptmin — *°° = PLix and if

optmax

serial serial
Aoptmax < 00 also QYRS > OINT 1

Corollary 1
If an optimal number of offspring exists, it holds

P < <R 3)
and if Aoptmax < 0O
P mar > Phoa a1 > oo (4)
If no optimal number of offspring exists, it holds
P < i < 5)

Proof
(3): Forall k=0,..., Aoptmin — 2:

serial serial
(pll)\optmin—l < (‘Ollkoptmin

Theorem 1
<~ (1021}\optmin < 0
- P2: Aoptmin—k < 0

Theorem 1 serial serial
T Chmemin—k—1 < Proemin—k
= (3)

(4): For all k € Ny:

serial serial
Pl:doptmax = Pl:doptmax+1

Th‘?ggl ! <p2:Aoptmax+1 > 0
= P2 hopumaxtith > 0
TER R etk > Ptk
= @
(5): Assume the existence of a Ao with @§eFa! >
P 1- It follows @52, > @ikl ) for

all k € N as in the proof of (4), in contra-
diction to the non-existence of an optimal
number of offspring.

O

In summary, we can state the following rela-
tions between a given A > 2, the progress-rate of the
second best offspring ¢».) and an optimal number
of offspring Agpy < 00:

Corollary 2
pax >0 <
2.2 < 0 —
P2 =0 <=

A > Aopt
A S /\opt

A and A—1 produce mazimal
serial progress

Proof Follows from applying first Theorem 1 and
then Corollary 1. d

Due to Corollary 1 and 2, 3.\ becomes a useful
source of information for the adaptation of A, which
will be utilized in the next section. In conclusion of
this section, we give a summary of assumptions
for getting the given theoretical results:

1. Offspring in one generation are independent
and identically distributed. The number of
offspring is greater than one.

2. The fitness function f determines the selec-
tion and therefore the argument Xi.) for the
progress function ®, which then defines the lo-
cal progress of the ES.

3. Progress-rate 1., is defined as expectation
of the local progress of the fittest offspring,
E[8(X1.0)].

4. Progress-rate increases with increasing A, due
to a corresponding statistical relation between
f and .



Confined to these assumptions, the results can
be applied to any reproduction—(1,)\)-selection
scheme. Further investigations aim at generaliza-
tion of the results for (u,A)-ESs with g > 1.

3. An Adaptation Scheme for A

As shown in the last section, we can get evidence
for the relation between the offspring number A and
the optimal number of offspring with respect to the
serial progress-rate by evaluating the progress-rate
of the second best offspring s.5 (cf. Corollary 2).
To estimate 5.5, we will use the fitness difference
between the second best offspring and the parent,
denoted by A f(2). Introducing the parameter A9 €
R at generation g, the adaptation scheme is:

AL = ) exp (5/\ _Af(2)) (6)
oA

where

Af) fitness difference between second fittest

offspring and parent, in case of minimiza-

tion multiplied by —1.

Bx >0 parameter which determines adap-
tation speed. Large values lead to fast
adaptation and large stochastic fluctua-
tions of AY. If By = 0 no adaptation takes
place. Sensible values are clearly less than
1 (see Figure 1 below).

gy = \/E;\zl (Af(i))Q /(/\ — 1), where Af(i)
is the fitness difference between i*® fittest
offspring and parent. o normalizes A f(3)
in (6). This makes the adaptation invari-
ant for fitness function scaling.

The adaptation mechanism increases A9 if
Af@) < 0, which tends to be the case if 2.y < 0,
where the current offspring number is less than or
equal to Aopt (cf. Corollary 2). It decreases A9, if
Af2) > 0, which tends to be the case if pa.x > 0,
where the current offspring number is greater than
Aopt- A9 should be restricted to values > 2, and the
number of offspring in generation g is calculated
by truncation of A9. Due to the normalization,
Af2)/on is restricted to values between —1 and
/(A —1)/2. We want to emphasize that the adap-
tation rule is independent of translation and scaling
of the fitness function.

4. Simulations

Tests of the adaptation scheme were done on the
hyper-plane (maxz{} ; ,;}) and hyper-sphere
(mingz {37 ; z;?}) with dimension n = 100. The
optimal number of offspring is two and three for
the former, five for the latter and large n (see [7]
and [2]). The first number can easily be achieved
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Figure 1: Evaluation of sensible values for ). O :
By = 0.3, A : By, = 0.03. Simulations with fixed —
in the case of the hyper-sphere optimal — global step
size, starting with A! = 100.

from our theoretical results: Obviously the ex-
pected progress of the second out of three offspring
is zero on the hyper-plane.* Due to Corollary 2
two and three are optimal offspring numbers then.
Considering more than three offspring, the expected
progress of the second best is obviously greater than
zero and therefore, due to Corollary 2, offspring
numbers greater three are not optimal.

To show the adaptation process, no averaged data
are presented, but typical runs out of at least ten.
We found different runs with identical parameter
settings looking very similar.

Simulations for different values of 8\ are shown
in Figure 1. Step-sizes are fixed. On the hyper-
sphere, the best offspring is always projected back
onto the unit sphere, to keep on mutating with opti-
mal step size. Fast adaptation and large stochastic
fluctuations are mutually dependent. The faster
adaptation on the hyper-plane is due to the nor-
malization process: Offspring on the hyper-sphere
produce more often fitness values which are clearly
worse than the parent’s fitness, increasing o) re-
markably, compared to the hyper-plane. In further
simulations we found no evidence that sensible val-
ues for 8y depend on the dimension of the problem.

Figure 2 shows the adaptation process for dif-
ferent, fixed step sizes on the hyper-sphere, which

4 Assuming a reasonable progress definition.
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lead to different optimal offspring numbers as given
in the caption (cf. [2]). Aopt increases with increas-
ing step size here. Apart from stochastic effects,
the adaptation produces optimal offspring number
or optimal offspring number plus one, as expected
from the theory. This can be observed better using
smaller values of 3y (not shown here).

Figure 3 shows simulations with global mutative
step size control at work, where step size mutation
is carried out by multiplying the parent’s step size
by 1.3 or 1/1.3, both with probability 0.5 ([5], [6]).
In general, mutative step size control adapts the
global step size to achieve maximal probability to
produce the fittest offspring with the adapted step
size, rather than to achieve maximal fitness gain
with the fittest offspring. This results in a step size
smaller than optimal. In consequence, the optimal
number of offspring decreases as discussed before,
resulting in a further reduction of the step size. The
mean offspring number becomes four then. This
behavior leads to a reduction of convergence speed

by about 15% compared to the simulation with
theoretically optimal offspring number. It can be
avoided using better step size adaptation methods,
for example cumulative step size adaptation [4],
which adapts the optimal step size exactly and re-
duces the stochastic fluctuations of the step size as
well.

The fluctuations of A? are correlated with
stochastic fluctuations of the step size and can
mainly be interpreted as an adaptation process due
to the current step size. They can be significantly
reduced by reducing ). In either case, due to the
mutative step size control, A9 should be restricted
to values > 4, and in practical applications Gy
should be chosen clearly less than 0.1.

To reveal the practicability of the adaptation
scheme — especially with regard to the interactions
with mutative step size control — more simulations
with a wide range of different fitness functions have
to be done.
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A. Notations and Definitions

x € R® object variable vector of the par-
ent.
X; € R* object variable vector of offspring

i. The X; are independent and identi-
cally distributed random vectors.

Xim the ith fittest of Xi,...,X ., ie.
f(le)sz(Xmm)

A number of offspring.

Aopt  an optimal offspring number with re-
spect to the serial rate of progress.

)\ .
e } smallest/largest optimal offspring num-

Aoptmax | ber. If Aoptmin # Aoptmax it holds
serial _ serial _ _
Plidoptmin — Plidoppmintl — 77 =
serial __ ,serial
Pldoptmar—1 = Plidoptmax’

f: R 5> R X — f(X) objective or
fitness function (to be maximized).

F;:= f(X;) fitness value of the " off-
spring.
Fipm = f(Xim)  fitness value of the it! fittest

out of m offspring X ;...

®: R"xR* 5 R (z,X) » &z, X) =:
®(X) progress function which de-
fines the progress of offspring X with
respect to parent x.

;. = ®(x, X;m) progress of the 58 fittest
out of m individuals.

Pirm = E[®Pim] progress-rate (expectation
value of the progress) of the i*? fittest
out of m individuals.

erial .= o0 /A serial progress-rate, i.e.

progress-rate per fitness function
evaluation of (1,A)-ES.



