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Abstract. A conceptual objective behind the self-adaptation of the mu-
tation distribution is to achieve invariance against certain transforma-
tions of the search space. In this paper, a priori invariances of a sim-
ple evolution strategy and invariances, which can be introduced by self-
adaptation, are identified. In principle, correlated mutations can achieve
invariance against any linear transformation of the search space. Corre-
lated mutations, as typically implemented, are investigated with respect
to both a priori and new invariances. Simulations reveal that neither
all a priori invariances are retained, nor the invariance against linear
transformation is achieved.

1 Introduction

The evolution strategy (ES) [9,13] addresses the search problem of minimizing
a nonlinear objective function f : S C R® — R,z — f(x). Search steps are
taken by recombination of already evaluated search points and mutation. The
mutation is usually carried out by adding a realization of a normally distributed
random vector. A dynamic control of certain parameters of the normal muta-
tion distribution is of major importance and is a common feature in evolution
strategies. This is often called adaptation or self-adaptation.

A main objective of the adaptation of parameters of the mutation distribution
can be interpreted as to achieve invariance against certain transformations of the
search space. This is exemplified in the following.

Let the mutation step for the object parameter vector, z € R", at generation
g=0,1,2,... be

29t = 20 4 st N (0, 1) | (1)

where 0 € R* denotes the step size and N(0,I) is a component wise inde-
pendently (0, 1)-normally distributed random vector (I denotes the unity ma-
trix as covariance matrix). Consider an adaptation of step size o minimizing
f:x+— q(x) with ¢ : R” = R and initial values (°) = @ and ¢(®) = 1. With a
sensible step size adaptation the following should be achieved.
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— The strategy shows ezactly the same behavior on f : & — ¢(10x) with initial
values 2(®) = 0.1a and ¢(®) = 0.1. This means (in general) invariance against
a scalar multiplication of the object parameter vector and will be discussed
below.

— Assume ¢(© = 10 to be optimal. Then, with initial value ¢(®) = 1, the step
size increases within the next generations to become (nearly) optimal. This
is a quite obvious objective of step size adaptation.

Generalizing this perspective, two basic demands on the adaptation of any
parameters of the mutation distribution can be stated.

1. Introducing (new) invariances.
2. Performing, after an adaptation phase, comparable to the best fixed para-
meter setting in this situation on (all) relevant objective functions [3, 15].

Together with a sufficiently fast adaptation rate these properties are of major
importance for a sensible adaptation mechanism.

The invariance which can be achieved by the adaptation of certain strategy
parameters is usually easy to identify (see below). The fundamental starting
hypothesis of this paper is, that this invariance is a necessary condition for
a successful and reliable adaptation. Starting from the best strategy parameter
setting, with adaptation turned on, this invariance ensures a predictable behavior
of the strategy (compare the example above assuming ¢(® to be optimal). Far
from being a sufficient demand, this is probably the strongest non-empirical
result one can hope for when evaluating an adaptation procedure. The relevance
of this hypothesis can be reviewed in Fig. 2 (Sect. 4.2).

Concerning the parameters of the normal mutation distribution, which are
dynamically controlled, in the most general case the complete covariance matrix
is adapted. It is not too difficult to prove, that the choice of a certain covariance
matrix can be identified with the choice of a linear transformation of the object
parameter vector and vice versa [3]: Assume two linear transformations, Tx and
Ts, and y = Taxa = Tpxp. The “genotypes” xa and xp can be interpreted
as different codings for the same “phenotype”, y, which is used to evaluate the
fitness. The effect of different codes becomes evident, when mutation is applied:

Tg linear

Ynew = I8 (x5 + N (0, 1)) Texp + TN (0, 1)
T bijective

=" Taza + TaATA ' TN (0,1)

T linear

= Ta (:I:A + TA_lTBN(O,I))

Using a new coding, Taxa instead of Tgap, is equivalent with introducing a
certain linear transformation, Tp ~'Tg, for N (0,I), which is equivalent with

choosing a different covariance matrix, Ty 'Tx (TA’ITB)t instead of I, for the
mutation distribution.

While the choice of the initial strategy parameters (the initial covariance
matrix) clearly introduces a dependency on the given coding, this dependency
may vanish for g — oo, if the algorithm adapts the covariance matrix and is
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invariant against linear transformations of the object parameters (and strategy
parameters accordingly). Therefore the adaptation of the complete covariance
matrix should strive for becoming independent from any linear transformation
of the object parameters.

The importance of the interaction between problem encoding (e.g. linear
transformation of the object parameters) and operators (e.g. the mutation oper-
ator) and invariance against certain transformations is in general well recognized
[8,11,14,15]. Why invariance is important from a practical point of view is also
discussed in the next section.

The objective of this paper is to identify invariance properties of the ES
and investigate correlated mutations, as typically applied, with respect to these
invariance properties.

2 Invariance

Invariance properties of a search algorithm with respect to changes of the objec-
tive function are extremely attractive. They raise the probability to get similar
(or even identical) results on similar, not yet evaluated objective functions and
increase the predictability of the strategy behavior. Any evaluation of search
algorithms is based on the implicit assumption of getting similar results on not
yet evaluated functions.

A simple (1, A)- or (1 + A)-evolution strategy has the following invariance
properties, where ¢ : R™ — R is chosen arbitrarily [3]:

Translation: On f :  — ¢(x — a) invariance against @ € R", if the initial
object parameter (% is chosen properly.

Rotation: On f : & — ¢(Ux) invariance against the orthogonal matrix U, if
the initial object parameter 2(©) is chosen properly. This means invariance
against the chosen (orthonormal) coordinate system and includes invariance
against rotation and reflection of the search space.

Order-preserving transformation: On f :  — g(¢(x)) invariance against
the monotonically increasing, i.e. order-preserving, function g : R — R.

All three invariances can be achieved simultaneously: On f : & — g(q(Ux —
a)) the simple ES is invariant against g, U, and a as described above. Invariance
can be lost if more complex operators are introduces in the ES. Two common
cases immediately come in mind where invariance against rotation is lost, because
the introduced operator depends on the given coordinate axes:

— Individual step sizes.
— Discrete recombination on object parameters (parent number u greater than
one).

In general, the advantage of introducing such operators must be weighted care-
fully against the disadvantage of losing certain invariance properties.

Strategy parameter control can yield additional invariances. When individual
step sizes are introduced, on f : & — ¢(Dx) invariance against the full rank
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diagonal matrix D can be achieved (in exchange with rotation invariance). In
other words invariance against a scaling with respect to the given coordinate
system.

It is worth noting that the formulation of the adaptation mechanism plays
an important role. Only a suitable formulation can achieve new invariances.
Referring to (1), consider f :  — g(x) with initial values ¢(® =1 and (¥ = a.
If step size control is applied and o is varied by adding/subtracting a constant
value, say 0.05, the strategy cannot perform identical on f :  — ¢(10x) with
0 =0.1and 2(® = 0.1a, because ¢(zV)), where (V) = a+(1+0.05)N (0, I), is
different from ¢(10z"), where (") = 0.1a+(0.1+0.05)N (0, I). In the latter the
change of o appears to be much larger. If ¢ is varied by multiplying/dividing by
a constant value, say 1.05, the strategy can perform identical on f : & — ¢(10x).
In this case g(z1), where ") = a+(1-1.05)N} (0, I), is identical with ¢(10z™)),
where (1) = 0.1a + (0.1 - 1.05)N; (0, I).

In contrast to an individual step size adaptation, in certain cases new in-
variances can be introduced without giving up existing ones. The following two
additional invariances can be achieved by strategy parameter control, if initial
object and strategy parameters are chosen accordingly:

Scalar multiplication: On f : x — ¢(c-x) invariance against the scalar ¢ # 0,
if the initial step size is chosen properly. The typical mutative step size
control in evolution strategies achieves the invariance against scalar multi-
plication.

Linear transformation: On f : x — ¢(A - x) invariance against any full rank
n X n-matrix A, if the initial covariance matrix of the mutation distribu-
tion is chosen properly. When the complete covariance matrix of the muta-
tion distribution is adapted, invariance against linear transformation can be
achieved.

The question arises, whether the typically applied mutative adaptation scheme
for the complete covariance matrix [12, 13], usually referred to as correlated mu-
tations, actually achieves invariance against linear transformation (and retains
invariances of a simple ES). On the one side this scheme, as formalized below, is
invariant against translation, order-preserving transformation and scalar multi-
plication. On the other side former investigations indicate that the scheme has
lost invariance against rotation [6,7]. Nevertheless it is still unclear, whether
invariance against linear transformation is achieved if object and strategy pa-
rameters are transformed accordingly. In Sect. 4 the invariance properties against
rotation and linear transformation are investigated in detail.

3 Correlated Mutations

Correlated mutations were proposed in [12] and have become a standard algo-
rithm [1, 2] which seems especially promising for difficult problem instances. This
algorithm is denoted with CORR-ES. For this paper a (15/2, 100)-CORR-ES
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is implemented, which denotes an evolution strategy with 15 parents, 100 off-
spring and with intermediate two parent recombination.! In the CORR-ES the
normal distribution with zero mean is parameterized through n step sizes, o;,
and n(n — 1)/2 inclination angles, a;. At generation g for each offspring two

parents are selected. The component wise arithmetic mean of step sizes, angles
(9) (9)
and

i=1,...,n’ =1, n(n—1)/2
x(9)) are starting-points for the mutation. For step sizes and angles the mutation
reads component wise

(9+1) _ (9) . 1 . _1
o; =0," -exp <N (0, 2n) + N (0, 2ﬁ)) (2)
5 2
a§y+1) _ (agg) +/\/j (0’ (mﬂ-) ) + 71') mod 27 — 7 3)

The random number N(0,1/(2n)) in (2), denoting a normal distribution with
zero mean and variance 1/(2n), is only drawn once for all ¢ = 1,...,n. The
modulo operation ensures the angles to be in the interval —7 < ozg-g < 7, which
is, to my experience, only of minor relevance. The object parameter mutation

reads

and object parameter vector of the two parents (o

a§g+1)

1
20+ — 29 L R <a§g+1)a---aa£f(:—)1)/2) ) -N(0,I) (4)
UT(Lg+1)

The (0, I)-normally distributed random vector is transformed with a diago-
nal matrix determined by o{?"™) . . o{*") The result is rotated in all two-
dimensional subspaces spanned by canonical unit vectors, denoted with R(.). The
resulting distribution is a normal distribution and any normal distribution with
zero mean can be generated this way [10]. Therefore the algorithm implements an
adaptation of the complete covariance matrix. Note, that for a replicable defini-
tion of the algorithm the order of the chosen subspaces has to be defined as well.
(The order can have a considerable impact on the performance result as can be
concluded from the results shown below.) In this paper the coordinate numbers
are chosen in the ordering (1,2), (1,3),..., (1,n),(2,3),(2,4),...,(2,n),...(n—
1,n). Initial values are chosen (¥ = (1,...,1)t, ago) =1fori=1,...,n and

ago) =0for j=1,...,n(n —1)/2, if not stated otherwise.

4 Invariance and Correlated Mutations

The rotation procedure of CORR-ES operates with respect to the given coordi-
nate system. This leads to the assumption that the algorithm is not independent

! Rotation invariance and invariance against linear transformation can only be
achieved, if discrete recombination on object parameters is avoided.
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FOR i=1TOn

1. Draw components of %; independently (0, 1)-normally distributed

2. wii=u; — Z;:l (us,uj)u; ({.,.) denotes the canonical scalar product)
3. wi = wi/||usl|
ROF

Fig. 1. Algorithm to generate a random orthogonal matrix U = [u1, ..., uxs] [6].

of the given coordinate system and therefore not invariant against rotation and
linear transformation. Therefore, in this section, invariance is evaluated quanti-
tatively by experiments on the following test functions.

4.1 Test Functions

All used objective functions are linear transformations of fsphere, that is, they
can be written in the form f : @ = fsphere(A - ), where A is a certain full rank
n X n-matrix. Table 1 gives the used functions.

Table 1. Test Functions to be minimized, k =1,...,n

fsphere (m) = 2?21 .’IJ?

' e 1 ifi=k
feigar(y (®) 1= 327_, (aiz:)*, where a; = { 100 otherwise

100 ifi =k
1 otherwise

fravles(e) (€) = Y1 (aizi)®, where a; =

10077 if § < k

fenigy(®) =37, (a;zi)?, where a; = < 1 ifi=k
i—1

100~»=1 if 4 >k

For k =1,...,n the differences between the functions, e.g., feigar(r) are due
to permutations of the coordinate axes. These permutations can be interpreted
as orthogonal linear transformations of the object parameter space, which leave
Uz@l’___’n =1and 2(® = (1,...,1), as given in Sect. 3, unchanged. For n = 5
the coefficients a; of feix), where k = 1,...,5, are permutations of the set
{1,100%,1002,100%,100}.

Additionally feigaru, and correspondingly fiapletu and feniu, is defined as

fcigarU(w) = fcigar(l) (UIE)

with (9 = U~'(1,...,1)t, where U is a random orthogonal (i.e.unitary) matrix
chosen anew for each run (see Fig. 1). This implements an arbitrary rotation
(and reflection) of the search space and basically leaves the topology of the
function unchanged. Apart from feigaru, frableru and feniu all functions are
separable and can be solved without correlated mutations.
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1 T T T T
0 Sphere and Linear Transformations 2 Tablet and Linear Transformations
-1
8 1: fsphere i : see Table 2]
g 4 2:frabler() | 8 | : see Table 2|
S - 3:frablet(s) | 5 : see Table 2
g 5 4: feni(r) 2 : see Table 2]
€ 4 5: feni(s) £
D -7 27
2 ° SN
g o
—of \
10 05 1 15 2 25 3 35 4 1% 05 1 .1.‘5 2 ] 25 3
mean function evaluations x 10° mean function evaluations x 10°

Fig. 2. Testing invariance against linear transformation. Shown are the mean number
of function evaluations (abscissa) to reach a certain function value (ordinate) from 20
runs. The numbers in the right figure correspond to the numbers in Table 2. A strategy
which is invariant against linear transformations must show identical graphs in each
figure, because the initial values for object and strategy parameters are transformed
according to fsphere in the left and according to fiapler in the right. Left and right error
bars depict \/mean%(;(xi — )2 and \/meanmpg(xi —T)2.

Table 2. Functions and initial values for Fig. 2, right

1 fupier) 05 = (1,1,1,1,1) 2@ =(1,1,1,1,1)"
2 frapler(s) Oin.5 = (1,1,1,1,1) 2@ =(1,1,1,1,1)"
3: fuphere 05 =(100,1,1,1,1) @ = (100,1,1,1,1)*
4 fophere 00 5 =(1,1,1,1,100) © = (1,1,1,1,100)*

.....

All simulations are carried out with problem dimension n = 5. Larger dimen-
sions yield more pronounced effects but have a too large CPU time consumption
to yield all needed results in the given time. Because invariance is investigated,
there seems no particular need to do simulations in a wide range of problem
dimensions.

4.2 Simulations

All simulations were carried out with the (15/2;, 100)-CORR-ES and n = 5.
In Fig. 2, left, simulations on fsphere are shown, compared to simulations on
Seablet and feni, where object and strategy parameters are linearly transformed
accordingly to fsphere- For f(z) = 3°;(a;z;)? this means z(® = (a;?,...,a;")
and 050) =a;' fori=1,...,n (and a§0) =0for j=1,...,n(n—1)/2). This
initial mutation distribution is optimal with respect to the objective function
topology. It transforms the function into the sphere model and, if held constant,
yields progress rates like on fsphere- Even though the initial distribution 4s chosen
optimal, performance on fiapley and fen; is worse by a factor of six to nine
compared to fsphere- The CORR-ES is not able to keep the deviation from the
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mean function evaluations x 10" mean function evaluations x10*
Fig. 3. Testing invariance against rotation. Shown are the mean number of function
evaluations (abscissa) to reach a certain function value (ordinate) from 20 runs. The
numbers depicting the graphs correspond to the number & in Table 1. That means,
in the upper left runs on feigaru, feigar(1)s feigar(s) and feigar(s) are shown. In the left
column initial angles are zero, in the right column they are uniformly randomly chosen
in [—m, x| alike for all initial parents. For all graphs in each figure the topology of
the function is identical. Left and right error bars depict \/meanmi<g(w¢ —T)? and

\/meanmp;(w,- —T)2.

optimal initial distribution sufficiently small and is not invariant against linear
transformations.

In the right of Fig. 2 simulations on fiaplet(1) are shown together with simula-

tions on fiaplet(s) and fsphere, where z(© and 01(0) are transformed accordingly to

frablet(1) OT ftablet(1), @s shown in Table 2. Even though the initial distribution is
wrong, performance on fsphere is only slightly effected and five times better than
on fiaplet(1)- The CORR-ES clearly “remembers” the given coordinate system
with the given scaling, which is quite advantageous (only) on fiphere.
Invariance against rotation (precisely against orthogonal transformation) is
exploited in Fig. 3. For example, the difference between feigar1) and feigar(s) is
an exchange of the coordinate axes one and three, which is a special orthogo-
nal transformation. Simulation results on fey; are similar to those on fiaplet and
omitted due to limited space. In the CORR-ES the rotation procedure is the
only part which can interact with an exchange of coordinate axes in the objec-
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tive function (assuming in particular a{o) =...= U,(lo), see Sect. 4.1). Therefore,
exchanging coordinate axes is equivalent with exchanging the corresponding co-
ordinate numbers in the ordering of subspaces used in the rotation procedure.

In the left of Fig. 3 initial angles are zero. Only on fgigar(3) the exchange of
coordinate axes has a remarkable impact on the performance. Compared to the
axis-parallel versions, faplet(1;3;5), on the arbitrarily oriented version, fiabletu,
the performance is slightly worse with considerably larger variance. Recall that
each of these runs is performed on a different function because the orthonormal
basis U is chosen anew for each run.

If the initial angles are chosen uniformly randomly in [—m, 7] alike for all
initial parents, the coordinate system dependency becomes more pronounced
(right column in Fig. 3). On both functions an exchange of coordinate axes in
the problem formulation has a remarkable impact on the performance (up to
a factor of seven here). In particular the performance for k = 1 is remarkably
improved. Recall that these objective functions are completely separable. If the
coordinate system is chosen arbitrarily (like in feigaru), performance is worst.

The original intention in the CORR-ES to get, after a transition phase,
progress rates like on fyphere [13, p-243] cannot be met in any of these simu-
lations. The observed progress rates are worse by a factor between 2.5 (fiabiet(1),
Fig. 3 right) and 70 (feigar(1), Fig- 3 left) compared to fsphere-

Interpreting previous results [6,7] and further simulations not shown here,
the author suspects the performance differences to become (much) larger when
n is increased and/or the ratio between p and n? becomes considerably smaller
than 15/5% (which equals p/n? in the shown results).

5 Conclusion

Invariance is an attractive, conceptual objective of strategy parameter control.
It is a prerequisite for a predictability of the adaptation success and enhances
the transferability of performance results to real world search problems. With
respect to this objective the CORR-ES (i.e. correlated mutations as typically
applied [12,13], see Sect. 3) reveals considerable deficiencies and cannot satisfy
the original intention. In contrast, the so-called covariance matrix adaptation [4,
5] is invariant against any linear transformation of the search space. The disad-
vantage, associated with this invariance, is the possibility that the search can
in principle degenerate into a subspace. The impossibility of a static degenera-
tion in the CORR-ES must be regarded as its major advantage. It can become
relevant on highly disturbed and separable objective functions.

The replicability of the results with the CORR-ES can strongly depend on
the initial strategy parameters (angles), implementational details usually not
explicitely defined (order of rotations) and subtle changes in the formulation of
the objective function. Therefore the interpretation of results from this strategy
variant must be done very carefully.
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