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Abstract. The derandomized evolution strategy (ES) with covariance
matrix adaptation (CMA), is modified with the goal to speed up the al-
gorithm in terms of needed number of generations. The idea of the mod-
ification of the algorithm is to adapt the covariance matrix in a faster
way than in the original version by using a larger amount of the infor-
mation contained in large populations. The original version of the CMA
was designed to reliably adapt the covariance matrix in small popula-
tions and turned out to be highly efficient in this case. The modification
scales up the efficiency to population sizes of up to 10n, where n ist the
problem dimension. If enough processors are available, the use of large
populations and thus of evaluating a large number of search points per
generation is not a problem since the algorithm can be easily parallelized.

1 Introduction

One of the commonly proposed advantages of evolution strategies (ES’s) is that
they can be easily parallelized, see e.g. Schwefel (1995) or Bäck, Hammel, and
Schwefel (1997). ESs with λ children per generation (population size λ) are
usually parallelized by distributing the function evaluation for each of the λ
children on a different processor. When the number of children is smaller than
the number of available processors, the advantage of using ES’s in parallel cannot
be fully exploited. Consequently, for a large number of processors the algorithm
should be able to use a large population efficiently.

In this article, we consider a derandomized ES with covariance matrix adap-
tation (CMA-ES) for which experimental results (Hansen and Ostermeier, 1997,
2001) show a clear convergence velocity improvement when compared to other
ES’s. The primary feature of the CMA-ES is its reliability in adapting an arbi-
trarily oriented scaling of the search space in small populations. The algorithm
is in particular independent of any orthogonal transformation of the coordinate
system.
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When optimizing considerably complex, e.g. highly nonseparable functions,
the adaptation time becomes the limiting factor for the performance of the CMA-
ES if the problem dimension n exceeds a certain threshold, usually n ≥ 10.
That is, the number of generations to adapt the covariance matrix of the search
distribution to the function topology is the prominent factor for the degraded
performance of the algorithm. The reason is that in the CMA-ES (n2 + n)/2
elements of the symmetric covariance matrix C need to be adapted while the
search process itself needs only to adjust n variables. Interestingly, for popu-
lation sizes greater than 20 the adaptation time (i.e., the time to adapt the
(n2 + n)/2 elements of the covariance matrix) becomes practically independent
of the population size (Hansen 1998) . That means, the performance in num-
ber of function evaluations decreases linearly with increasing population size.
Alternatively, the implementation of the original CMA-ES on massively parallel
computer architectures, e.g. the Beowulf cluster with hundreds of processors,
supplies no substantial advantage compared to the use of twenty processors. On
remarkably complex functions, the time complexity is of O(n2), independent of
the population size and the processor number.

How can we use the CMA-ES efficiently on massively parallel architectures
with hundreds of processors? How can we increase the efficiency of the CMA-
ES, when a large population is preferable to a small one due to other reasons?
To increase λ alone does not help shortening the adaptation time as pointed
out above. Additionally, a faster adaptation mechanism must be implemented
being comparably reliable. The idea that we present in this paper is to increase
the adaptation rate of the covariance matrix compared to the original algo-
rithm, without losing its reliablity by exploiting a larger amount of information
per generation. This is possible because an increased population should contain
more information ready to be exploited in order to obtain a reduced adaptation
time. Compared to the original adaptation mechanism the proposed modifica-
tion would usually require much fewer function evaluations when λ is large but
could be slightly less effective within small populations.

The working principles of the original algorithm, the CMA-ES, referred to as
Orig-CMA here, are outlined in Section 2 and the modifications are presented
in Section 3. In Section 4, the simulation results are discussed and Section 5
provides a conclusion.

2 Algorithm of the CMA-ES

Following Hansen and Ostermeier (2001) , in the (µI, λ)-CMA-ES the λ offspring
of generation g + 1 are computed by

x
(g+1)
k = 〈x〉(g)

µ + σ(g)B(g)D(g)z
(g+1)
k , k = 1, . . . , λ, (1)

where
〈x〉(g)

µ =
1
µ

∑
i∈I

(g)
sel

x
(g)
i (2)
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represents the center of mass of the selected individuals of generation g, and I
(g)
sel

is the set of indices of the selected individuals of generation g, with |I(g)
sel | = µ.

The random vectors z from Equation (1) are N (0, I) distributed (n-dimensional
normally distributed with expectation zero and the identity covariance matrix)
and serve to generate offspring for generation g+1. They can be used to calculate
〈z〉(g+1)

µ analogously to 〈x〉(g)
µ . The columns of B(g) represent eigenvectors of the

covariance matrix C(g). D(g) is a diagonal matrix whose elements are the square
roots of the eigenvalues of C(g). Hence, the relation of B(g) and D(g) to C(g)

can be expressed by

C(g) = B(g)D(g)
(
B(g)D(g)

)T

and C(g)b
(g)
i =

(
d
(g)
ii

)2
· b

(g)
i (3)

where b
(g)
i represents the i-th column of B(g). Each covariance matrix corre-

sponds to a hyperellipsoid which defines the surface of equal probability to place
offspring. Here, the eigenvectors of the covariance matrix define the orientation
of the hyperellipsoid and the eigenvalues define the lengths of its axes.

The evolution path p
(g+1)
c is calculated by

p(g+1)
c = (1 − cc) · p(g)

c +
√

cc · (2 − cc) ·
√

µ

σ(g)

(
〈x〉(g+1)

µ − 〈x〉(g)
µ

)
︸ ︷︷ ︸
=

√
µB(g)D(g)〈z〉(g+1)

µ

(4)

and is used to build the covariance matrix of generation g + 1

C(g+1) = (1 − ccov) · C(g) + ccov · p(g+1)
c

(
p(g+1)

c

)T

. (5)

The update of C is done with a symmetric matrix of rank one (right summand
in Equation (5)). The strategy parameters cc ∈]0, 1] and ccov ∈ [0, 1[ determine
the accumulation time for the evolution path p

(g+1)
c and the change rate of

the covariance matrix, respectively. Note that for cc = 1 in Equation (4) the
evolution path reduces to

√
µBD〈z〉µ which is the mean mutation step of the

last generation. Also, the update of C is independent of the adaptation of the
global step size.

For the adaptation of the global step size, the evolution path p
(g+1)
σ that is

not scaled by D(g) is calculated by

p(g+1)
σ = (1 − cσ) · p(g)

σ +
√

cσ · (2 − cσ) · √
µB(g)〈z〉(g+1)

µ︸ ︷︷ ︸
= B(g)

(
D(g)

)−1(
B(g)

)−1 √
µ

σ(g)

(
〈x〉(g+1)

µ −〈x〉(g)
µ

) (6)

and its length is used to compute the step size for generation g + 1

σ(g+1) = σ(g) · exp

(
1
dσ

‖p
(g+1)
σ ‖ − χ̂n

χ̂n

)
, (7)
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where χ̂n = E [||N (0, I)||] is the expected length of a (0, I)-normally distributed
random vector and χ̂n is approximated by χ̂n ≈ √

n
(
1 − 1

4n + 1
21n2

)
. The strat-

egy parameter cσ ∈]0, 1] determines the accumulation time for the evolution
path p

(g+1)
σ , and dσ is a damping parameter.

The default strategy parameter setting, discussed in Hansen and Ostermeier
(2001) in detail, is as follows:

cc = 4
n+4 , ccov = 2

(n+
√

2)2
, cσ = 4

n+4 , dσ = c−1
σ + 1 (8)

Initial values are p(0) = 0,p
(0)
σ = 0 and the initial covariance matrix C(0) is the

identity matrix I.

3 Modified Algorithm

All modifications solely regard Equation (5) that describes the change of the
covariance matrix, i.e., the change of the mutation distribution shape, and ccov.
Everything else, in particular the global step size adaptation mechanism remains
unchanged in this paper. We add to Equation (5) the following term:

Z(g+1) =
1
µ

∑
i∈I

(g+1)
sel

B(g)D(g)z
(g+1)
i

(
B(g)D(g)z

(g+1)
i

)T

= B(g)D(g)


 1

µ

∑
i∈I

(g+1)
sel

z
(g+1)
i

(
z

(g+1)
i

)T


 (

B(g)D(g)
)T

(9)

that is a symmetrical n × n matrix with rank min(µ, n) (with probability one).
The modification of Equation (5) then reads

C(g+1) = (1 − ccov) · C(g) + ccov

(
αcov · p(g+1)

c

(
p(g+1)

c

)T

+ (1 − αcov) · Z(g+1)
)

(10)
where 0 ≤ αcov ≤ 1. Note that for αcov = 1 Equation (10) and Equation (5)
are identical and the original CMA-ES is restored. Decreasing αcov changes the
parameterized algorithm continuously. Results are presented for αcov = 0 and
αcov = 1

µ and compared with the original CMA algorithm, where αcov = 1, in
Section 4.

Since the rank of Z(g+1) is larger than 1, more information is passed to
the covariance matrix in each generation. Thus, the adaptation becomes more
reliable. Therefore, the adaptation time 1/ccov can be decreased, or in other
words, the learning rate ccov can be increased yielding a higher adaptation speed.
For αcov = 1, ccov is used as in Equation (8). For αcov = 0, experiments showed
that

ccov = min
(

1,
2µ − 1

(n + 2)2 + µ

)
. (11)
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Table 1. Convex quadratic test functions and stopping criteria.

Name Function
Sphere fsphere =

∑n
i=1(xi)2

Ellipsoid felli =
∑n

i=1(1000
i−1
n−1 xi)2

Cigar fcigar = x2
1 +

∑n
i=2(1000xi)2

trades of reasonably well the reliability and the adaptation speed of the covari-
ance matrix adaptation, and is thus chosen in the strategies with 0 ≤ αcov < 1.
A closed expression for ccov has yet to be found that can be used in both types
of strategies represented by αcov = 1 and 0 ≤ αcov < 1.

Equations (9) and (10) are analyzed to motivate the coefficients 1
µ in Equa-

tion (9) and αcov in conjunction with (1 − αcov) from Equation (10). Under
random selection, the symmetric matrix

∑
i∈Isel

zi(zi)T =
∑

i∈Isel




z2
i1 zi1zi2 · · · zi1zin

zi2zi1 z2
i2 · · · zi2zin

...
...

. . .
...

zinzi1 zinzi2 · · · z2
in


 (12)

from Equation (9) has diagonal elements that are χ2
µ distributed and off-diagonal

elements with expectation zero. With E
[∑

i∈Isel
z2
ij

]
= µ, j = 1, . . . , n, we have

that
E
[
Z(g+1)

]
=

1
µ

B(g)D(g) µI (B(g)D(g))T = C(g) (13)

under the given selection model. Equation (13) is the reason for choosing the
coefficient 1

µ in Equation (9). With E [p(g+1)
c (p(g+1)

c )T ] = C(g) (Hansen 1998)

and E [Z(g+1)] = C(g), we conclude from Equation (10) that E [C(g+1)] = C(g).
This is the reason for choosing (1 − αcov) in conjunction with αcov in Equation
(10).

To compare the strategies with different αcov, the functions shown in Table 1
are tested. Tests are carried out in the dimensions n = [2, 3, 5, 10, 20, 40, 80]
and for parent numbers µ = [2, 	n/4
, 	n/2
, n, 2n, 4n, 	n2/4
, 	n2/2
, n2] with
a population size of λ = 4µ. Initial values are set to 〈x〉(0)µ = 1 and σ(0) = 1.
The search is terminated as soon as fstop = 10−10 is reached.

4 Discussion of the Results

Three different strategy variants are presented: New-CMA, where αcov = 0;
Orig-CMA, where αcov = 1; and Hybr-CMA, where αcov = 1

µ . Note that for
µ = 1, Hybr-CMA is identical to Orig-CMA. The simulation results for the
various strategies are analyzed from two different point of views:

Serial performance. We analyze the number of overall function evaluations to
reach fstop. This is the appropriate point of view if optimization is performed
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on a single processor or on a small number of processors that does not exceed
the smallest sensible population size λ, usually five to ten. In this case the
number of function evaluations is an appropriate measure for the time to
reach fstop.

Parallel performance. We analyze the number of generations to reach fstop.
When a larger number of processors is available, it becomes interesting to
evaluate the number of generations to reach fstop, especially if λ is equal
to the number of processors. In this case, the number of generations is an
appropriate measure for the time to reach fstop in a single run.

First, we discuss the serial performance on fsphere as shown in Figure 1, up-
per left. For λ < 10n the performance of Orig-CMA and Hybr-CMA are similar
as expected. For larger population sizes, Hybr-CMA becomes faster than Orig-
CMA by a factor of up to three. This effect cannot be attributed to a faster
adaptation of the distribution shape because on fsphere the shape is optimal al-
ready at the beginning. The reason for the better performance of Hybr-CMA is
the faster adaptation of the overall variance of the distribution. Originally, the
cumulative path length control (Equations (6) and (7)) facilitates the adaptation
of the global step size, i.e. the adaptation of the overall variance. The parameter
that tunes the adaptation speed (dσ in Equation (7)) was (a) chosen conserva-
tively resulting in a somewhat slower but more robust algorithm (Hansen and
Ostermeier 2001 , Section 5.1) and (b) chosen w.r.t. small population sizes that
realize smaller progress rates than larger populations per generation and there-
fore demand slower adaptation rates. Consequently, for µ > n and αcov � 1
the distribution adaptation in Equation (10) can successfully contribute to the
adapation speed of the overall variance in Hybr-CMA because the change rate
ccov > 1

n . This is the presumable reason for the observed speed-up on fsphere.
Even though this effect seems to be advantageous at first sight, it may become

disadvantageous if the distribution adaptation influences the magnitude of the
overall variance significantly. While the path length control is shown to adapt
nearly optimal step lengths even for µ > 1 (at least for µ < λ < n, Hansen
1998), the distribution adaptation as described in Equation (10) acquires too
small step lengths rapidly, if—unlike on fsphere—the optimal step length re-
mains constant over time (i.e. in a stationary environment). When the optimal
step length decreases significantly fast over time, as on fsphere, this can be an
advantage. However, an algorithm that adapts drastically too small variances in
a stationary environment is not preferable in general. This suggests an upper
limit for reasonable population sizes, arguable at λ ≈ 10n.

Next, the serial performance of the strategy variants on felli and fcigar is
evaluated. The most prominent effect in these results is the dependency on λ.
The smallest λ = 8 (and even a smaller λ for n = 5) performs best in all cases.
For example, if n = 20 the decline of the serial performance between λ = 8 and
λ = 80 amounts roughly to a factor of 5.5 (on fcigar) and 7.5 (on felli) for Orig-
CMA and of 1.7 (on felli) and 4.5 (on fcigar) for Hybr-CMA. Considering the
serially optimal λ = 8, the performance difference between Orig-CMA and Hybr-
CMA is small. This leads to the conclusion that the introduced modifications in
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Fig. 1. Number of function evalutations (left) and number of generations (right)
over the problem dimension for the sphere function (above) and the ellipse func-
tion (below). The Orig-CMA (− − −) and the Hybr-CMA (—) are plotted for
λ = 8, n, 2n, 4n, 8n, 16n, 4n2 if curves are far apart, or for λ = 8, 4n, 4n2.
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Hybr-CMA yield at least similar, if not slightly better serial performance even
for µ = 2 and λ = 8 in the tested cases.

Comparing New-CMA with the other strategy variants where λ = 8 reveals
a significant result on fcigar (Figure 2). While Orig-CMA and Hybr-CMA need
about 500n function evaluations to reach fstop, New-CMA needs about 120n2

function evaluations. Using the evolution path pc in Equation (10) in addition
with a cumulation parameter of cc ≈ 1

n in Equation (4) yields this impressive
speed-up of Orig-CMA and Hybr-CMA. Although detected in earlier investiga-
tions (Hansen and Ostermeier 2001), this speed-up is noteworthy in that a com-
pletely adaptable covariance matrix with n2+n

2 free parameters can be adapted to
certain topologies in O(n) function evaluations. Since this observation on fcigar
is the major difference between Hybr-CMA and New-CMA, the latter algorithm
is excluded from the remaining discussion.

While the differences between Orig-CMA and Hybr-CMA are marginal for
λ = 8, the picture changes in favor of Hybr-CMA when the population size is
increased. For λ = 8, the scaling of the needed function evaluations w.r.t. the
problem dimension (i.e. the slope of the graphs) is linear on fsphere and fcigar,
but it is almost quadratic on felli. For λ ∝ n, the scaling of Hybr-CMA becomes
nearly quadratic, regardless whether the scaling is linear or quadratic for λ = 8.
This is in contrast to Orig-CMA where the scaling always deteriorates when λ is
increased from a constant value to λ ∝ n. As a result, Hybr-CMA performs never
worse and often greatly better than Orig-CMA if λ ∝ n. This clear advantage can
of course be expected only if µ ∝ λ, e.g. µ ≈ λ/4 as chosen in our investigations.
Concluding these observations, Hybr-CMA must be undoubtedly preferred w.r.t.
its serial performance if µ > 3 and n > 5.

Second, we discuss the parallel performance that comes into play if λ is
chosen considerably large. This means that we concentrate the discussion of
parallel performance on the cases where λ ∝ n and λ = 4n2.

Certainly, the difference in performance between Orig-CMA and Hybr-CMA
discussed above translates to the parallel case. Hybr-CMA outperforms Orig-
CMA overall and on any single function, if λ  8 (assuming µ ≈ λ/4). There-
fore, it is more interesting to interpret the parallel strategy behavior in relation
to λ. The parallel performance of Orig-CMA does not change dramatically when
λ is increased. The improvement never exceeds a factor of two in dimensions
up to 80. In contrast to Orig-CMA, where the parallel performance is less de-
pendent on λ, Hybr-CMA shows a vigorous improvement when λ is increased.
For example, increasing λ from n to 8n, i.e. by a factor of eight, improves the
parallel performance by a factor greater than four on felli.

However, the most impressive result concerns the scaling of Hybr-CMA with
respect to the number of generations where λ ∝ n. When λ ≤ 10n, Orig-CMA
scales (nearly) quadratically w.r.t. the number of generations on all functions
except on fsphere. The same observation holds for Hybr-CMA for λ = 8. How-
ever, when λ is increased to be proportional to n in Hybr-CMA, the number of
generations scales linearly with the problem dimension on all convex quadratic
test functions. On fsphere, the scaling for λ ∝ n is even slightly sublinear. The
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Fig. 2. Number of function evaluations (left) and number of generations (right) over
the problem dimension for the cigar comparing Orig-CMA with Hybr-CMA (above)
and the cigar comparing Orig-CMA with New-CMA (below). The Orig-CMA (− − −)
and the Hybr-CMA or New-CMA (—) are plotted for λ = 8, n, 2n, 4n, 8n, 16n, 4n2 if
curves are far apart, or for λ = 8, 4n, 4n2.
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roughly linear scaling for λ ∝ n is the main improvement of the new Hybr-CMA
compared with Orig-CMA.

5 Conclusions

We presented a modified algorithm derived from the derandomized evolution
strategy with covariance matrix adapation. Our goal was to devise a technique
with which we can optimize in fewer number of generations than with the original
strategy, allowing to exploit the often emphasized feature of evolution strategies
being easily parallelizable.

This goal is achieved for population sizes up to λ = 10n. Choosing αcov = 1
µ

and µ ≈ λ/4, the modified algorithm seems to efficiently exploit the information
prevalent in the population and reveals mainly linear time complexity for pop-
ulation sizes proportional to n and up to 10n, if fully parallelized. This means
we were able to reduce the time complexity roughly from O(n2) to O(n).

For µ = 1, the modified algorithm is identical with the original one (as-
suming identical recombination weights in the latter). With increasing µ, the
performance improves remarkably compared with the original algorithm. In our
tests, the modified algorithm with αcov = 1

µ reveals no disadvantage compared
with the original one. Only for population sizes larger than 10n the adjustment
of the overall variance becomes problematic. As a conclusion, the efficiency of
the adaptation of the distribution shape in large populations seems to be sat-
isfying for the moment. Future work will address further developments for the
adaptation of the global step size.

References
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