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Abstract Randomized direct search algorithms for continuous domains, such as evolution
strategies, are basic tools in machine learning. They are especially needed when the gradient
of an objective function (e.g., loss, energy, or reward function) cannot be computed or esti-
mated efficiently. Application areas include supervised and reinforcement learning as well
as model selection. These randomized search strategies often rely on normally distributed
additive variations of candidate solutions. In order to efficiently search in non-separable and
ill-conditioned landscapes the covariance matrix of the normal distribution must be adapted,
amounting to a variable metric method. Consequently, covariance matrix adaptation (CMA)
is considered state-of-the-art in evolution strategies. In order to sample the normal distrib-
ution, the adapted covariance matrix needs to be decomposed, requiring in general �(n3)

operations, where n is the search space dimension. We propose a new update mechanism
which can replace a rank-one covariance matrix update and the computationally expensive
decomposition of the covariance matrix. The newly developed update rule reduces the com-
putational complexity of the rank-one covariance matrix adaptation to �(n2) without resort-
ing to outdated distributions. We derive new versions of the elitist covariance matrix adap-
tation evolution strategy (CMA-ES) and the multi-objective CMA-ES. These algorithms
are equivalent to the original procedures except that the update step for the variable metric
distribution scales better in the problem dimension. We also introduce a simplified variant
of the non-elitist CMA-ES with the incremental covariance matrix update and investigate
its performance. Apart from the reduced time-complexity of the distribution update, the al-
gebraic computations involved in all new algorithms are simpler compared to the original
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versions. The new update rule improves the performance of the CMA-ES for large scale
machine learning problems in which the objective function can be evaluated fast.

Keywords Stochastic optimization · Variable metric algorithm · Multi-objective
optimization · Evolutionary algorithm · Evolution strategy · Covariance matrix adaptation ·
Reinforcement learning

1 Introduction

Evolution strategies (ESs, Rechenberg 1973; Schwefel 1995; Beyer and Schwefel 2002) are
randomized direct search algorithms. They are one of the major branches of evolutionary
algorithms, a class of algorithms which draws inspiration from principles of neo-Darwinian
evolution theory. Although ESs can be applied to various kinds of machine learning prob-
lems, the most elaborate variants are specialized for real-valued parameter spaces. Exem-
plary applications include supervised learning of feed-forward and recurrent neural net-
works, direct policy search in reinforcement learning, and model selection for kernel ma-
chines (e.g., Mandischer 2002; Igel et al. 2001; Schneider et al. 2004; Igel 2003; Friedrichs
and Igel 2005; Kassahun and Sommer 2005; Pellecchia et al. 2005; Mersch et al. 2007;
Siebel and Sommer 2007; Heidrich-Meisner and Igel 2008a, 2008b, 2008c; Glasmachers
and Igel 2008, see below).

Evolution strategies and many other evolutionary algorithms for real-valued optimiza-
tion, such as variants of evolutionary programming (Fogel 1995), rely on Gaussian ran-
dom mutations. Candidate solutions are altered by adding random vectors drawn according
to multi-variate zero-mean normal distributions. Adaptation of the covariance matrices of
these random variations during optimization means learning and employing an appropri-
ate metric for the search process. It is well-known that an appropriate adaptation of the
mutation strength (step size adaptation) is virtually indispensable and assists the approach
of an optimum with increasing precision (Schumer and Steiglitz 1968; Rechenberg 1973;
Schwefel 1995). Additionally, the adaptation of the shape of the mutation distribution is
appropriate. Adapting an arbitrary ellipsoidal shape (Schwefel 1995; Hansen et al. 1995;
Hansen and Ostermeier 2001) amounts to a variable-metric approach in which a Maha-
lanobis metric is learned. Adapting the distribution shape can improve the search perfor-
mance by orders of magnitude, especially for non-separable or badly scaled objective func-
tions (Hansen and Ostermeier 2001; Beyer and Schwefel 2002; Kern et al. 2004). The co-
variance matrix adaptation ES (CMA-ES) implements both, adaptation of mutation strength
and adaptation of distribution shape, explicitly, based on three major concepts: (a) the like-
lihood of successful steps is increased; (b) the correlation between successive steps in
the past is exploited such that future successive steps tend to become uncorrelated (per-
pendicular); (c) invariance properties are sustained. The CMA-ES is regarded as one of
the most powerful evolutionary algorithms for continuous optimization (Kern et al. 2004;
Beyer 2007).

In order to sample a multi-variate normal distribution, the covariance matrix has to be
factorized. The covariance matrix update and the sampling of the normal distribution re-
quire �(n2) computations. Numerical routines for covariance matrix factorization require
in general �(n3) computations in n-dimensional search spaces. Consequently, on high di-
mensional objective functions that can be evaluated quickly, the factorization dominates the
overall computational time. In order to reduce the computational burden on such objective
functions to quadratic time, the factorization needs to be postponed until after �(n) itera-
tions and consequently outdated distributions must be sampled.
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In the following, we present a new update scheme for the covariances of Gaussian mu-
tations in evolutionary algorithms that solves this problem. It operates directly on the fac-
torization of the covariance matrix and reduces the computational complexity to �(n2), the
theoretical minimum for a matrix update. The update scheme also proves that it is always
possible to update the covariance matrix and the distribution in each iteration with an asymp-
totic computational complexity of �(n2). In addition, it simplifies the algebraic operations
in the CMA-ES.

In the remainder of the introduction, we review performance evaluations and machine
learning applications involving ESs with an emphasis on the CMA-ES. Then, we summarize
previous work on reducing the time complexity of the covariance matrix update in ESs. In
Sect. 2, we discuss Gaussian mutations and the adaptation of the mutation distribution in
ESs. After that, we introduce our new update scheme. We incorporate the update scheme
into the elitist (1 + 1)-CMA-ES and into the steady-state multi-objective CMA-ES (MO-
CMA-ES, Igel et al. 2007a, 2007b). Then, we introduce a new non-elitist strategy, denoted
as (μ/μW, λ)-Cholesky-CMA-ES, which is a simplified version of the original non-elitist
CMA-ES with rank-one updating. We empirically investigate the performance of the new
algorithm in comparison with the original (μ/μW, λ)-CMA-ES with rank-one updating.

1.1 Performance assessment and machine learning applications of the CMA-ES

The CMA-ES is recognized as one of the most competitive evolutionary algorithms for
real-valued optimization. Numerous performance evaluations and performance comparisons
have been conducted across different suites of benchmark problems (Hansen and Ostermeier
2001; Hansen and Kern 2004; Kern et al. 2004; Auger and Hansen 2005a, 2005b; Whitley
et al. 2006). The number of objective function evaluations in the optimization process scales,
with few exceptions, between linearly and quadratically with the search space dimension n

(Hansen and Ostermeier 2001; Hansen et al. 2003; Kern et al. 2004). Linear scaling must be
regarded as a general lower bound (Jägersküpper 2007, 2008).

Arguably the most comprehensive performance comparison of CMA-ES with other bio-
inspired, evolutionary and hybrid search methods for real parameter spaces took place in the
Session on Real-Parameter Optimization at the 2005 IEEE Congress on Evolutionary Com-
putation.1 Performance results on 25 benchmark functions in 10, 30 and 50 dimensions were
published for 11 algorithms (from 17 submissions), among them differential evolution, real-
coded genetic algorithms, estimation of distribution algorithms, and hybrid particle swarm
optimization. The (μ/μW, λ)-CMA-ES was applied in a restart setting, where the popula-
tion size was increased by a factor of two before each restart (Auger and Hansen 2005b).
The restarted CMA-ES was the clear winner of the competition. It outperformed the best
competitors by solving the most functions. In addition, it solved them for the most part con-
siderably faster (often by an order of magnitude) whenever a quantitative assessment was
available. On both the subset of all unimodal functions and on the subset of all multi-modal
functions, the CMA-ES achieved the best overall results.

Summarizing the performance assessments with reference to benchmark function prop-
erties, we find that only on essentially separable2 objective functions CMA-ES can be sig-
nificantly outperformed by other bio-inspired or hybrid algorithms. On essentially non-
separable, ill-conditioned functions, CMA-ES generally outperforms them by orders of
magnitude.

1For details see http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm.
2Separable objective functions can be optimized coordinate-wise by n independent one-dimensional opti-
mizations and therefore are not subject to the curse of dimensionality.

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm
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The CMA-ES has been successfully applied to a wide range of real-world problems (see
the list by Hansen 2008). Most recently, Winter et al. (2008) conducted a comparison of the
CMA-ES with gradient-based approaches—including a conjugate gradient algorithm and
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method—in the domain of medical image
registration, where the ES showed superior performance. In sum, Beyer (2007) observed
that “CMA-ESs represent the state-of-the-art in evolutionary optimization in real-valued R

n

search spaces”.
Using ESs for parameter optimization is particularly advisable in the presence of noise

(Arnold 2002; Arnold and Beyer 2003), where standard gradient-based approaches fail.
Arnold and Beyer (2003) compared ESs to several other direct search methods in a noisy
environment and the results support the evolutionary approach. In machine learning, noisy
objective functions are common. For example, they arise when the reward to be optimized is
determined by a finite number of episodes (or roll-outs), the standard scenario in reinforce-
ment learning. They also arise in supervised learning and model selection when the learning
system performance is assessed through randomly generated samples of data.

Evolution strategies and in particular the CMA-ES have been successfully applied in var-
ious fields of machine learning. The following examples highlight this success, emphasizing
our own work.

1.1.1 Supervised learning

The CMA-ES is well-suited for supervised learning in scenarios where the objective func-
tion is highly noisy and/or multi-modal, in particular if gradient information cannot be ob-
tained efficiently. Although Mandischer (2002) considered ESs for feed-forward neural net-
work training, the strength of this approach becomes more apparent when training recurrent
systems. For example, Igel et al. (2001) and Schneider et al. (2004) compared the CMA-ES
with the BFGS based on analytically derived gradients for learning the parameters of neural
fields, and the CMA-ES clearly outperformed the quasi-Newton method.

Mierswa (2006, 2007) investigated ESs for support vector machine (SVM) training, in
particular in the case of non positive semi-definite kernel functions. In his recent work, he
applied a multi-objective ES to SVM training, directly addressing the trade-off between
model complexity and empirical risk (Mierswa 2007). This approach does not require an a
priori chosen regularization parameter and can be viewed as a combination of training and
model selection (see below).

1.1.2 Reinforcement learning

Evolutionary algorithms are reinforcement learning (RL) methods in the definition of Sut-
ton and Barto (1998). They are typically used for direct policy search. Igel (2003) brought
forward the CMA-ES in the framework of RL. He found that the CMA-ES with rank-one
updating outperforms alternative evolutionary RL approaches on variants of the pole bal-
ancing benchmark in fully and partially observable environments. In a more recent study
by Gomez et al. (2006), these results were compared to 8–12 (depending on the task) other
RL algorithms including value-function and policy gradient approaches. On the four test
problems where the CMA-ES was considered, it ranked first, second (twice), and third.

Pellecchia et al. (2005) applied the CMA-ES to model human car driving behavior using
neural attractor dynamics to represent the policies. Siebel and Sommer (2007) and Kassahun
and Sommer (2005) employed the CMA-ES for RL in robotics. They combined the CMA-
ES with evolutionary topology optimization to evolve artificial neutral networks.
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Recently, Heidrich-Meisner and Igel (2008a, 2008b, 2008c) performed a systematic
comparison between the CMA-ES and policy gradient methods with variable metrics.
They discuss similarities and differences between these related approaches. Preliminary
experiments—where the methods operated on the same class of policies and the same bench-
mark problems—indicate that the CMA-ES learns at least as quickly while being much more
robust regarding the choice of hyperparameters and initial policies.

1.1.3 Model selection

Real-valued evolutionary algorithms are often used for model selection of SVMs (see e.g.,
Runarsson and Sigurdsson 2004; Friedrichs and Igel 2005; Igel 2005; Suttorp and Igel 2006;
Mersch et al. 2007; Glasmachers and Igel 2008). Compared to gradient-based optimiza-
tion, they do not require the class of kernel functions to have a differentiable structure,
they are applicable even if the score function for assessing parameter performance is
not differentiable, and they are less prone to converge to suboptimal solutions. Unlike
nested grid-search, they also allow for adapting multiple hyperparameters. The CMA-ES
was successfully applied to adapt general Gaussian kernels (Friedrichs and Igel 2005;
Glasmachers and Igel 2008) as well as string kernels (Mersch et al. 2007). Successful multi-
objective model selection for SVMs using real-valued evolutionary algorithms is described
by Igel (2005) and Suttorp and Igel (2006).

1.2 Previous work in complexity reduction of the covariance matrix update in ESs

Several heuristics have been proposed to reduce the time complexity of the covariance ma-
trix update. Already in the first article on CMA-ES, Hansen and Ostermeier (1996) sug-
gested to postpone the update of the covariance matrix for n iterations. This, however, leads
to sampling outdated distributions. Nevertheless, in practice, the update is only performed
every τ generations. For τ = o(n) the computational complexity is still ω(n2) if the algo-
rithm relies on an eigenvalue decomposition, while τ = ω(n) is not advisable. Only when
τ = �(n) is the computational complexity �(n2), the same as for the update scheme de-
veloped in this article. This approach has three drawbacks. First, sampling outdated search
distributions reduces the search performance in terms of progress achieved per objective
function evaluation and therefore increases the overall running time. This is shown in Fig. 1.
Second, the decomposition leads to peak computations every τ generations. Third, an inter-
nal parameter, the update frequency, needs to be chosen properly.

Igel et al. (2006) derived a distribution update in quadratic time under the constraint
that only the variations from the previous iteration (i.e., from a single generation) are con-
sidered. This update rule was applied within simplified variants of the elitist CMA-ES for
single- and multi-objective optimization (Igel et al. 2006, 2007b). The simplification was
necessary, because the covariance update in the CMA-ES is originally based on a weighted
average of previously taken steps (the evolution path, see below) and not just on the last
iteration. Depending on the optimization problem, this simplification can lead to a signifi-
cant performance decrease both in the single- and multi-objective case as described by Igel
et al. (2006, 2007b) and demonstrated in Sect. 4.1 below (Fig. 4).

Knight and Lunacek (2007) proposed to adapt the covariance only in an l-dimension-
al subspace, where l < n is chosen a priori. This restriction allows for an update step in
O(l2n). Knight and Lunacek (2007) showed that the performance decreases significantly if
the necessary dimensionality is underestimated. On a generic test function (felli from below,
where n = 30) the variant slows down by more than a factor of ten, even with l = n

2 (Knight
and Lunacek 2007, erratum).
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Fig. 1 Additionally needed function evaluations (in percent) to reach 10−30 on felli (see Table 2) when out-
dated distributions are sampled. The results refer to the default (μ/μw, λ)-CMA-ES without rank-μ update
of the covariance matrix (Hansen and Ostermeier 2001). Curves for the standard variant with rank-μ update
look virtually the same. The abscissa shows the number of steps the update is postponed divided by problem
dimensionality. The lower curve depicts the median, the error bars the 10th and 90th percentile, for n = 100
dimensions and 11 trials for each case. The upper line shows the results for n = 200 dimensions from 3 trials.
Waiting for n iteration steps leads to a loss between 12 and 14 percent

Algorithms that can learn covariances in linear time were proposed previously (Oster-
meier 1992; Hansen et al. 1995; Poland and Zell 2001). Not surprisingly, these variants also
suffer from a limited model complexity because the number of updated parameters is linear
in n. They perform comparatively poorly whenever a full covariance matrix is required from
the underlying search space landscape.

The algorithms presented in the following do not suffer from any of these limitations.
They learn arbitrary covariance matrices, they do not sample outdated distributions, and
they utilize an evolution path.

1.3 Limitations

Any search and optimization algorithm must exploit properties of the objective function,
and the question arises on which classes of problems the CMA-ES will perform badly (Igel
and Toussaint 2003). First, the CMA-ES relies on neighborhood, assuming a correlation be-
tween the distance of solutions and the dissimilarity in their objective function values (Jones
and Forrest 1995). The distance measure is based on the variable metric. When the neighbor-
hood information is useless or misleading, CMA-ES will perform poorly (like most search
algorithms). Second, invariance properties are a major design criterion for the CMA-ES (see
below). Invariance, however, always coincides with lack of specialization. For example, a
class of optimization problems might share a common coordinate system that is optimal for
solving all instances. On such problems, algorithms that a priori utilize the distinguished co-
ordinate system are potentially better than coordinate system invariant algorithms. Indeed,
CMA-ES can be outperformed on separable problems, where the given coordinate system
is highly distinguished. Similarly, it can be beneficial to sacrifice invariance under order
preserving transformation of the function value (which is due to the rank-based selection in
ESs). For example, on noise-free quadratic functions, quasi-Newton methods are typically an
order of magnitude faster than CMA-ES, because they exploit the function values explicitly.
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Finally, the internal computations of CMA-ES scale at least with n2. On high dimensional
quickly to evaluate objective functions, linearly scaling algorithms can be advantageous,
even though they lack the ability to learn all mutual dependencies between variables (Ros
and Hansen 2008). It is the objective of this work to reach the n2 lower bound without
any restrictions on the dependencies that can be learned and without resorting to outdated
distributions.

2 Gaussian mutations in evolution strategies

We consider ESs for real-valued optimization (Rechenberg 1973; Schwefel 1995; Beyer and
Schwefel 2002; Kern et al. 2004), which are quite well understood theoretically (cf. Beyer
2001; Auger 2005; Jägersküpper 2006, 2008). Let the optimization problem be defined by
an objective function f : R

n → Y to be minimized, where n denotes the dimensionality
of the search space (space of candidate solutions, decision space) and Y the space of cost
values. Evolution strategies are random search methods, which iteratively sample a set of
candidate solutions from a probability distribution over the search space, evaluate these
points using f , and construct a new probability distribution over the search space based on
the gathered information. In typical ESs, this search distribution is parameterized by a set of
candidate solutions, the parent population, and by parameters of the variation operators that
are used to create new candidate solutions (the offspring) from the parent population.

In a canonical ES the objective vector x
(g+1)

i ∈ R
n of the ith offspring at generation g is

created by

x
(g+1)

i ← c
(g)

i
︸︷︷︸

recombination

+ v
(g)

i
︸︷︷︸

mutation

.

The vector c
(g)

i depends on the recombination scheme. For example, in case of weighted
global intermediate recombination c

(g)

i is the weighted center of mass of the objective vec-
tors in the current parent population. If no recombination is used, c

(g)

i is simply the objective
vector of one of the parents. The mutation v

(g)

i is a realization of an n-dimensional random
vector distributed according to a zero-mean Gaussian distribution with covariance matrix
C

(g)

i , that is,

v
(g)

i ∼ N
(

0,C
(g)

i

)

.

Sampling the mutation distribution to generate v
(g)

i is usually conducted in two steps. First,
the standard normal distribution is sampled to generate a realization of an n-dimensional
normally distributed random vector z

(g)

i ∼ N (0, I ) with unit covariance matrix and zero
mean. Second, this random vector is rotated and scaled by a linear transformation A

(g)

i ∈
R

n×n such that

A
(g)

i z
(g)

i ∼ N (0,C
(g)

i ) for z
(g)

i ∼ N (0, I ).

To obtain A
(g)

i and to sample a general multivariate normal distribution, the covariance ma-
trix C

(g)

i is decomposed into Cholesky factors

C
(g)

i = A
(g)

i A
(g)

i

T
.

Every symmetric nonnegative definite matrix, such as covariance matrices, has real-valued
Cholesky factors. We do not require the matrices A

(g)

i to be of a special form (Grewal and



174 Mach Learn (2009) 75: 167–197

Andrews 1993), for example triangular. The factorization is in general not unique (by im-
posing certain constraints, e.g., A

(g)

i lower triangular with nonnegative diagonal elements,
a unique decomposition can be defined). Numerical routines for computing Cholesky fac-
tors by a triangular Cholesky, eigenvalue, or singular value decomposition algorithm for a
general covariance matrix require �(n3) steps.

One of the decisive features of ESs is that the covariance matrices are subject to adapta-
tion. The general strategy is to alter the covariance matrices such that steps promising a large
fitness gain are sampled more often. There are typically two ways how the adaptation of the
matrices is realized. First, the covariance matrix or its Cholesky factors can be parameter-
ized, and these parameters can then be adapted. Either the parameterization or the adaptation
rule has to ensure that the resulting matrices remain positive definite. In self-adaptive ESs
the parameterization guarantees positive definiteness (e.g., see Rudolph 1992), and the pa-
rameters are changed by mutation. Here we consider a second, more efficient way, where
the covariance matrix is directly altered by additive updates of the form

C(g+1) = αC(g) + βV (g).

The matrix V (g) ∈ R
n×n is assumed to be positive definite and α,β ∈ R

+ are weighting
factors. Let v(g) ∈ R be a step in the search space promising large fitness gain. To increase
the probability that v(g) is sampled in the next iteration, the rank-one update

C(g+1) = αC(g) + βv(g)v(g)T
(1)

is appropriate. This update rule shifts the mutation distribution towards the line distribution
N (0, v(g)v(g)T

), which is the Gaussian distribution with the highest probability to generate
v(g) among all normal distributions with zero mean. After the update, the new covariance
matrix has to be decomposed into Cholesky factors in order to sample the distribution. If the
covariance matrix updates occur frequently in the ES the time needed for the factorization
can dominate the computation time of the ES even for a moderate number of dimensions n.

3 Efficient covariance matrix update

In general, each factorization of a covariance matrix requires �(n3) operations. Thus, in
ESs with additive covariance matrix adaptation (e.g., using (1)) the Cholesky factorization
of the covariance matrix is the computationally dominating factor apart from the fitness
function evaluations. Therefore, we propose not to factorize the covariance matrix, but to
use an incremental rank-one update rule for the Cholesky factorization. The idea is never
to compute the covariance matrix explicitly, but to operate on Cholesky factors only. We
consider Cholesky factors that are general n × n-matrices, and give a general update rule
for ESs. The proposed technique makes use of efficient rank-one matrix updates (Hager
1989), which are for example frequently used in the domain of Kalman filtering (Grewal
and Andrews 1993).

First, we derive an intermediate update rule for the special case where v(g) = A(g)z(g) and
z(g) is given3 (Igel et al. 2006). Under this assumption we can rewrite the rank-one update

3The vector z(g) is, for example, the realization of a standard normally distributed random variable and an

individual has been mutated by adding a vector proportional to v(g) = A(g)z(g) .
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of the covariance matrix (1) as

C(g+1) = αC(g) + βA(g)z(g)
[

A(g)z(g)
]T

.

Our goal is to turn this update for C(g) into an update for A(g). To achieve this, we derive
the following lemma.

Lemma 1 (Igel et al. 2006) Let u ∈ R
n be an arbitrary vector. Then, the matrix I + uuT

can be decomposed into

I + uuT = (I + ςuuT)(I + ςuuT)

with ς = 1
2 for u = 0 and ς = 1

‖u‖2 (
√

1 + ‖u‖2 − 1) otherwise.

Proof We have

(I + ςuuT)(I + ςuuT) = I + 2ςuuT + ς2‖u‖2uuT

= I + (

2ς + ς2‖u‖2
)

uuT

= I + uuT.

The last step holds because (2ς + ς2‖u‖2) = 1 by definition of ς . �

This result allows us to prove the following theorem, which shows how to realize an
incremental update of the Cholesky factors given already appropriately factorized update
vectors.

Theorem 1 (Igel et al. 2006) Let C t ∈ R
n×n be a symmetric positive definite matrix with

Cholesky factorization C t = AtA
T
t . Assume further that C t is updated using

C t+1 = αC t + βvtv
T
t ,

where vt ∈ R
n is given in the decomposed form vt = Atzt , and α,β ∈ R

+. For zt �= 0 a
Cholesky factor of the matrix C t+1 can be computed by

At+1 = √
αAt +

√
α

‖zt‖2

(√

1 + β

α
‖zt‖2 − 1

)

[Atzt ] zT
t , (2)

for zt = 0 we have At+1 = √
αAt .

Proof For zt �= 0 it holds

C t+1 = αC t + βvtv
T
t

= αAtA
T
t + βAtztz

T
t A

T
t

= αAt

(

I + zt

β

α
zT

t

)

AT
t

= √
αAt

(

I + ςzt

β

α
zT

t

)(

I + ςzt

β

α
zT

t

)

AT
t

√
α,
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where ς = α
β

1
‖zt ‖2 (

√

1 + β

α
‖zt‖2 − 1). For the factorization in the last equality we used

Lemma 1 with u =
√

β

α
zt . It directly follows that

At+1 = √
αAt

(

I + ςzt

β

α
zT

t

)

= √
αAt + β√

α
ςAtztz

T
t

= √
αAt +

√
α

‖zt‖2

(√

1 + β

α
‖zt‖2 − 1

)

[Atzt ]z
T
t

computes the update of the Cholesky factor. The proof for the case zt = 0 is obvious. �

The square brackets in the last equation indicate the order of computation, showing how
to achieve a time complexity of �(n2). The numerical stability of direct updates of Cholesky
factors is likely to be better than updates requiring subsequent decompositions (e.g., see the
discussion in Grewal and Andrews 1993, Chap. 6).

Now we derive, as a new extension to the previously derived results, a corresponding
update for the inverse of the Cholesky factors, which can then be used to bring arbitrary
updates vtv

T
t in the form Atzt [Atzt ]T suitable for Theorem 1.

Theorem 2 Let At ,At+1 ∈ R
n×n, zt ∈ R

n, and α,β ∈ R
+ be given such that (2) of Theo-

rem 1 holds. Let A−1
t be the inverse of At . Then the inverse of At+1 can be computed by

A−1
t+1 = 1√

α
A−1

t − 1√
α‖zt‖2

⎛

⎝1 − 1
√

1 + β

α
‖zt‖2

⎞

⎠ zt

[

zT
t A−1

t

]

(3)

for zt �= 0 and by A−1
t+1 = 1√

α
A−1

t for zt = 0.

Proof Let zt �= 0 and define a := √
α and b :=

√
α

‖zt ‖2 (

√

1 + β

α
‖zt‖2 − 1). With these defini-

tions the inverse of At+1 can be calculated as follows:

A−1
t+1 = (

aAt + bAtztz
T
t

)−1

= 1

a
A−1

t −
(

1
a
A−1

t

) (

bAtztz
T
t

) (

1
a
A−1

t

)

1 + zT
t

(

1
a
A−1

t

)

(bAtzt )

= 1

a
A−1

t − b/a2

1 + b/a · ‖zt‖2
ztz

T
t A

−1
t

= 1

a
A−1

t −
√

α

(
√

1 + β

α
‖zt‖2 − 1

)

α‖zt‖2
· ztz

T
t A

−1
t

(

1 +
√

1 + β

α
‖zt‖2 − 1

)

= 1√
α

A−1
t − 1√

α‖zt‖2

⎛

⎝1 − 1
√

1 + β

α
‖zt‖2

⎞

⎠ztz
T
t A

−1
t .
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The first equality follows from the definition of the update step for the Cholesky factor given
by Theorem 1. For the second equality the Sherman-Morrison formula (B + xyT)−1 =
B−1 − B−1xyTB−1

1+yTB−1x
is used with B = aAt , x = bAtzt and y = zt (Hager 1989). Note, that if

A0 is invertible so is At for all t ∈ N0. The proof for the case zt = 0 is obvious. �

Now we can combine the theorems to derive our main result:

Corollary 1 For covariance matrix updates of the form

C(g+1) = αC(g) + βv(g)v(g)T

the Cholesky factors of C(g+1) and their inverses can be computed in �(n2) time given the
decomposition C(g) = A(g)A(g)T

and A(g)−1
. Let z(g) = A(g)−1

v(g). For v(g) �= 0 we have

A(g+1)−1 = 1√
α

A(g)−1 − 1√
α‖z(g)‖2

⎛

⎝1 − 1
√

1 + β

α

∥

∥z(g)
∥

∥
2

⎞

⎠

× z(g)
[

z(g)T
A(g)−1

]

(4)

and

A(g+1) = √
αA(g) +

√
α

∥

∥z(g)
∥

∥
2 ·

(√

1 + β

α

∥

∥z(g)
∥

∥
2 − 1

)

v(g)z(g)T
. (5)

For v(g) = 0, we have A(g+1)−1 = 1√
α
A(g)−1

and A(g+1) = √
αA(g).

Proof Theorem 1 can be applied for arbitrary vectors v(g) because the inverse of the
Cholesky factor is known. In this case, we can compute z(g) = A(g)−1

v(g) and decompose
v(g) into v(g) = A(g)(A(g)−1

v(g)) = A(g)z(g) with computational complexity �(n2). The up-
date of the Cholesky factor using this decomposition and Theorem 1 scales also with �(n2).
The required inverse of the Cholesky factor A(g)−1

can be recursively updated using Theo-
rem 2 in �(n2) steps. �

Note that in applications of Corollary 1, many of the terms in the update equations are
already available and need not to be re-computed. For an analogous rank-μ update4 (e.g., see
Hansen et al. 2003; Hansen and Kern 2004) the time complexity can be reduced accordingly
to �(μn2), where μ < n.

4Rank-μ updates have the general form C(g+1) = αC(g) + ∑μ
i=1 βiv

(g)
i

v
(g)
i

T
with v

(g)
i

∈ R
n and βi > 0

for 1 ≤ i ≤ μ. The n×n matrix V (g) = ∑μ
i=1 βiv

(g)
i

v
(g)
i

T
has rank μ if the vectors are linearly independent.

The update can be realized iteratively, C(g+1) = [[αC(g) +β1v
(g)
1 v

(g)
1

T]+β2v
(g)
2 v

(g)
2

T
. . .]. In practice, the

rank-μ update is also used in the CMA-ES, where it is particularly useful with large offspring populations.
Then, not only the weighted population mean, but also individual steps are considered in the update of the
covariance matrix.
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4 Applications

In this section, we show how the new covariance matrix update can be incorporated into
state-of-the-art ESs. We consider recent variants of the covariance matrix adaptation ES
(CMA-ES). The CMA-ES is our method of choice for real-valued evolutionary optimization
for several reasons. First, the method follows appealing design principles (e.g., see Hansen
2006), in particular it puts strong emphasis on invariance properties. Second, the method
is quasi-parameter free (Auger and Hansen 2005b). Third, as explicated above, the method
performed well in benchmark scenarios (see Auger and Hansen 2005b) and, last but not
least, also in many real-world applications (Hansen 2008).

The key idea of all CMA-ES algorithms is to alter the mutation distribution such that
the probability is increased, to reproduce steps in search space that led to the actual pop-
ulation (i.e., produced offspring that were selected). Using a covariance matrix update en-
ables the algorithm to detect correlations between the objective variables and to become
invariant under transformations of the search space. The algorithms implement several
important concepts. The first one is known as derandomization: the adaptation of step
size, variance, and covariance parameters depends deterministically on the realized se-
lected steps in search space—in contrast to mutative self-adaptation (Rechenberg 1973;
Schwefel 1995), where the dependence is stochastic. The second principle is cumulation:
the trick of taking the search path of the population over the past generations into account
(evolution path), where the influence of previous steps decays exponentially. Further, all
CMA-ES variants decouple the update of a global step size and a covariance matrix, that is,
the mutation distribution is parameterized by

v
(g)

i ∼ σ (g)N
(

0,C
(g)

i

)

= σ (g)A
(g)

i N (0, I ) . (6)

The Cholesky factor A determines the shape of the distribution. Its update is based on the
idea to reinforce successful directions. The update of step size σ , taking place on a con-
siderably shorter time scale, is supposed to ensure nearly maximal progress for a given
distribution shape.

The update of the mutation distribution is conducted such that the CMA-ES is invariant
under transformations of the optimization problem, in particular invariant under rotation
and translation of the search space (of course, apart from the initialization). If the mutation
distribution is initialized accordingly, any affine transformation of the search space does not
affect the performance of the CMA-ES. The single-objective CMA-ES is invariant under
order-preserving transformations of the fitness function value. The multi-objective CMA-
ES is invariant under order-preserving affine transformations fi 
→ aifi + bi with ai ∈ R

+
and bi ∈ R if the reference point for computing the hypervolume (x ref, see Sect. 4.2.1) is
transformed accordingly or can be neglected, as it is the case in the standard MO-CMA-ES
implementation.5

Evolution strategies use rank-based selection. Given μ parents and λ offspring, a (μ,λ)
selection strategy chooses the μ best of the offspring to form the next parent population.
A (μ+λ) strategy chooses the μ best individuals from the union of parents and offspring.
The latter is an elitist selection method, because the best solution found so far is always a
member of the population.

In the following, we present the elitist CMA-ES and the multi-objective MO-CMA-
ES using the efficient learning of the metric. For completeness, we concisely explain the

5We thank the anonymous reviewer for pointing out the extended invariance properties of the MO-CMA-ES.
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algorithms based on the original publications. Then, we introduce a new variant of the non-
elitist CMA-ES compatible with the incremental covariance matrix update. For notational
convenience, we do not consider the case of the mutation vector being zero (i.e., z = 0) in
the description of the algorithms, a case which occurs with probability zero.

4.1 Elitist CMA-ES

The elitist CMA-ES is a combination of the well-known (1 + 1) selection scheme (Rechen-
berg 1973; Schwefel 1995; Beyer and Schwefel 2002) with the covariance matrix adapta-
tion as proposed for the non-elitist CMA-ES by Hansen and Ostermeier (1996, 2001). In the
elitist CMA-ES the adaptation of the covariance matrix employs the rank-one update from
the original, non-elitist CMA-ES. However, the adaptation of the global step size is handled
differently; the cumulative step size adaptation of the non-elitist CMA-ES is replaced by a
success rule based step size control.

In this section we consider scalar fitness functions f : R
n → R,x 
→ f (x) to be mini-

mized. We describe the original (1 + 1)-CMA-ES as proposed by Igel et al. (2006) and then
incorporate the Cholesky update following Corollary 1. In the original algorithm, parent and
offspring encode candidate solution vectors xparent,xoffspring ∈ R

n. We keep track of an aver-
aged success rate psucc ∈ [0,1], the global step size σ ∈ R

+, an evolution path pc ∈ R
n, and

the covariance matrix C ∈ R
n×n.

The algorithm is described in three routines. In the main part, termed (1 + 1)-CMA-ES
and described in pseudo-code in the Algorithm 1 below, a new candidate solution is sampled
and the parent solution xparent is replaced depending on whether the new solution xoffspring is
at least as good as xparent:

Algorithm 1: (1 + 1)-CMA-ES

initialize xparent, σ , C , psucc ← p
target
succ , pc ← 01

repeat2

determine A such that C = AAT3

z ∼ N (0, I )4

xoffspring ← xparent + σAz5

updateStepSize
(

σ,1[f (xoffspring) ≤ f (xparent)],psucc

)

6

if f
(

xoffspring

) ≤ f
(

xparent

)

then7

xparent ← xoffspring8

updateCov
(

C,Az,psucc,pc

)

9

until stopping criterion is met10

Here the indicator function 1[·] is one if its argument is true and zero otherwise. Thus,
1[f (xoffspring) ≤ f (xparent)] is one if the last mutation has been successful and zero other-
wise. The step size is updated depending on the success with a learning rate cp (0 < cp ≤ 1)
using a target success rate p

target
succ :
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Procedure updateStepSize(σ,λsucc,psucc)

psucc ← (1 − cp)psucc + cpλsucc1

σ ← σ · exp

(

1

d

psucc − p
target
succ

1 − p
target
succ

)

2

This procedure is rooted in the 1/5-success-rule proposed by Rechenberg (1973). The im-
plementation follows a version proposed by Kern et al. (2004), smoothed by means of line 1
and generalized in that it can also be applied for λ > 1. It implements the well-known heuris-
tic that the step size should be increased if the success rate (i.e., the fraction of offspring not
worse than the parent) is high, and the step size should be decreased if the success rate is
low. The damping parameter d controls the extend of the step size changes.

If the new candidate solution is not worse than its parent, the covariance matrix is updated
as in the original CMA-ES (Hansen and Ostermeier 2001):

Procedure updateCov(C,y,psucc,pc)

if psucc < pthresh then1

pc ← (1 − cc)pc + √

cc(2 − cc) y2

C ← (1 − ccov)C + ccov · pcpc
T3

else4

pc ← (1 − cc)pc5

C ← (1 − ccov)C + ccov · (pcpc
T + cc(2 − cc)C

)

6

The update of the evolution path pc depends on the value of psucc. If the smoothed success
rate psucc is high, that is, above pthresh < 0.5, the update of the evolution path pc is stalled.
This prevents a too fast increase of axes of C when the step size is far too small, for example,
in a (close to) linear surrounding. If the smoothed success rate psucc is low, the update of pc

is accomplished obeying an exponential smoothing. The constants cc and ccov (0 ≤ ccov <

cc ≤ 1) are learning rates for the evolution path and the covariance matrix, respectively.
The factor

√
cc(2 − cc) normalizes the variance of pc viewed as a random variable. The

evolution path pc is used to update the covariance matrix. The new covariance matrix is a
weighted mean of the old covariance matrix and the outer product pcpc

T. In the second case
(line 5), the second summand in the update of pc is missing and the length of pc shrinks.
Although of minor relevance, the term cc(2 − cc)C (line 6) compensates for this shrinking
in C .

Initial values are set to psucc = p
target
succ , pc = 0, and C = I , where p

target
succ is given in Table 1.

The initial candidate solution xparent ∈ R
n and the initial σ ∈ R

+ must be chosen problem
dependent. The optimum should presumably be within the cube xparent ±2σ(1, . . . ,1)T. The

Table 1 Default parameters for the (1 + 1)-CMA evolution strategy

Step size control:

d = 1 + n

2
, p

target
succ = 2

11
, cp = 1

12
Covariance matrix adaptation:

cc = 2

n + 2
, ccov = 2

n2 + 6
, pthresh = 0.44
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(external) strategy parameters of the (1 + 1)-CMA-ES and their default values, taken from
Igel et al. (2007b) with λ set to one, are given in Table 1. Most default values are adopted
from the precursor algorithms. In particular, the parameters for the covariance matrix adap-
tation are similar to those for the standard non-elitist CMA-ES. They have been validated
by simulations on simple test functions for different dimensions, where the parameters were
varied in a large interval. It has to be stressed that the parameters in Table 1 have to be rather
viewed as constants and that in practice the user just needs to select the initial search point
and the initial global step size (this is also true for the corresponding parameters of the ESs
described below). We now discuss the setting for each parameter from Table 1 in turn.

The parameter d ≈ n/2 is the damping parameter for the step size controlling the amplitude
of step size changes. In order to avoid large stochastic fluctuations the damping parame-
ter should be as large as possible. On the other hand it must be small enough to permit
fast convergence. According to the updateStepSize procedure, the step size changing
multiplier can range, for the given target success rate, between exp(−1/(4.5d)) ≈ 0.801/d

and exp(1/d) ≈ 2.71/d . The step-size changing factor is monotonous in the success rate.
Given p

target
succ = 2/11 and d = n/2, we get for success rates of 0, 1/10, 1/7, and 1/5.5, the

respective changing factors of about 0.64, 0.82, 0.91, and 1 (constant step size) in n itera-
tion steps. The factors justify the choice for d . A step size reduction of approximately 0.82
in n iterations corresponds to the maximal possible convergence rate that can be achieved
with an (1 + 1)-ES and optimal step size (Rechenberg 1973).

The parameter p
target
succ ≈ 0.2 is the target success rate. A target success rate of 1/5 is well-

established for the (1 + 1)-ES (Beyer and Schwefel 2002) and was derived from optimal
success rates on simple fitness functions (Schumer and Steiglitz 1968; Rechenberg 1973).
We use a slightly smaller target success rate, because it generally leads to a larger adapted
step size, which in turn is more likely to escape local optima, though we believe that this
effect is small.

The parameter cp ≈ 0.1 is the success rate averaging parameter, that is, the weight for the
most recent value in the exponential smoothing of success events. The weight is chosen
such that the success rate is smoothed over a significant period of about fifteen iterations,
that is, a period with about two to three expected successes. While a large value for cp

leads to larger stochastic fluctuations in σ , a small value impedes the response time of the
adaptation process.

The parameter cc ≈ 2/n is the weight for the most recent entry in the exponential smooth-
ing for the evolution path that is used in the covariance matrix update (it appears in the
decay term as prefactor 1 − cc). The backward time horizon of the cumulation process
is approximately c−1

c . Only for c−1
c ∝ n the performance scale-up of the optimization on

ridge like functions becomes linear with n (Hansen and Ostermeier 2001) which rules out
considerably larger values, for example cc = 1√

n
. Too small values for cc on the other hand

would require an undesirable reduction of the learning rate for the covariance matrix.

The parameter ccov ≈ 2/(n2 + 6) is the learning rate for the covariance matrix, where c−1
cov

reflects the degrees of freedom of the covariance matrix with an additional adjustment for
small n.

The parameter pthresh < 0.5 is the threshold for stalling the update of evolution path and
covariance matrix. Its value is chosen close to, but significantly smaller than one half: the
update is stalled for large success probabilities. A success probability of one half occurs in
a linear environment and will rarely be exceeded.

Now we apply Corollary 1 and replace the covariance matrix update by the Cholesky
update. The new main routine reads:
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Algorithm 2: (1 + 1)-Cholesky-CMA-ES

initialize xparent, σ , A, Ainv, psucc ← p
target
succ , pc ← 01

repeat2

z ∼ N (0, I )3

xoffspring ← xparent + σAz4

updateStepSize
(

σ,1[f (xoffspring) ≤ f (xparent)],psucc

)

5

if f
(

xoffspring

) ≤ f
(

xparent

)

then6

xparent ← xoffspring7

updateCholesky
(

A,Ainv,Az,psucc,pc

)

8

until stopping criterion is met9

In the (1 + 1)-Cholesky-CMA-ES the covariance matrix is never explicitly calculated and
the update of the covariance is replaced by the corresponding update of the Cholesky factors
and their inverse:

Procedure updateCholesky(A,Ainv, z,psucc,pc)

if psucc < pthresh then1

pc ← (1 − cc)pc + √

cc(2 − cc) z2

α ← (1 − ccov)3

else4

pc ← (1 − cc)pc5

α ← (1 − ccov) + ccov · cc(2 − cc)6

β ← ccov7

w ← Ainv · pc8

A ← √
αA +

√
α

‖w‖2

(
√

1 + β

α
‖w‖2 − 1

)

pcw
T

9

Ainv ← 1√
α
Ainv − 1√

α‖w‖2

(

1 − 1
√

1+ β
α ‖w‖2

)

w
[

wTAinv

]

10

The resulting algorithm is equivalent to the original version, except that the computational
complexity of a single generation is reduced from �(n3) to �(n2). The memory require-
ments of both variants of the elitist CMA-ES are the same. A further advantage of the (1+1)-
CMA-ES with Cholesky update, termed (1+1)-Cholesky-CMA-ES in the remainder of this
article, is its simple implementation.

All considerations in this section are not restricted to the case of a single offspring, but
also apply to the general (1 + λ)-CMA-ES sampling λ offspring in each generation. The
(1 + λ)-CMA-ES is described by Igel et al. (2007a), and it is straightforward to derive the
corresponding (1 + λ)-Cholesky-CMA-ES.

4.1.1 Experimental evaluation

In this section, we present empirical results showing the validity and efficiency of our new
update scheme. All experiments have been implemented using the Shark machine learning
library (Igel et al. 2008).
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Table 2 Single-objective
benchmark functions used in our
experiments. We define y = Ox ,
where O ∈ R

n×n is an
orthogonal matrix created
randomly anew for each trial
(each column vector is uniformly
distributed on the unit
hypersphere). In the noisy fitness
function fsphereCauchy, ξ denotes
a random variable drawn
according to the standard Cauchy
distribution

Noisy Sphere, n = 20, Iinit = [0.1,0.3]n
fsphereCauchy(x) = ∑n

i=1 x2
i

+ 1
2n

ξ
∑n

i=1 x2
i

Ellipsoid, n = 20, Iinit = [0.1,0.3]n, c = 106

felli(x) = ∑n
i=1 c

i−1
n−1 y2

i

Cigar, n = 20, Iinit = [0.1,0.3]n, c = 106

fcigar(x) = y2
1 + ∑n

i=2 cy2
i

Generalized Rosenbrock’s function, n = 20, Iinit = [0.1,0.3]n
fRosenbrock(x) = ∑n−1

i=1 (100(y2
i

− yi+1)2 + (yi − 1)2)

Fig. 2 Comparison of the time
needed for covariance updates in
the elitist CMA-ESs depending
on the problem dimension n. We
measured the average time of the
covariance matrix updates on
felli, based on the first 100
covariance updates. Shown is the
median, the error bars indicate
the 10th and 90th percentile. The
standard elitist CMA-ES uses an
efficient Cholesky decomposition
for each update, while our new
method performs the updates of
the Cholesky factor and its
inverse incrementally. Note the
double log scale

Computational complexity We experimentally demonstrate the gain in computational effi-
ciency achieved by using the new incremental update rule compared to the original (1 + 1)-
CMA-ES, which decomposes the covariance matrix in every iteration. We measured the
average time (on an Intel® Xeon™ CPU with 2.40 GHz running Linux) needed for a co-
variance matrix update on the objective function felli (see Table 2) depending on the problem
dimension n. The average was computed over the first 100 updates.

The original elitist CMA-ES used a Cholesky factorization algorithm (Grewal and An-
drews 1993, Sect. 6.4, p. 217), which was efficiently implemented.

The results are presented in Fig. 2. The double log scale of the plot nicely shows the
different exponents of the polynomial scaling of the algorithms. Already for 20 dimensions
the new update is almost ten times faster. For n = 1000 the factor is about five hundred.

Stability We performed several experiments on different objective functions to check the
numerical stability of our update rules. Because the inverse of the Cholesky factor is updated
independently of the Cholesky factor, one must suspect that they drift apart. Therefore, we
monitored the evolution of 〈AAinv − I 〉F during the optimization. Here 〈·〉F denotes the
Frobenius matrix norm. As a baseline comparison we additionally monitored 〈AA−1 − I 〉F,
where the inverse A−1 of A is computed in every step using an accurate standard method
(based on singular value decomposition, SVD).

We considered the quadratic test problem felli having a Hessian matrix with condition
number of 106 for n = 3 and n = 200, and the Rosenbrock function fRosenbrock that requires
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Fig. 3 Accuracy of the
incremental covariance matrix
update compared to standard
matrix inversion. Shown are
typical trials on felli with n = 3
and n = 200 as well as on
fRosenbrock with n = 20. The
trials were stopped after an
objective function value smaller
than 10−15 was reached. The
divergence was checked every
10th generation. Note the double
log scale

adaptation to a changing local metric for n = 20. As done in practice, we started with the
unit covariance matrix, that is, perfect initial decomposition.

The results are shown in Fig. 3. Both methods lose accuracy with time. Indeed, in the first
20n generations the iterative updates are even more accurate than the inversion algorithm.
After that, the iterative updates accumulate more errors, but even after 20n2 generations the
error never exceeds 10−11.

Thus, we regard our update rules as highly accurate and numerically stable. Of course,
it is possible to reset the iterative update every �(n) iterations computing the matrix inver-
sion explicitly without affecting the run-time complexity. Our results show that this is not
necessary at least before 50n2 iterations.

Necessity of the evolution path The new (1 + 1)-Cholesky-CMA-ES is a significant im-
provement over the method previously proposed by the authors in Igel et al. (2006). Both
methods implement an incremental, computational efficient update of the Cholesky matrix,
but only the new one can utilize an evolution path. Igel et al. (2006) give several examples of
the decline in optimization performance when the evolution path is omitted. Here, we repli-
cated one of these experiments comparing the (1 + 1)-Cholesky-CMA-ES to the previously
presented work.

Figure 4 shows the fitness evolution on the 20-dimensional felli benchmark function
based on 25 independent trials. The new method can learn the topology of the objective
function about four times faster (within about 13 000 function evaluations). Also the second
phase, the log-linear convergence to the optimum, is slightly faster. The shown result is,
to our experience, representative for different dimensionalities and also for many objective
functions.

The evolution path facilitates especially the learning of a single elongated axis in the
shape of the distribution, the main task on the cigar benchmark function. Figure 5 shows the
number of function evaluations to reach the target function value 10−15 on fcigar depending
on dimension n. With evolution path, the graph resembles virtually 300n, the scaling is
linear. Without evolution path the graph is close to 150n1.8, the scaling is almost quadratic.

On some objective functions only small differences can be observed and omitting the
evolution path can even be (slightly) advantageous (Igel et al. 2006). Nevertheless in general,
by exploiting the information on correlations between the steps in the evolution path, the new
(1 + 1)-Cholesky-CMA-ES considerably outperforms the old one.
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Fig. 4 Comparison of the elitist
(1 + 1)-CMA-ES on the
20-dimensional felli with and
without evolution path. The
curves show the medians of 25
trials. Both methods use an
efficient incremental rank-one
update, but the new algorithm
learns the underlying metric
about four times faster

Fig. 5 Comparison of the elitist
(1 + 1)-CMA-ES on fcigar with
and without evolution path. We
measured the number of
iterations needed to reach an
objective function value smaller
than 10−15. The curves show the
medians of 25 trials for n < 100
and of 5 trials for n > 100 on a
double log scale. Error bars
denote the 10th and 90th
percentile

4.2 Multi-objective CMA-ES

Multi-objective optimization (MOO, or vector optimization) is concerned with the si-
multaneous optimization of multiple (scalar) objectives (e.g., Miettinen 1999; Deb 2001;
Jin 2006). The goal of MOO is usually to find or to approximate the set of Pareto-optimal
solutions. A solution is Pareto-optimal if it cannot be improved in one objective without get-
ting worse in another one. A diverse set of Pareto-optimal solutions provides insights into
the trade-offs between the objectives and serves as the basis for (human) decision-making. In
recent years, evolutionary multi-objective algorithms have become popular for MOO (e.g.,
Deb 2001; Jin 2006).

We consider real-valued MOO with m objectives. Each point x of the search space is
assigned m objective function values f : R

n → R
m,x 
→ (f1(x), . . . , fm(x))T. We say that

a solution x dominates a solution x ′ and write x ≺ x ′, if and only if x is at least as good
as x ′ in each objective and is strictly better than x ′ in at least one objective.

The multi-objective CMA-ES (MO-CMA-ES) considers a population of μ solutions,
where every solution reproduces and updates its search strategy as in the (1 + 1)-CMA-ES.
The main additional problem to solve is the question of how to rank a set of solutions in
order to determine the best μ candidate solutions forming the next parent population. The
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general approach to multi-objective ranking as taken in the MO-CMA-ES is introduced next,
before we describe the search algorithm using the new update rule.

4.2.1 Ranking vector-valued solutions

The ranking in the MO-CMA-ES relies on non-dominated sorting as in the NSGA-II (Deb
2001; Deb et al. 2002) and on the order induced by the contributing hypervolume as in the
SMS-EMOA (Beume et al. 2007).

In a first step, the elements in a population X of candidate solutions are ranked ac-
cording to their level of non-dominance. We denote the non-dominated solutions in X by
ndom(X) = {x ∈ X |�x ′ ∈ X : x ′ ≺ x}, where x ′ ≺ x means that x ′ dominates x . The
Pareto front of X is then given by {(f1(x), . . . , fm(x)) |x ∈ ndom(X)}. The elements in
ndom(X) get rank 1. The other ranks are defined recursively by considering the set without
the solutions with lower ranks (cf. Deb et al. 2002; Igel et al. 2007a). Let dom0(X) = X,
doml (X) = doml−1(X) \ ndoml (X), and ndoml (X) = ndom(doml−1(X)) for l ∈ {1, . . . }.
For x ∈ X the level of non-dominance r(x,X) is i iff x ∈ ndomi (X). Level of non-
dominance is the first sorting criterion.

A second sorting criterion is needed to rank the solutions that have the same level of non-
dominance. This criterion is very important, as usually (in particular in the optimization
of continuous objective functions) after some generations the number of non-dominated
solutions in the population exceeds the number of solutions to be selected.

In the MO-CMA-ES, the contributing hypervolume serves as second sorting criterion.
The hypervolume measure or S -metric was introduced by Zitzler and Thiele (1998) in the
domain of evolutionary MOO. For a reference point x ref, the hypervolume Sxref(X

′) of a set
X′ is defined as volume of the union of hypercuboids

Sxref(X
′) =

⋃

x ∈ndom(X′)
{(f1(x

′), . . . , fm(x ′)) |x ≺ x ′ ≺ x ref}.

The contributing hypervolume �S (x,X′) of a point x ∈ ndom(X′) is given accordingly
by �S (x,X′) := Sxref(X

′) − Sxref(X
′ \ {x}). The rank s(x,X′) of an individual a can be

defined recursively based on its contribution to the hypervolume, where ties are broken at
random. The individual contributing least to the hypervolume of X′ gets the lowest rank.
The individual contributing least to the hypervolume of X′ without the individual with
the lowest rank is assigned the second lowest rank and so on. We call x ∈ X′ a bound-
ary element if �S (x,X′) depends on the choice of the reference point x ref. The point x ref

is chosen such that all elements in X′ dominate x ref and that �S (x,X′) > �S (x ′,X′)
holds for any boundary element x ∈ X′ and any non boundary element x ′ ∈ X′. That
is, the individuals at the “boundaries” of the Pareto front of X′ are preferably selected.
Let a lower rank be worse. Formally (assuming that argmin breaks ties randomly), for
x ∈ ndom(X′) it holds s(x,X′) = 1 if x = argminx ′∈X′ {�S (x ′,X′)} and s(x,X′) = k if
x = argminx ′∈X′ {�S (x ′,X′ \ {x ′′ | s(x ′′,X′) < k})}. Based on this ranking and the level of
non-dominance the relation

x ≺X x ′ ⇔ r(x,X) < r(x ′,X) or
[

(r(x,X) = r(x ′,X)) ∧ (s(x,ndomr(x,X)(X)) > s(x ′,ndomr(x′,X)(X)))
]

,

is defined on X. That is, x is better than x ′ when compared using ≺X if and only if either x

has a better level of non-dominance or x and x ′ are on the same level but x contributes more
to the hypervolume when considering the points at that level of non-dominance.
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Computing the hypervolume for many objectives is computationally demanding (Klee
1977; Overmars and Yap 1991). However, for 1 < m ≤ 3 special algorithms exist which
solve this problem in O(μm−2 lnμ), where μ is the number of points in the objective space
(Fonseca et al. 2006). For m > 3, the current best algorithm scales with O(μ lnμ + μm/2)

(Beume and Rudolph 2006). If computing the contributing hypervolume for selection turns
out to be too time consuming in an application, the contributing hypervolume can be re-
placed by the change in quality measured by the ε-indicator (Zitzler et al. 2003), which can
be computed efficiently.

4.2.2 The MO-CMA-ES

In the following, we describe the MO-CMA-ES working on Cholesky decompositions of
the covariance matrices, for the original version we refer to Igel et al. (2007a, 2007b). The
variant described here uses steady-state selection, that is, only one offspring is generated per
generation. We consider steady-state selection where all μ members of the population are
potential parents (i.e., (μ+1)-selection). This corresponds to the selection scheme used by
Emmerich et al. (2005) and Beume et al. (2007). Conceptually, this selection scheme has
the advantage that the problem of selecting the μ out of μ + λ possible points such that the
hypervolume is maximized can be solved easily for λ = 1.

An individual in the MO-CMA-ES is a 6-tuple

a = [

x,psucc, σ,pc,A,Ainv

]

,

where, x ∈ R
n is the point in the search space, psucc ∈ R

+
0 the average success rate, σ ∈ R

+
the global step size, pc ∈ R

n the evolution path, and A and Ainv are a Cholesky factor of the
covariance matrix and its inverse. The steady-state MO-CMA algorithm can be described as
follows.

Algorithm 3: steady-state MO-CMA

initialize ak for k = 1, . . . ,μ1

Q ← {

ak

∣

∣1 ≤ k ≤ μ
}

2

repeat3

i ← U (1,μ)4

a ← Q≺:i5

a′ ← a6

z ∼ N (0, I )7

x ′ ← x + σAz8

Q ← Q ∪ {a′}9

if a′ �= Q≺:(μ+1) then10

updateStepSize
(

σ ′,1
[

a′ ≺Q a
]

,p′
succ

)

11

updateCholesky

(

A′,A′
inv,

x ′ − x

σ
,p′

succ,p
′
c

)

12

updateStepSize
(

σ,1
[

a′ ≺Q a
]

,psucc

)

13

Q ← Q \ Q≺:(μ+1)14

until stopping criterion is met15

At the beginning the population Q is initialized with μ parents. In the iteration loop, first
a parent is chosen randomly in lines 4–5, where U (1,μ) denotes the discrete uniform distrib-
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ution over {1, . . . ,μ} and Q≺:i is the ith best individual in Q according to ≺Q. One offspring
a′ = [x ′,p′

succ, σ
′,p′

c,A
′,A′

inv] is generated from the parent and added to the current pop-
ulation Q (lines 6–9). Then, step size and Cholesky factor of the offspring are updated, in
case it is not the worst individual (lines 10–12). Finally, the step size of the parent is updated
and the worst individual is removed from the population Q.

The described algorithm is equivalent to the MO-CMA-ES from Igel et al. (2007a) while
reducing its computational complexity from �(n3) to �(n2) per generation step. Igel et al.
(2007b) showed that using the CMA-ES covariance update rule without evolution path de-
creases the performance of the algorithm. However, in the new method an incremental co-
variance update is realized in combination with an evolution path. Hence, the search be-
haviors of the original generational and steady-state MO-CMA-ESs do not change when
using the incremental update rule. All performance comparisons conducted for the original
algorithms carry over to the new variants with computationally efficient covariance matrix
update. This was validated empirically on the benchmark scenario described by Igel et al.
(2007b).

The (μ + 1)-selection has proven to provide excellent performance on a great number of
benchmark problems (Igel et al. 2007a, 2007b) compared to NSGA-II (Deb et al. 2002) and
NSDE (Iorio and Li 2005). Recently, Voß et al. (2008) compared the MO-CMA-ES with
scalarization approaches for multi-objective optimization. For scalarization, the Tcheby-
cheff method as well as the weighted-sum approach were considered (Miettinen 1999) and
the (1 + 1)-CMA-ES served as single objective optimizer. The MO-CMA-ES clearly out-
performed the scalarization approaches. For the detailed performance evaluation of the MO-
CMA-ESs we refer to the comparisons by Igel et al. (2007a, 2007b) and Voß et al. (2008).

4.3 Non-elitist CMA-ES

In this section, we combine the incremental Cholesky update with a slightly simplified non-
elitist (μ/μW, λ)-CMA-ES (Hansen and Ostermeier 2001; Beyer 2007; Hansen et al. 2008),
where μ/μW denotes weighted recombination of μ parental individuals. Non-elitism avoids
systematic overvaluation6 in the presence of noise, and is thus of particular importance for
many machine learning applications, as argued in the introduction.

The resulting new algorithm is a computationally more efficient variant of the original
CMA-ES with rank-one updating (Hansen and Ostermeier 2001). The need to simplify the
original algorithm is due to its step size adaptation and is discussed in the following.

4.3.1 Cumulative step size adaptation

In the (μ/μW, λ)-CMA-ES the global step size σ is adjusted using cumulative step size
adaptation (CSA, sometimes denoted as path length control). Let the offspring be gener-
ated using weighted global intermediate recombination of the selected parents, followed by
Gaussian mutation with covariance matrix σ 2C = σ 2AAT. That is, prior to the mutation,
the weighted center of mass 〈x〉w = ∑μ

i=1 wix i:λ is computed, where x i:λ is the ith best par-
ent and w = (w1, . . . ,wμ)T ∈ R

μ are weighting coefficients with w1 ≥ w2 ≥ · · · ≥ wμ and

6Overvaluation (Arnold 2002) refers to the effect that in the course of evolution individuals with their fitness
sampled from the tail of the noise distribution are sustained. In order to compete with the previous parent, an
individual needs to experience a similarly extreme noise event. This leads to continuously decreasing success
rates and reduced progress.
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‖w‖1 = 1. Accordingly, we define 〈z〉w = ∑μ

i=1 wizi:λ as the weighted mean of the μ real-
izations of the standard normally distributed random vector that led to the μ best offspring.
Thus, the step taken by the weighted mean of the population can be expressed as σA〈z〉w .
The matrix σA scales and rotates the random vectors. We can remove all scaling effects by
considering the orthogonal matrix B instead of σA, when the Cholesky factor A is given in
the form A = BD with B ∈ R

n×n orthogonal and D ∈ R
n×n diagonal.

Standard CSA (Hansen and Ostermeier 2001; Hansen et al. 2008) keeps track of a “con-
jugate” evolution path

pσ ← (1 − cσ )pσ + √

cσ (2 − cσ )μeffB〈z〉w (7)

with learning rate cσ ∈]0,1]. The evolution path pσ is a weighted sum of random vectors
originally distributed according to N (0, I ). Under random selection (when x and f (x) are
independent) the normalization in (7) ensures that pσ , viewed as a random variable, is also
distributed according to N (0, I ) (this is explained in detail in the review by Hansen 2006).

The factor
√

μeff compensates for the loss of variance due to computing the weighted
center of mass during recombination. The effective parent number, μeff, also called variance
effective selection mass, is given by μeff = 1

∑μ
i=1 w2

i

. It is used for both step size control and

covariance matrix adaptation.
In pσ , the influence of previous steps decays exponentially fast, controlled by the learn-

ing rate cσ . The conjugate evolution path can (and should) be learned on a faster timescale
than the covariance matrix. Hansen et al. (2008) propose the following learning rate

cσ = μeff + 2

n + μeff + 3
. (8)

The update of the global step size σ is realized by

σ ← σ · exp

(

cσ

dσ

(‖pσ ‖
χ̂n

− 1

))

. (9)

Here χ̂n = E ‖N (0, I )‖ is the expected length of an n-dimensional, normally distributed
random vector with covariance matrix I . The damping parameter dσ decouples the adapta-
tion rate from the strength of the variation. Because of the proper normalization in (7), the
expected length of pσ would be χ̂n under random selection. Therefore, the global step size
is increased if the steps leading to selected individuals are larger and/or more correlated than
expected and decreased if they are smaller and/or more anticorrelated than expected in the
absence of selection pressure.

Unfortunately, the incremental update rules of Corollary 1 do not provide the matrix B

needed in (7).7 Therefore, we omit B in the update of the global step size σ , similarly as in
(Beyer 2007),

pσ ← (1 − cσ )pσ + √

cσ (2 − cσ )μeff〈z〉w. (10)

In this formulation, pσ viewed as a random variable would be still distributed according
to N (0, I ) with expected length χ̂n under random selection. Hence, large or small selected

7In general, the incrementally updated Cholesky factor A is not symmetric. A symmetric Cholesky
factor with A = BDBT would allow for an alternative formulation of (7) by replacing B〈z〉w with

σ−1Ainv(〈x〉(g+1)
w − 〈x〉(g)

w ), thus not requiring B .
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steps still lead to increase or decrease of the step size, respectively. However, the identifi-
cation of the degree of correlation of successive steps becomes an approximation, because
B changes over time. Compared to the decay of the conjugate evolution path pσ in (10) the
changes in B are small. To further diminish their effect, we increase the learning rate for the
evolution path to

cσ =
√

μeff√
n + √

μeff
. (11)

In (11), the dependency of cσ on n is taken to its upper limit 1√
n

(Hansen 1998). Compared to
(8), the interdependency between μeff and n is preserved, in that for μeff � n the coefficient
gets close to one.

When the Cholesky factor A remains constant, as it can be approximately the case in the
final phase of optimization, the rules (9) and (10) result in the same update behavior for σ .
Otherwise, we expect the approximation to be sufficiently accurate and only insignificantly
affect the performance. This is confirmed by our experiments in Sect. 4.3.3.

4.3.2 Non-elitist CMA-ES with incremental Cholesky update

The simplified non-elitist (μ/μW, λ)-CMA-ES with Cholesky update, referred to as
(μ/μW, λ)-Cholesky-CMA-ES in the following, is completely described in the following
algorithm.

Algorithm 4: (μ/μW, λ)-Cholesky-CMA-ES

initialize σ , xk for k = 1, . . . , λ, A ← I , Ainv ← I , pσ ← 0, pc ← 01

repeat2

〈x〉w ← ∑μ

i=1 wix i:λ3

for k = 1, . . . , λ do4

zk ∼ N (0, I )5

xk ← 〈x〉w + σAzk6

〈z〉w ← ∑μ

i=1 wizi:λ7

pc ← (1 − cc)pc + √
cσ (2 − cσ )μeffA〈z〉w8

v ← Ainv · pc9

Ainv ← 1√
1−ccov

Ainv − 1√
1−ccov‖v‖2

(

1 − 1
√

1+ ccov
1−ccov

‖v‖2

)

v
[

vTAinv
]

10

A ← √
1 − ccovA +

√
1−ccov
‖v‖2

(√

1 + ccov
1−ccov

‖v‖2 − 1
)

pcv
T

11

pσ ← (1 − cσ )pσ + √
cσ (2 − cσ )μeff〈z〉w12

σ ← σ · exp
(

cσ

dσ

(

‖pσ ‖
χ̂n

− 1
))

13

until stopping criterion is met14

In each iteration, λ offspring are generated by weighted global intermediate recombination
(lines 4–7). Then, instead of the covariance matrix update in the original algorithm, the
Cholesky factor and its inverse are updated according to Corollary 1 (lines 8–11). Finally,
the global step size σ is adapted by the simplified CSA (lines 12 and 13).

The parameters for the (μ/μW, λ)-Cholesky-CMA-ES are given in Table 3. They are
taken from Hansen et al. (2008) for the case μcov = 1, using the increased learning rate
for the conjugate evolution path (11) instead of (8). We describe the reasoning behind the
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Table 3 Parameters for the (μ/μW, λ)-Cholesky-CMA-ES. All parameters equal the parameters of the orig-
inal variant, except for cσ

Selection and recombination:

λ = 4 + �3 lnn�, μ = �λ/2�, wi = ln(μ + 1) − ln i

μ ln(μ + 1) − ∑μ
j=1 ln j

for i = 1, . . . ,μ

Step size control:

cσ =
√

μeff√
n + √

μeff
, dσ = 1 + 2 · max

(

0,

√

μeff − 1

n + 1
− 1

)

+ cσ

Covariance matrix adaptation:

cc = 4

n + 4
, ccov = 2

(n + √
2)2

choice of selection and recombination parameters, and of dσ in the following. The remaining
parameters were already discussed above (parameter cσ ) or in Sect. 4.1 (parameters cc and
ccov).

The parameter λ is the population size and its default value slowly increases with the di-
mension. The small setting for λ emphasizes fast convergence and reflects the point of view
that an ES is a robust local search procedure. Smaller settings for λ can lead to a speed up,
but too small settings endanger the working of the algorithm. With increasing population
size the search becomes more and more global (given an adequate value for μeff). For
considerably larger λ the rank-μ update for the covariance matrix should be used.

The parameters μ and (wi)i=1,...,μ denote parent number and recombination weights. The
chosen recombination weights approximate the optimal setting on the sphere function
(Arnold 2006) for positive optimal weights. Negative weights are disregarded as, to our
experience, they can be detrimental on non-spherical fitness functions. In general, in or-
der to exploit the selection information effectively, the variance effective selection mass,
μeff, should lie between λ/5 and λ/2. With the given setting, μeff := 1/

∑μ

i=1 w2
i equals

approximately λ/3.

The parameter dσ ≈ 1 controls the magnitude of step-size changes similar to d in Table 1.
Equation (9) is formulated such that a good choice for dσ does not (heavily) depend on cσ .
Smaller values for dσ , for example dσ = 0.5, can speed up the convergence. Too small val-
ues render the adaptation scheme unstable. Larger values will slow down the convergence
without further harm. For large values of μeff, dσ is increased and a rank-μ covariance
matrix update should be used.

The original (μ/μW, λ)-CMA-ES requires an eigendecomposition of the covariance ma-
trix. The eigendecomposition is more expensive and more difficult to implement than the
Cholesky decomposition. As our main achievement, the (μ/μW, λ)-Cholesky-CMA-ES as
described in this section does not need any of these procedures.

4.3.3 Experimental evaluation

In order to evaluate the effect of the simplification of the CSA update, we compared the
(μ/μW, λ)-Cholesky-CMA-ES to the (μ/μW, λ)-CMA-ES (using rank-one updating only)
on 20-dimensional benchmark functions listed in Table 2.

The quadratic benchmark functions felli and fcigar with rotated coordinate systems and
condition numbers 106 are considered to investigate the learning of local metrics. They are
particularly difficult, because they are non-separable and have high condition numbers. The
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Fig. 6 Comparison of the (μ/μW, λ)-CMA-ES with rank-one updating and the simplified
(μ/μW, λ)-Cholesky-CMA-ES on the benchmark function felli for n = 20. The (μ/μW, λ)-CMA-ES
with original and increased learning rate cσ are denoted by original and fast (μ/μW, λ)-CMA-ES,
respectively. The trajectories show the medians of 25 trials, the final error bars the 10th and 90th per-
centile. The final difference between original (μ/μW, λ)-CMA-ES and (μ/μW, λ)-Cholesky-CMA-ES is
significant with p < 10−3 in the Wilcoxon rank-sum test. The curves of fast (μ/μW, λ)-CMA-ES and
(μ/μW, λ)-Cholesky-CMA-ES can hardly be distinguished

ellipsoid felli is our prototypical benchmark function having eigenvalues distributed equidis-
tantly on the log-scale. The function fcigar tests the learning of a single elongated axis, see
Sect. 4.1.1. The generalized Rosenbrock function fRosenbrock with rotated coordinate system
is difficult, because it is non-separable and the appropriate local metric changes in the course
of optimization. Continuous adaptation of the covariance matrix is required. The sphere
function with multiplicative Cauchy noise fsphereCauchy has been selected to demonstrate the
performance in the case of noise. Replacing the Cauchy with a Gaussian noise distribution
leads to similar results. As in all experiments, σ was initialized to 0.2/3 (one third of the
initialization interval Iinit as given in Table 2). The (μ/μW, λ)-CMA-ES is run with the orig-
inal value of cσ for updating the “conjugate” evolution path and with the increased learning
rate, (8) and (11), respectively.

The results, based on 25 trials per test function and algorithm, are presented in Figs. 6, 7,
and 8. The algorithms performed very similar as expected. On felli, the (μ/μW, λ)-Cholesky-
CMA-ES is slightly faster (about 5%, the difference is statistically significant) than the
(μ/μW, λ)-CMA-ES with original learning rate cσ . The difference can be entirely attributed
to the new choice of parameter cσ . The results on fcigar are qualitatively the same as on felli

and are therefore omitted. On the other two functions no relevant performance differences
are observed. The shown results are representative and we have found, up to now, no case
with a performance break down due to the simplification of CSA.

The standard (μ/μW, λ)-CMA-ES that includes the rank-μ update, reaches the func-
tion value of 10−10 on felli and fRosenbrock around 20 % faster, and it performs on par on
fsphereCauchy (results not shown).

5 Discussion

We presented a new, general rule for covariance matrix updates in variable metric real-
valued direct search algorithms. The update rule operates directly on a factorization of the
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Fig. 7 Comparison of the
(μ/μW, λ)-CMA-ES with
rank-one updating and the
simplified
(μ/μW, λ)-Cholesky-CMA-ES
on the benchmark function
fRosenbrock for n = 20. The
(μ/μW, λ)-CMA-ES with
original and increased learning
rate cσ are denoted by original
and fast (μ/μW, λ)-CMA-ES,
respectively. The trajectories
show the medians of 25 trials, the
final error bars the 10th and 90th
percentile. The curves of fast
(μ/μW, λ)-CMA-ES and
(μ/μW, λ)-Cholesky-CMA-ES
can hardly be distinguished

Fig. 8 Comparison of the
(μ/μW, λ)-CMA-ES with
rank-one updating and the
simplified
(μ/μW, λ)-Cholesky-CMA-ES
on the noisy benchmark function
fsphereCauchy for n = 20. The
(μ/μW, λ)-CMA-ES with
original and increased learning
rate cσ are denoted by original
and fast (μ/μW, λ)-CMA-ES,
respectively. The trajectories
show the medians of 25 trials, the
final error bars the 10th and 90th
percentile. The three curves can
hardly be distinguished

covariance matrix making the usually needed, repeated decompositions of the covariance
matrix unnecessary. By simultaneously maintaining the inverse of the factors, the rule can
replace arbitrary rank-one updates. This brings the following advantages:

– For n-dimensional problems, the new update requires �(n2) computations and therefore
reaches the asymptotically computational lower bound for the matrix update.

– We verified experimentally that the proposed matrix update is numerically stable and
efficient in practice. For search space dimensions between n = 10 and 1000 the update
proves to be about n/2 times faster than the otherwise necessary Cholesky decomposition.

– The proposed update is completely specified without hidden or numerically involved pro-
cedures such as an eigenvalue decomposition. Therefore, implementations in low level
programming languages and even in hardware become easily possible.

The new learning rule can replace the original rank-one update of the covariance matrix and
the subsequent matrix decomposition in the single- and multi-objective CMA-ES:

– It can be used with the elitist (1 + λ)-CMA-ES (Igel et al. 2006, 2007a) and the MO-
CMA-ES (Igel et al. 2007a, 2007b) without changing the algorithms. As opposed to pre-
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viously introduced incremental update rules (Igel et al. 2006, 2007b), restricted updates
(Ostermeier 1992; Hansen et al. 1995; Poland and Zell 2001; Knight and Lunacek 2007;
Ros and Hansen 2008), or to using outdated distributions (Hansen and Ostermeier 1996,
2001), here an efficient �(n2) update is achieved without loss in performance.

– We combined the new update procedure with a slightly simplified non-elitist CMA-ES.
The new algorithm performs in our experiments on par with the standard (μ/μW, λ)-
CMA-ES with rank-one update (Hansen and Ostermeier 2001), but lacks its geometrical
interpretation of conjugate perpendicularity.

The matrix update can be straightforwardly extended to rank-μ updating of the covariance
matrix (Hansen et al. 2003; Hansen and Kern 2004) leading to an algorithm with time com-
plexity �(μn2). However, whether the rank-μ update can be conducted more efficiently
than outlined above, whether the (μ/μW, λ)-Cholesky-CMA-ES works well with larger val-
ues for μ, and detailed investigations of rank-μ algorithms remain subjects for future work.

Two drawbacks of our new method can be recognized:

– In combination with the non-elitist CMA-ES the original algorithm needs to be slightly
modified. This drawback can be rectified with a symmetrical factorization of the covari-
ance matrix. Therefore, the question remains to be addressed in future whether an efficient
matrix update can be found where the Cholesky factor is symmetrical.

– The eigenvalues of the search distribution are not directly available for inspection. How-
ever, the eigenspectrum gives insight into the structure of the underlying problem. But
because rare additional computations of the eigenspectrum for inspection do not have any
effect on the algorithm performance, this drawback is of minor relevance.

Concluding our discussion, we believe that the easier implementation and the improved
performance for large scale problems will make the CMA-ES more popular in particular in
the machine learning community.

6 Conclusions

Evolution strategies (ESs) with variable metric are powerful tools in machine learning for
search and optimization in continuous domains. They sample new candidate solutions ac-
cording to a multi-variate normal distribution and adapt the covariance matrix to allow for
efficient search even when the problem is non-separable and ill-conditioned. We proposed
an incremental learning rule for the covariance matrix. We proved that it can equally replace
the rank-one update together with the Cholesky decomposition of the covariance matrix, for
example implemented in elitist single- and multi-objective covariance matrix adaptation ESs
(CMA-ESs). The new learning rule reduces the computational complexity for a rank-one up-
date of the search distribution to �(n2), the asymptotically tight bound. The new method
is considerably easier to implement, considerably faster in large dimensions and provides a
significant improvement for high dimensional optimization and machine learning problems
with fast computable performance measures.
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