Introduction The	e Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000 00	0000	000000	000000000000000000000000000000000000000	0000000	00000000

The challenges for stochastic optimization and a variable metric approach

Nikolaus Hansen, INRIA Saclay

Microsoft Research-INRIA Joint Centre, INRIA Saclay

April 6, 2009

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Content

Introduction

- The Challenges
- 3 Stochastic Search
- 4

6

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Evaluation

Einstein once spoke of the "unreasonable effectiveness of mathematics" in describing how the natural world works. Whether one is talking about basic physics, about the increasingly important environmental sciences, or the transmission of disease. mathematics is never any more, or any less, than a way of thinking clearly. As such, it always has been and always will be a valuable tool, but only valuable when it is part of a larger arsenal embracing analytic experiments and, above all, wide-ranging imagination. Lord Kay

- Continuous Domain Search/Optimization
 - Task: **minimize** a **objective function** (*fitness* function, *loss* function) in continuous domain

$$f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}, \qquad \underline{x} \mapsto f(\underline{x})$$

• Black Box scenario (direct search scenario)

- gradients are not available or not useful
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- Search costs: number of function evaluations

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
Probler	n Statem	≏nt			

Continuous Domain Search/Optimization

- Goal
 - solution <u>x</u> with small function value with least search cost

there are two conflicting objectives

fast convergence to the global optimum

 \ldots or to a robust solution \underline{x}

- Typical Examples
 - shape optimization (e.g. using CFD)
 - model calibration
 - parameter calibration

curve fitting, airfoils biological, physical controller, plants, images

Approach: stochastic search, Evolutionary Algorithms

.. metaphores

Introduction	
00000	

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Metaphors

Evolutionary Computation		Optimization
genome	\longleftrightarrow	decision variables
		design variables
		object variables
individual, offspring, parent	\longleftrightarrow	candidate solution
population	\longleftrightarrow	set of candidate solutions
fitness function	\longleftrightarrow	objective function
		loss function
		cost function
generation	\longleftrightarrow	iteration

... properties

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Objective Function Properties

We assume $f : \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ to be *non-linear*, *non-separable* and to have at least moderate dimensionality, say $n \ll 10$. Additionally, f can be

- non-convex
- non-smooth
- discontinuous
- ill-conditioned
- multimodal
- noisy
- ...

derivatives do not exist

there are eventually many local optima

Goal : cope with any of these function properties they are related to real-world problems

... Tripeds

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Comparison of CMA-ES, IDEA and Simplex-Downhill

CMA-ES: Covariance Matrix Adaptation Evolution Strategy IDEA: Iterated Density-Estimation Evolutionary Algorithm¹ Fminsearch: Nelder-Mead simplex downhill method²

see...

http://www.icos.ethz.ch/cse/research/highlights/Race.gif

... function properties

¹Bosman (2003) Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis.

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

What Makes a Function Difficult to Solve? Why stochastic search?

ruggedness

non-smooth, discontinuous, multimodal, and/or noisy function

non-separability

dependencies between the objective variables

dimensionality

(considerably) larger than three

ill-conditioning

cut from 5-D solvable example

gradient direction $-f'(\underline{x})^{\mathrm{T}}$ Newton direction $-\underline{\underline{H}}^{-1}f'(\underline{x})^{\mathrm{T}}$

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Separable Problems

Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

 \Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example: Additively decomposable functions

$$f(x_1, \dots, x_n) = \sum_{i=1}^n f_i(x_i)$$

Rastrigin function

3						
	0	0	0	0	0	0
2						
		O	0	0	OX	
1						
			\odot	\odot	0	
0			\times			
			\odot	\odot	0	
-1)) (C					
		0	0	0	0	0
-2						
			0	0	O	
-3	3 -2	-1	0	1	2	3

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Non-Separable Problems

Building a non-separable problem from a separable one

³Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

⁴Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

Nikolaus Hansen, INRIA Saclay Stochastic optimization and a variable metric approach

 Introduction
 The Challenges
 Stochastic Search
 The CMA Evolution Strategy
 Discussion
 Evaluation

 00000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000

Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the **rapid increase in volume** associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [-1, 1]. To get **similar coverage**, in terms of distance between adjacent points, of the 10-dimensional space $[-1, 1]^{10}$ would require $100^{10} = 10^{20}$ points. A 100 points appear now as isolated points in a vast empty space.

Consequently, a **search policy** (e.g. exhaustive search) that is valuable in small dimensions **might be useless** in moderate or large dimensional search spaces.

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

III-Conditioned Problems Curvature of level sets

Consider the convex-quadratic function $f(\underline{x}) = \frac{1}{2}(\underline{x} - \underline{x}^*)^T \underline{H}(\underline{x} - \underline{x}^*)$

gradient direction $-f'(\underline{x})^{\mathrm{T}}$ Newton direction $-\underline{\underline{H}}^{-1}f'(\underline{x})^{\mathrm{T}}$

Condition number equals nine here. Condition numbers between 100 and even 10^{10} can often be observed in real world problems.

If $\underline{\underline{H}} \approx \underline{\underline{I}}$ (small condition number of $\underline{\underline{H}}$) first order information (e.g. the gradient) is sufficient. Otherwise **second order information** (estimation of $\underline{\underline{H}}^{-1}$) **is required**.

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

What Makes a Function Difficult to Solve?

... and what can be done

Challenge	Approach in Evolutionary Computation
Ruggedness	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
	stochastic, non-elitistic, population-based method recombination operator serves as repair mechanism
Dimensionality, Non-Separability	exploiting the problem structure locality, neighborhood, encoding
III-conditioning	second order approach changes the neighborhood metric

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	00000	000000000000000000000000000000000000000	0000000	00000000

3

2 The Challenge

Stochastic Search

- The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Covariance Matrix Adaptation
 - Cumulation—the Evolution Path
 - Step-Size Control

5 Discussion

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	00000	000000000000000000	0000000	00000000
<u> </u>					

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$ Initialize distribution parameters $\underline{\theta}$, set population size $\lambda \in \mathbb{N}$

While not terminate

- **1** Sample distribution $P(\underline{x}|\underline{\theta}) \rightarrow \underline{x}_1, \dots, \underline{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate $\underline{x}_1, \ldots, \underline{x}_{\lambda}$ on f
- **3** Update parameters $\underline{\theta} \leftarrow F_{\theta}(\underline{\theta}, \underline{x}_1, \dots, \underline{x}_{\lambda}, f(\underline{x}_1), \dots, f(\underline{x}_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

In Evolutionary Algorithms the distribution *P* is often implicitly defined via **operators on a population**, in particular, selection, recombination and mutation Natural template for *Estimation of Distribution Algorithms*

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
<u></u>					

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$ Initialize distribution parameters $\underline{\theta}$, set population size $\lambda \in \mathbb{N}$

While not terminate

- **1** Sample distribution $P(\underline{x}|\underline{\theta}) \rightarrow \underline{x}_1, \dots, \underline{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate $\underline{x}_1, \ldots, \underline{x}_{\lambda}$ on f
- **3** Update parameters $\underline{\theta} \leftarrow F_{\theta}(\underline{\theta}, \underline{x}_1, \dots, \underline{x}_{\lambda}, f(\underline{x}_1), \dots, f(\underline{x}_{\lambda}))$

In the following

• *P* is a **multi-variate normal** distribution $\mathcal{N}(\underline{m}, \sigma^2 \underline{\underline{C}}) \sim \underline{m} + \sigma \mathcal{N}(\underline{0}, \underline{\underline{C}})$ $\underline{\theta} = \{\underline{m}, \underline{\underline{C}}, \sigma\} \in \mathbb{R}^n \times \mathbb{R}^{n \times n} \times \mathbb{R}_+$

• $F_{\theta} = F_{\theta}(\underline{\theta}, \underline{x}_{1:\lambda}, \dots, \underline{x}_{\mu:\lambda})$, where $\mu \leq \lambda$ and $\underline{x}_{i:\lambda}$ is the *i*-th best of the λ points

Nikolaus Hansen, INRIA Saclay

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Normal Distribution

probability density of 1-D standard normal distribution

probability density of 2-D normal distribution

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(\underline{m},\underline{C})$ is uniquely determined by its mean value $\underline{m} \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \underline{C} .

The **mean** value \underline{m}

- determines the displacement (translation)
- is the value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

The covariance matrix \underline{C}

- determines the shape
- has a valuable geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid {<u>x</u> ∈ ℝⁿ | <u>x</u>^T <u>C</u>⁻¹ <u>x</u> = 1}

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	• 000 0000000000000000	0000000	00000000

Stochastic Search

4

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- Covariance Matrix Adaptation
- Cumulation—the Evolution Path
- Step-Size Control

Discussion

Evaluation

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters $\underline{\theta},$ set population size $\lambda \in \mathbb{N}$

While not terminate

- **1** Sample distribution $P(\underline{x}|\underline{\theta}) \rightarrow \underline{x}_1, \dots, \underline{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate $\underline{x}_1, \ldots, \underline{x}_{\lambda}$ on f
- **3** Update parameters $\underline{\theta} \leftarrow F_{\theta}(\underline{\theta}, \underline{x}_1, \dots, \underline{x}_{\lambda}, f(\underline{x}_1), \dots, f(\underline{x}_{\lambda}))$

 $\begin{array}{l} P \text{ is a multi-variate normal distribution} \\ \mathcal{N}\left(\underline{m}, \sigma^2 \underline{\underline{C}}\right) \sim \underline{m} + \sigma \, \mathcal{N}\left(\underline{0}, \underline{\underline{C}}\right) \end{array}$

... sampling

 Introduction
 The Challenges
 Stochastic Search
 The CMA Evolution Strategy
 Discussion
 Evaluation

 Sampling New Search Points
 The Mutation Operator
 Stochastic Search
 Stochastic Searc

New search points are sampled normally distributed

$$\underline{x}_i \sim \underline{m} + \sigma \, \mathcal{N}_i \left(\underline{0}, \underline{\underline{C}} \right) \qquad \text{for } i = 1, \dots, \lambda$$

as perturbations of m

```
where \underline{x}_i, \underline{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, and \underline{C} \in \mathbb{R}^{n \times n}
```

where

- the mean vector $\underline{m} \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\underline{C} \in \mathbb{R}^{n \times n}$ determines the **shape** of the distribution ellipsoid

The question remains how to update \underline{m} , \underline{C} , and σ .

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Update of the Distribution Mean <u>m</u> Selection and Recombination

Given the *i*-th solution point
$$\underline{x}_i = \underline{m} + \sigma \underbrace{\mathcal{N}_i(\underline{0},\underline{\underline{C}})}_{=:\underline{y}_i} = \underline{m} + \sigma \underline{y}_i$$

Let $\underline{x}_{i:\lambda}$ the *i*-th ranked solution point, such that $f(\underline{x}_{1:\lambda}) \leq \cdots \leq f(\underline{x}_{\lambda:\lambda})$. The new mean reads

$$\underline{\underline{m}} \leftarrow \sum_{i=1}^{\mu} w_i \underline{x}_{i:\lambda} = \underline{\underline{m}} + \sigma \underbrace{\sum_{i=1}^{\mu} w_i \underline{y}_{i:\lambda}}_{=: y_w}$$

where

$$w_1 \geq \cdots \geq w_\mu > 0, \quad \sum_{i=1}^\mu w_i = 1$$

The best μ points are selected from the sampled solutions (non-elitistic) and a weighted mean is taken.

Nikolaus Hansen, INRIA Saclay

Stochastic optimization and a variable metric approach

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Covariance Matrix Adaptation Rank-One Update

new distribution,

 $\underline{\underline{C}} \leftarrow 0.8 \times \underline{\underline{C}} + 0.2 \times \underline{\underline{y}}_w \underline{\underline{y}}_w^{\mathrm{T}}$ the ruling principle: the adaptation **increases the likelyhood of successful steps**, $\underline{\underline{y}}_w$, to appear again

... equations

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Preliminary Set of Equations Covariance Matrix Adaptation with Rank-One Update

Initialize $\underline{m} \in \mathbb{R}^n$, and $\underline{\underline{C}} = \underline{\underline{I}}$, set $\sigma = 1$, learning rate $c_{cov} \approx 2/n^2$ While not terminate

$$\begin{split} \underline{x}_{i} &= \underline{m} + \sigma \underline{y}_{i}, \qquad \underline{y}_{i} \sim \mathcal{N}_{i} \left(\underline{0}, \underline{\underline{C}} \right), \qquad i = 1, \dots, \lambda \\ \underline{m} \leftarrow \underline{m} + \sigma \underline{y}_{w} \qquad \text{where } \underline{y}_{w} = \sum_{i=1}^{\mu} w_{i} \underline{y}_{i:\lambda} \\ \underline{\underline{C}} \leftarrow (1 - c_{\text{cov}}) \underline{\underline{C}} + c_{\text{cov}} \mu_{w} \underbrace{\underline{y}_{w} \underline{y}_{w}^{T}}_{\text{rank-one}} \qquad \text{where } \mu_{w} = \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \geq 1 \end{split}$$

λ can be small

Evaluation

 $\underline{\underline{C}} \leftarrow (1 - c_{\text{cov}})\underline{\underline{C}} + c_{\text{cov}}\mu_{w}\underline{\underline{y}}_{w}\underline{\underline{y}}_{w}^{\text{T}}$

The covariance matrix adaptation

- learns all pairwise dependencies between variables off-diagonal entries in the covariance matrix reflect the dependencies
- conducts a principle component analysis (PCA) of steps y, sequentially in time and space eigenvectors of the covariance matrix ⊆ are the principle components / the principle axes of the mutation ellipsoid
- approximates the inverse Hessian on convex-quadratic functions overwhelming empirical evidence, proof is in progress
 - learns a new, rotated problem representation and a new variable metric (Mahalanobis)

components are independent (only) in the new representation rotational invariant

equivalent with an adaptive (general) linear encoding^a

... cumulation, step-size control

^aHansen 2000, Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies, PPSN VI

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	000000000000000000	0000000	00000000

Stochastic Search

4

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- Covariance Matrix Adaptation
- Cumulation—the Evolution Path
- Step-Size Control

Discussion

Evaluation

Intro	duc	tic	n
000	00		

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Cumulation The Evolution Path

Evolution Path

Conceptually, the evolution path is the path the strategy mean \underline{m} takes over a number of generation steps.

An exponentially weighted sum of steps \underline{y}_{w} is used

$$\underline{p}_{c} \propto \sum_{i=0}^{g} (1-c_{c})^{g-i} \underline{y}_{w}^{(i)}$$

exponentially fading weights

The recursive construction of the evolution path (cumulation):

$$\underline{\underline{p}}_{c} \leftarrow \underbrace{(1-c_{c})}_{\text{decay factor}} \underline{\underline{p}}_{c} + \underbrace{\sqrt{1-(1-c_{c})^{2}}\sqrt{\mu_{w}}}_{\text{normalization factor}} \underbrace{\underline{y}}_{\text{input, }} \underbrace{\underline{w}}_{\underline{w}}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_c \ll 1$. History information is accumulated in the evolution path.

Nikolaus Hansen, INRIA Saclay

Stochastic optimization and a variable metric approach

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	00000000000000000	0000000	00000000

"Cumulation" is a widely used technique and also know as

- exponential smoothing in time series, forecasting
- exponentially weighted mooving average
- *iterate averaging* in stochastic approximation
- momentum in the back-propagation algorithm for ANNs

• ...

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
Cumula Utilizing the	ation Evolution Path	ı			

We used $\underline{y}_{w}\underline{y}_{w}^{T}$ for updating $\underline{\underline{C}}$. Because $\underline{y}_{w}\underline{y}_{w}^{T} = -\underline{y}_{w}(-\underline{y}_{w})^{T}$ the sign of \underline{y}_{w} is neglected. The sign information is (re-)introduced by using the *evolution path*.

$$\underline{\underline{p}}_{c} \leftarrow \underbrace{(1-c_{c})}_{\text{decay factor}} \underline{\underline{p}}_{c} + \underbrace{\sqrt{1-(1-c_{c})^{2}}\sqrt{\mu_{w}}}_{\text{normalization factor}} \underline{\underline{y}}_{w}$$

where $\mu_w = \frac{1}{\sum w_i^2}$, $c_c \ll 1$.

...equations

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Preliminary Set of Equations (2) Covariance Matrix Adaptation, Rank-One Update with Cumulation

Initialize $\underline{m} \in \mathbb{R}^n$, $\underline{\underline{C}} = \underline{\underline{I}}$, and $\underline{\underline{p}}_c = \underline{0} \in \mathbb{R}^n$, set $\sigma = 1$, $c_c \approx 4/n$, $c_{cov} \approx 2/n^2$ While not terminate

$$\underline{x}_{i} = \underline{m} + \sigma \underline{y}_{i}, \quad \underline{y}_{i} \sim \mathcal{N}_{i}(\underline{0}, \underline{\underline{C}}), \qquad i = 1, \dots, \lambda$$

$$\underline{m} \leftarrow \underline{m} + \sigma \underline{y}_{w} \quad \text{where } \underline{y}_{w} = \sum_{i=1}^{\mu} w_{i} \underline{y}_{i:\lambda}$$

$$\underline{p}_{c} \leftarrow (1 - c_{c}) \underline{p}_{c} + \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \underline{y}_{w}$$

$$\underline{\underline{C}} \leftarrow (1 - c_{cov}) \underline{\underline{C}} + c_{cov} \underbrace{\underline{p}_{c} \underline{p}_{c}^{T}}_{rank-one}$$

 $\ldots \mathcal{O}(n^2)$ to $\mathcal{O}(n)$

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	00000000000000000	0000000	00000000

Using an **evolution path** for the **rank-one update** of the covariance matrix reduces the number of function evaluations to adapt to a straight ridge **from** $O(n^2)$ **to** O(n).^{*a*}

The overall model complexity is n^2 but important parts of the model can be learned in time of order n

... step-size

^aHansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evolutionary Computation*, *11*(*1*), pp. 1-18

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	000000000000000000000000000000000000000	0000000	00000000

2 The Challenges

Stochastic Search

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- Covariance Matrix Adaptation
- Cumulation—the Evolution Path
- Step-Size Control

Discussion

Evaluation

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Path Length Control The Concept

loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Summary

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

 Multivariate normal distribution to generate new search points

follows the maximum entropy principle

Selection only based on the ranking of the *f*-values

preserves invariance

Covariance matrix adaptation (CMA) increases the likelyhood of previously successful steps

learning all pairwise dependencies ⇒ adapts a variable metric ⇒ new (rotated) problem representation

- An evolution path (a non-local trajectory)
 - enhances the covariance matrix (rank-one) adaptation

yields sometimes linear time complexity

controls the step-size (step length)

aims at conjugate perpendicularity

The Challenges

Stochastic Search

The CMA Evolution Strategy 0000000000000000000000

Discussion

Evaluation

Summary of Equations The Covariance Matrix Adaptation Evolution Strategy

Initialize $\underline{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\underline{C} = \underline{I}$, and $\underline{p}_{\alpha} = \underline{0}$, $\underline{p}_{\sigma} = \underline{0}$, set $c_c \approx 4/n$, $c_\sigma \approx 4/n$, $c_1 \approx 2/n^2$, $c_\mu \approx \mu_w/n^2$, $c_1 + c_\mu \leq 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{\mu_w}},$ set λ and $w_i, i = 1, \dots, \mu$ such that $\mu_w \approx 0.3 \lambda$ While not terminate

 $\underline{x}_i = \underline{m} + \sigma \underline{y}_i, \quad \underline{y}_i \sim \mathcal{N}_i(\underline{0}, \underline{\underline{C}}),$ sampling

$$\underline{\underline{m}} \leftarrow \underline{\underline{m}} + \sigma \underline{\underline{y}}_{w} \quad \text{where } \underline{\underline{y}}_{w} = \sum_{i=1}^{\mu} w_{i} \underline{\underline{y}}_{i:\lambda} \qquad \text{update n}$$

$$\underline{\underline{p}}_{c} \leftarrow (1 - c_{c}) \underline{\underline{p}}_{c} + \mathbf{1}_{\{||\underline{\underline{p}}_{\sigma}|| < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \underline{\underline{y}}_{w} \quad \text{cumulation for }$$

$$\underline{\underline{p}}_{\sigma} \leftarrow (1 - c_{\sigma}) \underline{\underline{p}}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \underline{\underline{C}}^{-\frac{1}{2}} \underline{\underline{y}}_{w} \quad \text{cumulation for }$$

$$\begin{array}{lcl} \underline{\underline{C}} & \leftarrow & (1 - c_1 - c_\mu) \, \underline{\underline{C}} + c_1 \, \underline{\underline{p}}_{c} \underline{\underline{p}}_{c}^{\mathrm{T}} + c_\mu \sum_{i=1}^{\mu} w_i \, \underline{\underline{y}}_{i:\lambda} \underline{\underline{y}}_{i:\lambda}^{\mathrm{T}} \\ \sigma & \leftarrow & \sigma \times \exp\left(\frac{c_\sigma}{d_\sigma} \left(\frac{\|\underline{p}_{\sigma}\|}{\mathsf{E}\|\mathcal{N}(\underline{0},\underline{I})\|} - 1\right)\right) \end{array}$$

nean

for C

for σ

update C

update of σ

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	00000000000000000	●000000	00000000

- 2 The Challenges
- Stochastic Search

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

5 Discussion

Evaluation

 Introduction
 The Challenges
 Stochastic Search
 The CMA Evolution Strategy
 Discussion
 Evaluation

 Concord
 Stochastic Search
 The CMA Evolution Strategy
 Discussion
 Evaluation

 Experimentum Crucis
 Stochastic Search
 Stochastic Search
 Stochastic Search
 Stochastic Search
 Stochastic Search

• reduce any convex-quadratic function

$$f(\underline{x}) = \underline{x}^{\mathrm{T}} \underline{\underline{H}} \underline{x}$$

e.g.
$$f(\underline{x}) = \sum_{i=1}^{n} 10^{6\frac{i-1}{n-1}} x_i^2$$

to the sphere model

What did we want to achieve?

$$f(\underline{x}) = \underline{x}^{\mathrm{T}}\underline{x}$$

without use of derivatives

lines of equal density align with lines of equal fitness

$$\underline{\underline{C}} \propto \underline{\underline{H}}^{-1}$$

in a stochastic sense

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Experimentum Crucis (1) f convex-quadratic, separable

... crucis rotated

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Experimentum Crucis (2)

f convex-quadratic, as before but non-separable (rotated)

... on convergence

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion ○○○○●○○	Evaluation
On Glo	bal Conv	ergence			

 convergence on a very broad class of functions, e.g. for Monte Carlo pure random search

very slow

• convergence with practically feasible convergence rates on, e.g., $||\underline{x}||^{\alpha}$

Markov Chain analysis

Stability/Stationarity/Ergodicity of a markov chain

- the markov chain always returns to "the center" of the state space (recurrence)
- the chain exhibits an *invariant measure*, a limit probability distribution

implies convergence/divergence

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

The Convergence Rate Optimal convergence rate can be achieved

The converence rate for evolution strategies on $f(\underline{x}) = g(||\underline{x} - \underline{x}^*||)$ in iteration *t* reads⁵

$$\lim_{t \to \infty} \frac{1}{t} \sum_{k=1}^{t} \log \frac{\|\underline{m}_k - \underline{x}^*\|}{\|\underline{m}_{k-1} - \underline{x}^*\|} \propto -\frac{1}{n}$$

loosely

$$\|\underline{m}_{t} - \underline{x}^{*}\| \propto \exp\left(-\frac{t}{n}\right) = \left(\frac{1}{e^{t}}\right)^{1/n}$$

random search exhibits $\|\underline{m}_{t} - \underline{x}^{*}\| \propto \left(\frac{1}{t}\right)^{1/n}$

which is the **lower bound** for randomized direct search with isotropic sampling.⁶

⁵Auger 2005 ⁶Jägersküpper 2008

Nikolaus Hansen, INRIA Saclay

Stochastic optimization and a variable metric approach

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Convergence of the Covariance Matrix Yet to be proven

Theorem (convergence of covariance matrix C)

Given the function

$$f(\underline{x}) = g(\underline{x}^{\mathrm{T}}\underline{\underline{H}}\underline{x})$$

where $\underline{\underline{H}}$ is positive and g is monotonic, we have

$$E(\underline{\underline{C}}) \propto \underline{\underline{H}}^{-1}$$

where the expectation is taken with respect to the invariant measure

without use of derivatives

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	000000000000000000	0000000	0000000

- 2 The Challenges
- 3 Stochastic Search
- 4 The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Discussion

The Challenges

Stochastic Search

The CMA Evolution Strategy

Discussion

Evaluation

Evaluation/Selection of Search Algorithms

Evaluation (of the performance) of a search algorithm needs

- meaningful quantitative measure on benchmark functions or real world problems
- account for meta-parameter tuning

can be quite expensive

- account for invariance properties (symmetries) prediction of performance is based on "similarity", ideally equivalence classes of functions
- account for algorithm internal cost often negligible, depending on the objective function cost

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

 $f(\underline{x}) = g(\underline{x}^{T} \underline{Hx})$ with g identity (BFGS, NEWUOA) or g order-preserving (strictly increasing, all other)

SP1 = average number of objective function evaluations to reach the target function value of 10^{-9}

... population size, invariance

IntroductionThe ChallengesStochastic SearchThe CMA Evolution StrategyDiscussionEvaluationComparison to BFGS, NEWUOA, PSO and DE (2)

f convex-quadratic, non-separable (rotated) with varying α

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

 $f(\underline{x}) = g(\underline{x}^{T} \underline{H}\underline{x})$ with g identity (BFGS, NEWUOA) or g order-preserving (strictly increasing, all other)

SP1 = average number of objective function evaluations to reach the target function value of 10^{-9}

... population size, invariance

Introduction The Challenges Stochastic Search The CMA Evolution Strategy Discussion Evaluation Strategy Discussion Comparison to BFGS, NEWUOA, PSO and DE (3) f non-convex, non-separable (rotated) with varying α

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

 $f(\underline{x}) = g(\underline{x}^{T}\underline{Hx})$ with $g(.) = (.)^{1/4}$ (BFGS, NEWUOA) or

g any order-preserving (strictly increasing, all other)

SP1 = average number of objective function evaluations to reach the target function value of 10^{-9}

... population size, invariance

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
Invariar The short ve	ICE ersion				

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms. — Albert Einstein

all three functions are equivalent for rank-based search methods

large equivalence class

• invariance allows a save **generalization** of empirical results here on $f(x) = x^2$ (left) to any $f(x) = g(x^2)$, where g is monotonous

 Introduction
 The Challenges
 Stochastic Search
 The CMA Evolution Strategy
 Discussion
 Evaluation

 Comprehensive
 Comparison of 11 Algorithms
 Algorithms
 Comparison
 Comparison

Empirical Distribution of Normalized Success Performance

Shown: **empirical distribution function** of the Success Performance FEs divided by FEs of the best algorithm on the respective function.

Results of all functions are used where at least one algorithm was successful at least once, i.e. where the target function value was reached in at least one experiment (out of 11×25 experiments). Small values for FEs and therefore large (cumulative frequency) values in the graphs are preferable.

Nikolaus Hansen, INRIA Saclay

Stochastic optimization and a variable metric approach

Introduction	The Challenges	Stochastic Search	The CMA Evolution Strategy	Discussion	Evaluation
00000	000000	000000	000000000000000000	0000000	0000000

Merci !