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Einstein once spoke of the
“unreasonable effectiveness of
mathematics” in describing how the
natural world works. Whether one is
talking about basic physics, about the
increasingly important environmental
sciences, or the transmission of
disease, mathematics is never any
more, or any less, than a way of
thinking clearly. As such, it always has
been and always will be a valuable
tool, but only valuable when it is part
of a larger arsenal embracing analytic
experiments and, above all,
wide-ranging imagination.

Lord Kay
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The Problem

Problem Statement
Continuous Domain Search/Optimization

Task: minimize an objective function (fitness function, loss
function, cost function) in continuous domain

f : X ⊆ Rn → R, x 7→ f (x)

Black Box scenario (direct search scenario)

f(x)x

I gradients are not available or not useful
I problem domain specific knowledge is used only within the black

box, e.g. within an appropriate encoding

Search costs: number of function evaluations
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The Problem

Problem Statement
Continuous Domain Search/Optimization

Goal
I solution x with small function value with least search cost

there are two conflicting objectives
I fast convergence to the global optimum

. . . or to a robust solution x

Typical Examples

I shape optimization (e.g. using CFD) curve fitting, airfoils
I model calibration biological, physical
I parameter calibration algorithms, controllers,

plants, images

Approach: stochastic search, Evolutionary Algorithms

. . . tripeds
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The Problem

Comparison of CMA-ES, IDEA and Simplex-Downhill

CMA-ES: Covariance Matrix Adaptation Evolution Strategy
IDEA: Iterated Density-Estimation Evolutionary Algorithm1

Fminsearch: Nelder-Mead simplex downhill method2

P. Dürr and A. Pfister (2004), Optimization of Walking Gaits for a Three Legged Robot, term paper.

see. . .http://www.icos.ethz.ch/cse/research/highlights/research highlights august 2004

1
Bosman (2003) Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis.

2
Nelder and Mead (1965). A simplex method for function minimization. Computer Journal.
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The Difficulties

What Makes a Function Difficult to Solve?
Why stochastic search?

non-linear, non-quadratic, non-convex
on linear/quadratic functions better search policies

are available
dimensionality

(considerably) larger than three

non-separability
dependencies between the objective variables

ill-conditioning
widely varying sensitivity

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function
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The Difficulties

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding
dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [0, 1].
To get similar coverage, in terms of distance between adjacent
points, of the 10-dimensional space [0, 1]10 would require 10010 = 1020

points. A 100 points have minimal distance of ≈ 0.65 (on average) and
appear now as isolated points in a vast empty space.

Implication: A search policy (e.g. exhaustive search) that is efficient
in small dimensions might be useless in moderate or large
dimensional search spaces.
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The Difficulties

Separable Problems
Definition (Separable Problem)
A function f is separable if

arg min
(x1,...,xn)

f (x1, . . . , xn) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xn

f (. . . , xn)
)

⇒ it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively
decomposable functions

f (x1, . . . , xn) =
n∑

i=1

fi(xi)

Rastrigin function
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The Difficulties

Non-Separable Problems
Building a non-separable problem from a separable one

Rotating the coordinate system
f : x 7→ f (x) separable
f : x 7→ f (Rx) non-separable

R rotation matrix

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

R
−→

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

34

3
Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:

The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann
4

Salomon (1996). ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

Nikolaus Hansen (INRIA – Saclay) The difficulties of black-box optimization. . . November 9, 2009 11 / 58



The Difficulties

What Makes a Function Difficult to Solve?
Why stochastic search?

non-linear, non-quadratic, non-convex
on linear/quadratic functions better search policies

are available
dimensionality

(considerably) larger than three

non-separability
dependencies between the objective variables

ill-conditioning
widely varying sensitivity

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

gradient direction Newton direction

Nikolaus Hansen (INRIA – Saclay) The difficulties of black-box optimization. . . November 9, 2009 12 / 58



The Difficulties

Ill-Conditioned Problems
Curvature of level sets

Consider the convex-quadratic function f (x) = 1
2(x− x∗)TH(x− x∗)

gradient direction −f ′(x)T

Newton direction −H−1f ′(x)T

Condition number equals nine here. Condition numbers between 100
and even 1010 can often be observed in real world problems.

If H ≈ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information
(estimation of H−1) is required.
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The Difficulties

Ruggedness
non-smooth, discontinuous, multimodal, and/or noisy

cut from an (easily) solvable example in 5-D
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The Difficulties

What Makes a Function Difficult to Solve?
. . . and what can be done

Challenge Approach in Evolutionary Computation

Dimensionality,
Non-Separability

exploiting the problem structure
locality, neighborhood, encoding

Ill-conditioning second order approach
changes the neighborhood metric

Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

stochastic, non-elitistic, population-based method
recombination operator

serves as repair mechanism
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Stochastic Search

Metaphors

(Biological) Evolution(ary Computation) Optimization

genome ←→ decision variables
design variables
object variables

individual, offspring, parent ←→ candidate solution
population ←→ set of candidate solutions

fitness function ←→ objective function
loss function
cost function

generation ←→ iteration
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Stochastic Search

Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

Everything depends on the definition of P and Fθ
deterministic algorithms are covered as well

In Evolutionary Algorithms the distribution P is often implicitly defined
via operators on a population, in particular, selection, recombination
and mutation
Natural template for Estimation of Distribution Algorithms
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Stochastic Search

Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

In the following

P is a multi-variate normal distribution
N
(

m, σ2C
)
∼ m + σN

(
0,C

)
θ = {m,C, σ} ∈ Rn × Rn×n × R+

Fθ = Fθ(θ, x1:λ, . . . , xµ:λ), where µ ≤ λ and xi:λ is the i-th best of
the λ points . . . normal distribution
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Stochastic Search

Normal Distribution
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Stochastic Search

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N
“

m,C
”

is uniquely determined by its mean
value m ∈ Rn and its symmetric positive definite n× n covariance matrix C.

The mean value m

determines the displacement (translation)

value with the largest density (modal value)

the distribution is symmetric about the distribution
mean
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The covariance matrix C

determines the shape

geometrical interpretation: any covariance matrix can be uniquely identified
with the iso-density ellipsoid {x ∈ Rn | xTC−1x = 1}
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Stochastic Search

. . . any covariance matrix can be uniquely identified with the iso-density ellipsoid
{x ∈ Rn | xTC−1x = 1}

Lines of Equal Density

N
“

m, σ2I
”
∼ m + σN

“
0, I
”

one degree of freedom σ
components are
independent standard
normally distributed

N
“

m,D2
”
∼ m + DN

“
0, I
”

n degrees of freedom
components are
independent, scaled

N
“

m,C
”
∼ m + C

1
2N
“

0, I
”

(n2 + n)/2 degrees of freedom
components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable

for separable problems) and A×N
“

0, I
”
∼ N

“
0,AAT

”
holds for all A.

. . . CMA
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The CMA Evolution Strategy Sampling

Rank-Based Stochastic Search

Rank-based black box search to minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
and let f (xi:λ) ≤ f (xj:λ)⇔ i ≤ j

3 Update parameters θ ← Fθ(θ, x1:λ, . . . , xµ:λ)

P is a multi-variate normal distribution N
(

m, σ2C
)
∼ m + σN

(
0,C

)

. . . sampling
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The CMA Evolution Strategy Sampling

Sampling New Search Points
The Mutation Operator

New search points are normally distributed

xi ∼ m + σNi

(
0,C

)
for i = 1, . . . , λ

perturbations of m

where

the mean vector m ∈ Rn represents the current favorite
solution
the so-called step-size σ ∈ R+ controls the step length
the covariance matrix C ∈ Rn×n determines the shape of
the distribution ellipsoid

The question remains how to update m, σ, and C.
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The CMA Evolution Strategy Sampling

Update of the Distribution Mean m
Selection and Recombination
The best µ points are selected from the sampled solutions
(non-elitistic) and a weighted mean is taken:
Given the i-th solution point xi = m + σ Ni

(
0,C

)
︸ ︷︷ ︸

=: y
i

= m + σ y
i

Let xi:λ the i-th ranked solution point, such that f (x1:λ) ≤ · · · ≤ f (xλ:λ).
The new mean reads

m←
µ∑

i=1

wi xi:λ = m + σ

µ∑
i=1

wi y
i:λ︸ ︷︷ ︸

=: y
w

where
w1 ≥ · · · ≥ wµ > 0,

∑µ
i=1 wi = 1
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The CMA Evolution Strategy Step-Size Control

Path Length Control
The Concept

xi = m + σ y
i

m ← m + σy
w

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

⇓
decrease σ

⇓
increase σ

loosely speaking steps are

perpendicular under random selection (in expectation)

perpendicular in the desired situation (to be most efficient)
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The CMA Evolution Strategy Step-Size Control

Path Length Control: Equations
AKA Cumulative Step-Size Adaptation (CSA)

Initialize m ∈ Rn, σ ∈ R+, C = I, and p
σ

= 0
set cσ ≈ 4/n, dσ ≈ 1 +

√
µw
n ,

set λ and wi=1,...,λ such that µw = 1Pµ
i=1 wi

2 ≈ 0.3λ

While not terminate

xi = m + σ y
i
, where y

i
∼ Ni

(
0,C

)
for i = 1, . . . , λ sampling

m ← m + σy
w

where y
w

=
∑µ

i=1 wi y
i:λ

update mean

p
σ
← (1− cσ) p

σ
+
√

1− (1− cσ)2√µw C−
1
2 y

w
cumulation for σ

σ ← σ × exp
(

cσ

dσ

(
‖p

σ
‖

E‖N(0,I)‖ − 1
))

update of σ
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The CMA Evolution Strategy Covariance Matrix Adaptation
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The CMA Evolution Strategy Covariance Matrix Adaptation

Covariance Matrix Adaptation
Rank-One Update

m ← m + σy
w
, y

w
=
∑µ

i=1 wi y
i:λ
, y

i
∼ Ni

(
0,C

)

new distribution,
C← 0.8× C + 0.2× y

w
yT

w
the ruling principle: the adaptation increases the likelyhood of suc-
cessful steps, y

w
, to appear again

. . . equations
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The CMA Evolution Strategy Covariance Matrix Adaptation

Preliminary Set of Equations
Covariance Matrix Adaptation with Rank-One Update

Initialize m ∈ Rn, and C = I, set σ = 1, learning rate ccov ≈ 2/n2

While not terminate

xi = m + σ y
i
, y

i
∼ Ni

(
0,C

)
, i = 1, . . . , λ

m ← m + σy
w

where y
w

=
µ∑

i=1

wi y
i:λ

C ← (1− ccov)C + ccovµw y
w

yT
w︸︷︷︸

rank-one

where µw =
1∑µ

i=1 wi
2 ≥ 1

λ can be small
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The CMA Evolution Strategy Covariance Matrix Adaptation

C← (1− ccov)C + ccovµwy
w

yT
w

The covariance matrix adaptation

learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies

conducts a principle component analysis (PCA) of steps y
w
, sequentially in

time and space
eigenvectors of the covariance matrix C are the principle components / the

principle axes of the mutation ellipsoid

learns a new, rotated problem representation and
a new variable metric (Mahalanobis)

components are independent (only) in the new representation
rotational invariant

equivalent with an adaptive (general) linear encoding

approximates the inverse Hessian on convex-quadratic functions
overwhelming empirical evidence, proof is in progress

. . . contents
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The CMA Evolution Strategy Cumulation—the Evolution Path
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The CMA Evolution Strategy Cumulation—the Evolution Path

Cumulation
Utilizing the Evolution Path
We used y

w
yT

w
for updating C. Because y

w
yT

w
= −y

w
(−y

w
)T the sign of y

w
is

neglected.The sign information is (re-)introduced by using the evolution path.

p
c
← (1− cc)| {z }

decay factor

p
c

+
p

1− (1− cc)2√µw| {z }
normalization factor

y
w

C ← (1− ccov)C + ccov p
c
p

c
T| {z }

rank-one

where µw = 1P
wi2 , cc � 1.

. . .O(n2) toO(n)
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The CMA Evolution Strategy Cumulation—the Evolution Path

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from O(n2) to O(n).a

a
Hansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18

The overall model complexity is n2 but important parts of the model
can be learned in time of order n

. . . rank-µ
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

Rank-µ Update

xi = m + σ y
i
, y

i
∼ Ni

“
0,C
”
,

m ← m + σy
w

y
w

=
Pµ

i=1 wi y
i:λ

The rank-µ update extends the update rule for large population sizes
λ using µ > 1 vectors to update C at each generation step.

C← (1− ccov) C + ccov

µ∑
i=1

wi y
i:λ

yT
i:λ

where ccov ≈ µw/n2 and ccov ≤ 1.
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

xi = m + σ y
i
, y

i
∼ N

“
0, C
”

sampling of λ = 150
solutions where
C = I and σ = 1

C
µ

= 1
µ

P
y

i:λ
yT

i:λ
C ← (1− 1)× C + 1× C

µ

calculating C where
µ = 50,

w1 = · · · = wµ = 1
µ ,

and ccov = 1

mnew ← m + 1
µ

P
y

i:λ

new distribution
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

The rank-µ update

increases the possible learning rate in large populations
roughly from 2/n2 to µw/n2

can reduce the number of necessary generations roughly from
O(n2) to O(n)5

given µw ∝ λ ∝ n

Therefore the rank-µ update is the primary mechanism whenever a
large population size is used

say λ ≥ 3 n + 10

5
Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Input: m ∈ Rn, σ ∈ R+, λ
Initialize C = I, and p

c
= 0, p

σ
= 0,

set cc ≈ 4/n, cσ ≈ 4/n, c1 ≈ 2/n2, cµ ≈ µw/n2, c1 + cµ ≤ 1, dσ ≈ 1 +
√

µw
n , and

wi=1,...,λ such that µw = 1Pµ
i=1 wi

2 ≈ 0.3λ

While not terminate

xi = m + σ y
i
, y

i
∼ Ni

(
0,C

)
, for i = 1, . . . , λ sampling

m ← m + σy
w

where y
w

=
∑µ

i=1 wi y
i:λ

update mean

p
c
← (1− cc) p

c
+ 1I{‖p

σ
‖<1.5

√
n}
√

1− (1− cc)2√µw y
w

cumulation for C

p
σ
← (1− cσ) p

σ
+
√

1− (1− cσ)2√µw C−
1
2 y

w
cumulation for σ

C ← (1− c1 − cµ) C + c1 p
c
p

c
T + cµ

∑µ
i=1 wi y

i:λ
yT

i:λ
update C

σ ← σ × exp
(

cσ

dσ

(
‖p

σ
‖

E‖N(0,I)‖ − 1
))

update of σ
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Convergence

Experimentum Crucis
What did we want to achieve?

reduce any convex-quadratic function

f (x) = xTHx

e.g. f (x) =
Pn

i=1 106 i−1
n−1 x2

i

to the sphere model
f (x) = xTx

without use of derivatives

lines of equal density align with lines of equal fitness

C ∝ H−1

in a stochastic sense
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Convergence

Experimentum Crucis (1)
f convex-quadratic, separable
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function evaluations

f (x) =
∑n

i=1 10α
i−1
n−1 x2

i , α = 6

. . . crucis rotated
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Convergence

Experimentum Crucis (2)
f convex-quadratic, as before but non-separable (rotated)
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function evaluations

C ∝ H−1 for all g,H

f (x) = g
(
xTHx

)
, g : R→ R stricly monotonic

. . . on convergence
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Convergence

On Convergence

convergence on a very broad class of functions, e.g. for Monte
Carlo pure random search

very slow: ‖x− x∗‖ ∝ 1
t1/n =

1

exp
„

log t
n

«

convergence with practically feasible convergence rates on,
e.g., g

(1
2 xTHx

)
CMA-ES⇒ ‖x− x∗‖ ∝ 1

exp
„

t/4
n

«
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Performance Evaluation

Evaluation/Selection of Search Algorithms

Evaluation (of the performance) of a search algorithm needs

meaningful quantitative measure on benchmark functions or real
world problems

account for meta-parameter tuning
can be quite expensive

account for invariance properties (symmetries)
prediction of performance is based on “similarity”, ideally

equivalence classes of functions

account for algorithm internal cost
often negligible, depending on the objective function cost
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Performance Evaluation

Comparison to BFGS, NEWUOA, PSO and DE (1)
f convex-quadratic, separable with varying α
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Performance Evaluation

Comparison to BFGS, NEWUOA, PSO and DE (2)
f convex-quadratic, non-separable (rotated) with varying α
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Performance Evaluation

Comparison to BFGS, NEWUOA, PSO and DE (3)
f non-convex, non-separable (rotated) with varying α
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Performance Evaluation

Invariance
The short version

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.

— Albert Einstein
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all three functions are equivalent for rank-based search methods
large equivalence class

invariance allows a save generalization of empirical results
here on f (x) = x2 (left) to any f (x) = g(x2), where g is monotonous
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Performance Evaluation

Comprehensive Comparison of 28 Algorithms
Empirical Distribution of Expected Running Length
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Performance Evaluation

Comprehensive Comparison of 28 Algorithms
Empirical Distribution of Expected Running Length
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Performance Evaluation

Comprehensive Comparison of 19 Algorithms
Empirical Distribution of Expected Running Length
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Performance Evaluation

Summary
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values
preserves invariance

3 Covariance matrix adaptation (CMA) increases the likelyhood of
previously successful steps

learning all pairwise dependencies
=⇒ adapts a variable metric

=⇒ new (rotated) problem representation

4 An evolution path (a non-local trajectory)
I enhances the covariance matrix (rank-one) adaptation

yields sometimes linear time complexity
I controls the step-size (step length)

aims at conjugate perpendicularity
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Performance Evaluation

Merci !

http://www.lri.fr/˜hansen/cmaesintro.html
or google NIKOLAUS HANSEN
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