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Einstein once spoke of the
“unreasonable effectiveness of
mathematics” in describing how
the natural world works. Whether
one is talking about basic physics,
about the increasingly important
environmental sciences, or the
transmission of disease,
mathematics is never any more, or
any less, than a way of thinking
clearly. As such, it always has
been and always will be a valuable
tool, but only valuable when it is
part of a larger arsenal embracing
analytic experiments and, above
all, wide-ranging imagination.

Lord Kay
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Problem Statement
Continuous Domain Search/Optimization

Task: minimize a objective function (fitness function,
loss function) in continuous domain

f : X ⊆ Rn → R, x 7→ f (x)

Black Box scenario (direct search scenario)

f(x)x

gradients are not available or not useful
problem domain specific knowledge is used only within the
black box, e.g. within an appropriate encoding

Search costs: number of function evaluations

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Problem Statement
Continuous Domain Search/Optimization

Goal
solution x with small function value with least search cost

there are two conflicting objectives
fast convergence to the global optimum

. . . or to a robust solution x

Typical Examples

shape optimization (e.g. using CFD) curve fitting, airfoils

model calibration biological, physical

parameter calibration controller, plants,
images

Approach: stochastic search, Evolutionary Algorithms

. . . metaphores

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Metaphors

Evolutionary Computation Optimization

genome ←→ decision variables
design variables
object variables

individual, offspring, parent ←→ candidate solution
population ←→ set of candidate solutions

fitness function ←→ objective function
loss function
cost function

generation ←→ iteration

. . . properties

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Objective Function Properties

We assume f : X ⊂ Rn → R to be non-linear, non-separable
and to have at least moderate dimensionality, say n 6� 10.
Additionally, f can be

non-convex
non-smooth derivatives do not exist
discontinuous
ill-conditioned
multimodal there are eventually many local optima

noisy
. . .

Goal : cope with any of these function properties
they are related to real-world problems

. . . Tripeds
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Comparison of CMA-ES, IDEA and Simplex-Downhill

CMA-ES: Covariance Matrix Adaptation Evolution Strategy
IDEA: Iterated Density-Estimation Evolutionary Algorithm1

Fminsearch: Nelder-Mead simplex downhill method2

see. . .
http://www.icos.ethz.ch/cse/research/highlights/Race.gif

. . . function properties
1

Bosman (2003) Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis.
2

Nelder and Mead (1965). A simplex method for function minimization. Computer Journal.Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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What Makes a Function Difficult to Solve?
Why stochastic search?

ruggedness
non-smooth, discontinuous, multimodal,

and/or noisy function

non-separability
dependencies between the objective

variables
dimensionality

(considerably) larger than three

ill-conditioning

cut from 5-D solvable
example

gradient direction−f ′(x)T

Newton direction
−H−1f ′(x)T

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Separable Problems

Definition (Separable Problem)

A function f is separable if

arg min
(x1,...,xn)

f (x1, . . . , xn) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xn

f (. . . , xn)
)

⇒ it follows that f can be optimized in a sequence of n
independent 1-D optimization processes

Example: Additively decomposable
functions

f (x1, . . . , xn) =
n∑

i=1

fi(xi)

Rastrigin function
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Non-Separable Problems
Building a non-separable problem from a separable one

Rotating the coordinate system

f : x 7→ f (x) separable
f : x 7→ f (Rx) non-separable

R rotation matrix
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3
Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in

evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann
4

Salomon (1996). ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
[−1, 1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [−1, 1]10 would
require 10010 = 1020 points. A 100 points appear now as
isolated points in a vast empty space.

Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or
large dimensional search spaces.

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Ill-Conditioned Problems
Curvature of level sets

Consider the convex-quadratic function
f (x) = 1

2(x− x∗)TH(x− x∗)

gradient direction −f ′(x)T

Newton direction −H−1f ′(x)T

Condition number equals nine here. Condition numbers
between 100 and even 1010 can often be observed in real

world problems.

If H ≈ I (small condition number of H) first order information
(e.g. the gradient) is sufficient. Otherwise second order
information (estimation of H−1) is required.

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach



Introduction The Challenges Stochastic Search The CMA Evolution Strategy Discussion Evaluation

What Makes a Function Difficult to Solve?
. . . and what can be done

Challenge Approach in Evolutionary Computation

Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

stochastic, non-elitistic, population-based
method
recombination operator

serves as repair mechanism

Dimensionality,
Non-Separability

exploiting the problem structure
locality, neighborhood, encoding

Ill-conditioning second order approach
changes the neighborhood metric

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size
λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

Everything depends on the definition of P and Fθ
deterministic algorithms are covered as well

In Evolutionary Algorithms the distribution P is often implicitly
defined via operators on a population, in particular, selection,
recombination and mutation
Natural template for Estimation of Distribution Algorithms

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size
λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

In the following

P is a multi-variate normal distribution
N
(

m, σ2C
)
∼ m + σN

(
0,C

)
θ = {m,C, σ} ∈ Rn × Rn×n × R+

Fθ = Fθ(θ, x1:λ, . . . , xµ:λ), where µ ≤ λ and xi:λ is the i-th
best of the λ points

. . . why?

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Normal Distribution
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The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N
“

m,C
”

is uniquely determined by its
mean value m ∈ Rn and its symmetric positive definite n× n covariance
matrix C.

The mean value m

determines the displacement (translation)

is the value with the largest density (modal
value)

the distribution is symmetric about the
distribution mean
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The covariance matrix C

determines the shape

has a valuable geometrical interpretation: any covariance matrix can
be uniquely identified with the iso-density ellipsoid {x ∈ Rn | xTC−1x = 1}

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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. . . any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x ∈ Rn | xTC−1x = 1}

Lines of Equal Density

N
“

m, σ2I
”
∼ m + σN

“
0, I

”
one degree of freedom σ

components are
independent standard
normally distributed

N
“

m,D2
”
∼ m + DN

“
0, I

”
n degrees of freedom
components are
independent, scaled

N
“

m,C
”
∼ m + C

1
2N

“
0, I

”
(n2 + n)/2 degrees of freedom

components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix

(reasonable for separable problems) and A×N
“

0, I
”
∼ N

“
0,AAT

”
holds for

all A.
. . . CMA

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size
λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

P is a multi-variate normal distribution
N
(

m, σ2C
)
∼ m + σN

(
0,C

)
. . . sampling

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Sampling New Search Points
The Mutation Operator

New search points are sampled normally distributed

xi ∼ m + σNi

(
0,C

)
for i = 1, . . . , λ

as perturbations of m where xi,m ∈ Rn, σ ∈ R+, and C ∈ Rn×n

where

the mean vector m ∈ Rn represents the favorite
solution
the so-called step-size σ ∈ R+ controls the step
length
the covariance matrix C ∈ Rn×n determines the
shape of the distribution ellipsoid

The question remains how to update m, C, and σ.

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Update of the Distribution Mean m
Selection and Recombination

Given the i-th solution point xi = m + σ Ni

(
0,C

)
︸ ︷︷ ︸

=: y
i

= m + σ y
i

Let xi:λ the i-th ranked solution point, such that
f (x1:λ) ≤ · · · ≤ f (xλ:λ).
The new mean reads

m←
µ∑

i=1

wi xi:λ = m + σ

µ∑
i=1

wi y
i:λ︸ ︷︷ ︸

=: y
w

where
w1 ≥ · · · ≥ wµ > 0,

∑µ
i=1 wi = 1

The best µ points are selected from the sampled solutions
(non-elitistic) and a weighted mean is taken.

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σy
w
, y

w
=
∑µ

i=1 wi y
i:λ
, y

i
∼ Ni

(
0,C

)

new distribution,
C← 0.8× C + 0.2× y

w
yT

w
the ruling principle: the adaptation increases the likelyhood of
successful steps, y

w
, to appear again

. . . equations

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Preliminary Set of Equations
Covariance Matrix Adaptation with Rank-One Update

Initialize m ∈ Rn, and C = I, set σ = 1, learning rate ccov ≈ 2/n2

While not terminate

xi = m + σ y
i
, y

i
∼ Ni

(
0,C

)
, i = 1, . . . , λ

m ← m + σy
w

where y
w

=
µ∑

i=1

wi y
i:λ

C ← (1− ccov)C + ccovµw y
w

yT
w︸︷︷︸

rank-one

where µw =
1∑µ

i=1 wi
2 ≥ 1

λ can be small

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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C← (1− ccov)C + ccovµwy
w

yT
w

The covariance matrix adaptation

learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies

conducts a principle component analysis (PCA) of steps y
w
,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle components

/ the principle axes of the mutation ellipsoid

approximates the inverse Hessian on convex-quadratic functions
overwhelming empirical evidence, proof is in progress

learns a new, rotated problem representa-
tion and a new variable metric (Mahalanobis)

components are independent (only) in the new representation
rotational invariant

equivalent with an adaptive (general) linear encodinga

a
Hansen 2000, Invariance, Self-Adaptation and Correlated Mutations in Evolution

Strategies, PPSN VI

. . . cumulation, step-size control
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Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the path the strategy mean m takes over a
number of generation steps.

An exponentially weighted
sum of steps y

w
is used

p
c
∝

gX
i=0

(1− cc)
g−i| {z }

exponentially

fading weights

y(i)
w

The recursive construction of the evolution path (cumulation):

p
c
← (1− cc)| {z }

decay factor

p
c

+
p

1− (1− cc)2√µw| {z }
normalization factor

y
w|{z}

input,
m−mold

σ

where µw = 1P
wi2 , cc � 1. History information is accumulated in the evolution

path.
Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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“Cumulation” is a widely used technique and also know as

exponential smoothing in time series, forecasting
exponentially weighted mooving average
iterate averaging in stochastic approximation
momentum in the back-propagation algorithm for ANNs
. . .

. . . why?

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Cumulation
Utilizing the Evolution Path

We used y
w

yT
w

for updating C. Because y
w

yT
w

= −y
w
(−y

w
)T the sign of y

w
is

neglected. The sign information is (re-)introduced by using the evolution path.

p
c
← (1− cc)| {z }

decay factor

p
c

+
p

1− (1− cc)2√µw| {z }
normalization factor

y
w

where µw = 1P
wi2 , cc � 1.

. . . equations

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Preliminary Set of Equations (2)
Covariance Matrix Adaptation, Rank-One Update with Cumulation

Initialize m ∈ Rn, C = I, and p
c

= 0 ∈ Rn,
set σ = 1, cc ≈ 4/n, ccov ≈ 2/n2

While not terminate

xi = m + σ y
i
, y

i
∼ Ni

(
0,C

)
, i = 1, . . . , λ

m ← m + σy
w

where y
w

=
µ∑

i=1

wi y
i:λ

p
c
← (1− cc) p

c
+
√

1− (1− cc)2√µw y
w

C ← (1− ccov)C + ccov p
c
p

c
T︸ ︷︷ ︸

rank-one

. . .O(n2) toO(n)

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Using an evolution path for the rank-one update of the
covariance matrix reduces the number of function evaluations
to adapt to a straight ridge from O(n2) to O(n).a

a
Hansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution

Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18

The overall model complexity is n2 but important parts of the
model can be learned in time of order n

. . . step-size

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Path Length Control
The Concept

xi = m + σ y
i

m ← m + σy
w

Measure the length of the evolution path

the pathway of the mean vector m in the
generation sequence

⇓
decrease σ

⇓
increase σ

loosely speaking steps are

perpendicular under random selection (in expectation)

perpendicular in the desired situation (to be most efficient)

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Summary
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

1 Multivariate normal distribution to generate new search
points

follows the maximum entropy principle

2 Selection only based on the ranking of the f -values
preserves invariance

3 Covariance matrix adaptation (CMA) increases the
likelyhood of previously successful steps

learning all pairwise dependencies
=⇒ adapts a variable metric

=⇒ new (rotated) problem representation

4 An evolution path (a non-local trajectory)
enhances the covariance matrix (rank-one) adaptation

yields sometimes linear time complexity
controls the step-size (step length)

aims at conjugate perpendicularity

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Initialize m ∈ Rn, σ ∈ R+, C = I, and p
c

= 0, p
σ

= 0,
set cc ≈ 4/n, cσ ≈ 4/n, c1 ≈ 2/n2, cµ ≈ µw/n2, c1 + cµ ≤ 1,
dσ ≈ 1 +

√
µw
n ,

set λ and wi, i = 1, . . . , µ such that µw ≈ 0.3λ

While not terminate

xi = m + σ y
i
, y

i
∼ Ni

(
0,C

)
, sampling

m ← m + σy
w

where y
w

=
∑µ

i=1 wi y
i:λ

update mean

p
c
← (1− cc) p

c
+ 1I{‖p

σ
‖<1.5

√
n}
√

1− (1− cc)2√µw y
w

cumulation for C

p
σ
← (1− cσ) p

σ
+
√

1− (1− cσ)2√µw C−
1
2 y

w
cumulation for σ

C ← (1− c1 − cµ) C + c1 p
c
p

c
T + cµ

∑µ
i=1 wi y

i:λ
yT

i:λ
update C

σ ← σ × exp
(

cσ

dσ

(
‖p

σ
‖

E‖N(0,I)‖ − 1
))

update of σ

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach



Introduction The Challenges Stochastic Search The CMA Evolution Strategy Discussion Evaluation

1 Introduction

2 The Challenges

3 Stochastic Search

4 The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

5 Discussion

6 Evaluation

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach



Introduction The Challenges Stochastic Search The CMA Evolution Strategy Discussion Evaluation

Experimentum Crucis
What did we want to achieve?

reduce any convex-quadratic function

f (x) = xTHx

e.g. f (x) =
Pn

i=1 106 i−1
n−1 x2

i

to the sphere model
f (x) = xTx

without use of derivatives

lines of equal density align with lines of equal fitness

C ∝ H−1

in a stochastic sense

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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Experimentum Crucis (1)
f convex-quadratic, separable
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f (x) =
∑n

i=1 10α
i−1
n−1 x2

i , α = 6

. . . crucis rotated
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Experimentum Crucis (2)
f convex-quadratic, as before but non-separable (rotated)
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C ∝ H−1 for all
g,H

f (x) = g
(
xTHx

)
, g : R→ R stricly monotonic

. . . on convergence
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On Global Convergence

convergence on a very broad class of functions, e.g. for
Monte Carlo pure random search

very slow

convergence with practically feasible convergence rates
on, e.g., ‖x‖α

Markov Chain analysis

Stability/Stationarity/Ergodicity of a markov chain
the markov chain always returns to “the center” of the
state space (recurrence)
the chain exhibits an invariant measure, a limit probability
distribution

implies convergence/divergence

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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The Convergence Rate
Optimal convergence rate can be achieved

The converence rate for evolution strategies on
f (x) = g(‖x− x∗‖) in iteration t reads5

lim
t→∞

1
t

t∑
k=1

log
‖mk − x∗‖
‖mk−1 − x∗‖

∝ −1
n
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loosely

‖mt − x∗‖ ∝ exp
(
− t

n

)
=
(

1
e t

)1/n

random search exhibits ‖mt − x∗‖ ∝
„

1
t

«1/n

which is the lower bound for randomized direct search with
isotropic sampling 6

5
Auger 2005

6
Jägersküpper 2008
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Convergence of the Covariance Matrix
Yet to be proven

Theorem (convergence of covariance matrix C)

Given the function
f (x) = g(xTHx)

where H is positive and g is monotonic, we have

E(C) ∝ H−1

where the expectation is taken with respect to the invariant
measure

without use of derivatives0 2000 4000 6000
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Evaluation/Selection of Search Algorithms

Evaluation (of the performance) of a search algorithm needs

meaningful quantitative measure on benchmark functions
or real world problems

account for meta-parameter tuning
can be quite expensive

account for invariance properties (symmetries)
prediction of performance is based on “similarity”, ideally

equivalence classes of functions

account for algorithm internal cost
often negligible, depending on the objective function cost
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Comparison to BFGS, NEWUOA, PSO and DE (1)
f convex-quadratic, separable with varying α
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function value of 10−9

. . . population size, invariance
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Comparison to BFGS, NEWUOA, PSO and DE (2)
f convex-quadratic, non-separable (rotated) with varying α
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Comparison to BFGS, NEWUOA, PSO and DE (3)
f non-convex, non-separable (rotated) with varying α
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function value of 10−9

. . . population size, invariance
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Invariance
The short version

The grand aim of all science is to cover the greatest number of empirical facts
by logical deduction from the smallest number of hypotheses or axioms.

— Albert Einstein
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all three functions are equivalent for rank-based search
methods

large equivalence class

invariance allows a save generalization of empirical
results here on f (x) = x2 (left) to any f (x) = g(x2), where g is

monotonous
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Comprehensive Comparison of 11 Algorithms
Empirical Distribution of Normalized Success Performance
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FEs = mean(#fevals)× #all runs (25)
#successful runs , where #fevals includes only successful runs.

Shown: empirical distribution function of the Success Performance FEs divided by
FEs of the best algorithm on the respective function.

Results of all functions are used where at least one algorithm was successful at least once, i.e. where
the target function value was reached in at least one experiment (out of 11× 25 experiments).

Small values for FEs and therefore large (cumulative frequency) values in the graphs
are preferable.
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Merci !

http://www.lri.fr/˜hansen/cmaesintro.html
or google NIKOLAUS HANSEN

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach
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