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Quality gain is the expected relative improvement of the function value in a single step 
of a search algorithm. Quality gain analysis reveals the dependencies of the quality gain 
on the parameters of a search algorithm, based on which one can derive the optimal 
values for the parameters. In this paper, we investigate evolution strategies with weighted 
recombination on general convex quadratic functions. We derive a bound for the quality 
gain and two limit expressions of the quality gain. From the limit expressions, we derive 
the optimal recombination weights and the optimal step-size, and find that the optimal 
recombination weights are independent of the Hessian of the objective function. Moreover, 
the dependencies of the optimal parameters on the dimension and the population size are 
revealed. Differently from previous works where the population size is implicitly assumed 
to be smaller than the dimension, our results cover the population size proportional to or 
greater than the dimension. Numerical simulation shows that the asymptotically optimal 
step-size well approximates the empirically optimal step-size for a finite dimensional 
convex quadratic function.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Background Evolution Strategies (ES) are randomized search algorithms to minimize a black-box function f : RN → R in 
continuous domain, where neither the gradient nor the Hessian matrix of the objective function is available. The most 
advanced and commonly used category of evolution strategies is covariance matrix adaptation evolution strategy (CMA-ES) 
[2,3], which is recognized as the state-of-the-art black box continuous optimizer. It generates multiple candidate solutions 
from a multivariate normal distribution. They are evaluated on the objective function. The distribution parameters such as 
the mean vector and the covariance matrix are updated by using the candidate solutions and their ranking information, 
where the objective function values are not directly used. Due to its population-based and comparison-based nature, the 
algorithm is invariant to any strictly increasing transformation of the objective function in addition to the invariance to 
scaling, translation and rotation of the search space [4]. These invariance properties guarantee that the algorithm shows 
exactly the same behavior on a function f and on its transformation g ◦ f ◦ T , where g : R → R is a strictly increasing 
function and T :RN → R

N is a combination of scaling, translation and rotation defined as T : x �→ a ·U(x−b) with a positive 

✩ This is the extension of our extended abstract presented at FOGA’2017 [1].
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real a > 0, an N dimensional vector b ∈ R
N , and an N dimensional orthogonal matrix U. These invariance properties are the 

essence of the success of CMA-ES.
The performance evaluation of evolutionary algorithms is often based on empirical studies such as benchmarking on 

a test function suite [5,6] and well-considered performance assessment [7,8]. It is easier to check the performance of an 
algorithm on a specific problem in simulation than to analyze it mathematically. The invariance properties of an algorithm 
then generalize the empirical result to a class of infinitely many functions defined by the invariance relation. On the other 
hand, theoretical studies often require simplification of algorithms and assumptions on the objective function, because 
of the difficulty of the analysis of advanced algorithms due to their comparison-based and population-based nature and 
the complex adaptation mechanisms. Nevertheless, theoretical studies lead us to a better understanding of algorithms and 
reveals the dependency of the performance on the interval parameter settings. For example, the recombination weights in 
CMA-ES are selected based on the mathematical analysis of an evolution strategy [9].1 The theoretical result of the optimal 
step-size on the sphere function is used to design a box constraint handling technique [10] and to design a termination 
criterion for a restart strategy [11]. A recent variant of CMA-ES [12] exploits the theoretical result of the optimal rate of 
convergence of the step-size to estimate the condition number of the product of the covariance matrix and the Hessian 
matrix of the objective function.

Quality gain analysis Quality gain and progress rate analysis [13–15] measure the expected progress of the mean vector in 
one step. On one side, differently from convergence analysis (e.g., [16]), analyses based on these quantities do not guarantee 
the convergence and often take a limit to derive an explicit formula. Moreover, the step-size adaptation and the covariance 
matrix adaptation are not taken into account. On the other side, one can derive quantitative explicit estimates of these 
quantities, which is not the case in convergence analysis. The quantitative explicit formulas are particularly useful to know 
the dependency of the expected progress on the parameters of the algorithm such as the population size, number of par-
ents, and recombination weights, which we may not recognize from empirical studies of algorithms. The above mentioned 
recombination weights in CMA-ES are derived from the quality gain analysis of evolution strategies [9].

Although quality gain analysis is not meant to guarantee the convergence of the algorithm since it analyzes only a 
single step expected improvement, the progress rate is linked to the convergence rate of algorithms. It is directly related 
to the convergence rate of an “artificial” algorithm where the step-size is proportional to the distance to the optimum 
on the sphere function (see e.g., [17]). Moreover, the convergence rate of this artificial algorithm gives a bound on the 
convergence rate of algorithms that implement a proper step-size adaptation. For (1 + λ) or (1, λ) ESs the bound holds on 
any function with a unique global optimum; that is, any step-size adaptive (1 +, λ)-ES optimizing any function f with a 
unique global optimum can not achieve a convergence rate faster than the convergence rate of the artificial algorithm on 
the sphere function where the step-size is the distance to the optimum times the optimal constant [18–20].2 For algorithms 
implementing recombination, this bound still holds on spherical functions [19,20].

Related work In this paper, we investigate ESs with weighted recombination on a general convex quadratic function. ESs 
with weighted recombination samples multiple candidate solutions at one time and compute the weighted average of the 
candidate solutions to update the distribution mean vector. Weighted recombination ESs are among the most important 
categories of ESs since the standard CMA-ES and most of the recent variants of CMA-ES [21–23] employ weighted recombi-
nation.

The first analysis of weighted recombination ESs were done in [9], where the quality gain has been derived on the 
infinite dimensional sphere function f : x �→ ‖x‖2. The optimal step-size and the optimal recombination weights are de-
rived. Reference [24] studied a variant of weighted recombination ESs called (μ/μI , λ)-ES, where (μ/μI , λ) stands for 
intermediate recombination, where the recombination weights are equal for the best μ candidate solutions and zero 
for the other λ − μ candidate solutions. The analysis has been performed on the quadratic functions with the Hessian 
A = 1

2 diag(α, . . . , α, 1, . . . , 1), where the number �Nθ	 of diagonal elements that are α > 1 is controlled by the ratio θ
of short axes. Reference [25] studied the (1 + 1)-ES with the one-fifth success rule on the same function and showed 
the convergence rate of �(1/(αN)). Reference [26] studied ES with weighted recombination on the same function. Their 
results, progress rate and quality gain, depend on the so-called localization parameter, the steady-state value of which is 
then analyzed to obtain the steady-state quality gain. References [27,28] studied the progress rate and the quality gain of 
(μ/μI , λ)-ES on the general convex quadratic model.

The quality gain analysis and the progress rate analysis in the above listed references rely on a geometric intuition of 
the algorithm in the infinite dimensional search space and on various approximations. On the other hand, the rigorous 
derivation of the progress rate (or convergence rate of the algorithm with step-size proportional to the distance to the 
optimum) on the sphere function provided for instance in [17,20,29,30] only holds on spherical functions and provides 
solely a limit without a bound between the finite dimensional convergence rate and its asymptotic limit. The result of this 

1 The weights of CMA-ES were set before the publication [9] because the theoretical result of optimal weights on the sphere was known before the 
publication.

2 More precisely, (1 +, λ)-ES optimizing any function f (that may have more than one global optimum) can not converge towards a given optimum x∗
faster in the search space than the artificial algorithm with step-size proportional to the distance to x∗.
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paper is different in that we consider the general weighted recombination on the general convex quadratic objective and 
cover finite dimensional cases as well as the limit N → ∞.

Contributions We study the weighted recombination ES on a general convex quadratic function f (x) = 1
2 (x − x∗)TA(x − x∗)

on the finite N dimensional search space. We investigate the quality gain φ, that is, the expectation of the relative function 
value decrease. We decompose φ as the product of two functions: g , a function that depends only on the mean vector of 
the sampling distribution and the Hessian A, and φ̄, the so-called normalized quality gain that depends essentially on all the 
algorithm parameters such as the recombination weights and the step-size. We approximate φ̄ by an analytically tractable 
function ϕ . We call ϕ the asymptotic normalized quality gain. The main contributions are summarized as follows.

First, we derive the error bound between φ̄ and ϕ for finite dimension N . To the best of our knowledge, this is the 
first work that performs the quality gain analysis for finite N and provides an error bound. The asymptotic normalized 
quality gain and the bounds in this paper are improved over the previous work [1]. Thanks to the explicit error bound 
derived in the paper, we can treat the population size λ increasing with N and provide (for instance) a rigorous sufficient 
condition on the dependency between λ and N such that the per-iteration quality gain scales with O (λ/N) for algorithms 
with intermediate recombination [15].

Second, we show that the error bound between φ̄ and ϕ converges to zero as the learning rate cm for the mean vector 
update tends to infinity. We derive the optimal step-size and the optimal recombination weights for ϕ , revealing the depen-
dencies of these optimal parameters on λ and N . In contrast, the previous works of quality gain analysis mentioned above 
take the limit N → ∞ while λ is fix, hence assuming λ � N . Therefore, they do not reveal the dependencies of φ̄ and the 
optimal parameters on λ when λ �� N . We validate in experiments that the optimal step-size derived for cm → ∞ provides 
a reasonable estimate of the optimal step-size even for cm = 1.

Third, we prove that ϕ converges toward φ̄∞ as N → ∞ under the condition limN→∞ Tr(A2)/ Tr(A)2 = 0, where φ̄∞ is 
the limit of φ̄ on the sphere function for N → ∞ derived in [9]. The condition limN→∞ Tr(A2)/ Tr(A)2 holds, for example, for 
positive definite A with bounded eigenvalues. It also holds for some positive semi-definite A and for some positive definite 
A with unbounded eigenvalues, for example with eigenvalues in [1, 

√
N]. The result implies that the optimal recombination 

weights are independent of A, whereas the optimal step-size heavily depends on A and the distribution mean. This part 
of the contribution is a generalization of the previous foundation in [27,28], but the proof methodology is rather different. 
Furthermore, the error bound between φ̄ and ϕ derived in this paper allows us to further investigate how fast ϕ converges 
toward φ̄∞ as N → ∞, depending on the eigenvalue distribution of A.

Organization This paper is organized as follows. In Section 2, we formally define the evolution strategy with weighted 
recombination. The quality gain analysis on the infinite dimensional sphere function is revisited. In Section 3, we derive the 
quality gain bound for a finite dimensional convex quadratic function. In Section 4, important consequences of the quality 
gain bound are discussed. In Section 5, we conclude our paper. Properties of the normal order statistics that are important 
to understand our results are summarized in Appendix A and the detailed proofs of lemmas are provided in Appendix B.

Notation We apply the following mathematical notations throughout the paper. For integers n, m ∈ N such that n ≤ m, we 
denote the set of integers between n and m (including n and m) by �n, m�. Binomial coefficients are denoted as 

(m
n

) =
m!

(m−n)!n! . For real numbers a, b ∈ R such that a ≤ b, the open and the closed intervals are denoted as (a, b) and [a, b], 
respectively. For an N-dimensional real vector x ∈ R

N , let [x]i denote the i-th coordinate of x. A sequence of length n is 
denoted as (xi)

n
i=1 = (x1, · · · , xn), or just as (xi), and an infinite sequence is denoted as (xi)

∞
i=1. For x ∈R, the absolute value 

of x is denoted by |x|. For x ∈ R
N , the Euclidean norm is denoted by ‖x‖ = (∑N

i=1[x]2
i

) 1
2 . Let 1condition be the indicator 

function which is 1 if condition is true and 0 otherwise. Let � be the cumulative density function (c.d.f.) deduced 
by the (one-dimensional) standard normal distribution N (0, 1). Let Ni:λ be the i-th smallest random variable among λ
independently and standard normally distributed random variables, i.e., N1:λ ≤ · · · ≤ Nλ:λ . The expectation of a random 
variable (or vector) X is denoted as E[X]. The conditional expectation of X given Y is denoted as E[X | Y ]. For a function 
f of n random variables (Xi)

n
i=1, the conditional expectation of F = f (X1, . . . , Xn) given Xk for some k ∈ �1, n� is denoted 

as Ek[F ] = E[F | Xk]. Similarly, the conditional expectation of F given Xk and Xl for different k, l ∈ �1, n� is denoted as 
Ek,l[F ] = E[F | Xk, Xl].

2. Formulation

2.1. Evolution strategy with weighted recombination

We consider an evolution strategy with weighted recombination. At each iteration t ≥ 0, it draws λ independent ran-
dom vectors Z1, . . . , Zλ from the N-dimensional standard normal distribution N (0, I), where 0 ∈ R

N is the zero vector 
and I is the identity matrix of dimension N . The candidate solutions X1, . . . , Xλ ∼ N (m(t), (σ (t))2I) are computed as 
Xi = m(t) + σ (t) Zi , where m(t) ∈ R

N is the mean vector and σ (t) > 0 is the standard deviation, also called the step-size 
or the mutation strength. The candidate solutions are evaluated on a given objective function f : RN → R. Without loss 
of generality (w.l.o.g.), we assume f to be minimized. Let i : λ be the index of the i-th best candidate solution among 
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Algorithm 1 Single step of the weighted recombination ES solving f .
1: procedure ES(m, σ , (wk)

λ
k=1, cm)

2: for i = 1, . . . , λ do � Generate and evaluate λ candidate solutions
3: Zi ∼ N (0, I)
4: Xi = m + σ Zi

5: Evaluate f (Xi)

6: end for
7: W (i; (Xk)

λ
k=1) = ∑ui

k=1+li
wk/(ui − li) � Compute the weights with (2)

8: m ← m + cmσ
∑λ

i=1 W (i; (Xk)
λ
k=1)Zi � Update the mean with (3)

9: return m
10: end procedure

X1, . . . , Xλ , i.e., f (X1:λ) ≤ · · · ≤ f (Xλ:λ), and w1 ≥ · · · ≥ wλ be the real-valued recombination weights. W.l.o.g., we assume ∑λ
i=1 |wi | = 1. Let μw = 1/ 

∑λ
i=1 w2

i denote the so-called effective variance selection mass. The mean vector is updated 
according to

m(t+1) = m(t) + cm

λ∑
i=1

wi(Xi:λ − m(t)) , (1)

where cm > 0 is the learning rate of the mean vector update.
In this paper we reformulate (1) to investigate the algorithm with mathematical rigor. Hereunder, we write the candidate 

solutions, X1, . . . , Xλ , and the corresponding random vectors, Z1, . . . , Zλ , as sequences (Xi)
λ
i=1 and (Zi)

λ
i=1 for short. First, 

we introduce the weight function

W (i; (Xk)
λ
k=1) :=

ui∑
k=1+li

wk

ui − li
, where

{
li = ∑λ

j=1 1 f (X j)< f (Xi)

ui = ∑λ
j=1 1 f (X j)≤ f (Xi)

, (2)

i.e., li and ui are the numbers of strictly and weakly better candidate solutions than Xi , respectively. The weight value for 
Xi is the arithmetic average of the weights wk for the tie candidate solutions. In other words, all the tie candidate solutions 
have the same weight values. If there is no tie, the weight value for the i-th best candidate solution Xi:λ is simply wi . In 
the following, we drop the subscripts and the superscripts for sequences unless they are unclear from the context and write 
simply as (Xk) = (Xk)

λ
k=1. With the weight function, we rewrite the mean vector update (1) as

m(t+1) = m(t) + cm

λ∑
i=1

W (i; (Xk))(Xi − m(t)) . (3)

The above update (3) is equivalent with the original update (1) if there is no tie among λ candidate solutions. If the objective 
function is a convex quadratic function, there will be no tie with probability one. Therefore, they are equivalent with 
probability one. Algorithm 1 summarizes the single step of the algorithm, where we rewrite (3) by using Xi − m(t) = σ (t) Zi .

The above formulation is motivated twofold. One is to well define the update even when there is tie. In our formulation, 
tie candidate solutions receive the equal recombination weights. The other is a technical reason. In (1) the already sorted 
candidate solutions Xi:λ are all correlated and they are not anymore normally distributed. However, they are assumed to be 
normally distributed in the previous work [9,27,28]. To ensure that such an approximation leads to the asymptotically true 
quality gain limit, a mathematically involved analysis has to be done. See [17,29,30] for details. In (3), the weight function 
explicitly includes the ranking computation and Xi are still independent and normally distributed. This allows us to derive 
the quality gain on a convex quadratic function rigorously.

2.2. Quality gain analysis on the spherical function

The quality gain is defined as the expectation of the relative decrease of the function value. Formally, it is the conditional 
expectation of the relative decrease of the function value conditioned on the mean vector m(t) = m and the step-size 
σ (t) = σ , defined as follows.

Definition 1. The quality gain of Algorithm 1 given m(t) = m and σ (t) = σ is

φ(m,σ ) = E[ f (m) − f (ES(m,σ , (wk)
λ
k=1, cm))]

f (m) − f (x∗)
, (4)

where x∗ ∈ R
N is (one of) the global minimum point of f . Note that the quality gain depends also on (wk)

λ
k=1, cm , and the 

dimension N .
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Results Algorithm 1 solving a spherical function f (x) = ‖x‖2 is analyzed in [9]. For this purpose, the normalized step-size
and the normalized quality gain are introduced as

σ̄ = σ
cm N

‖m‖ and φ̄(m, σ̄ ) = N

2
φ

(
m,σ = σ̄ ‖m‖

cm N

)
, (5)

respectively. This normalization of the step-size suggests that σ is proportional to ‖m‖ and inverse proportional to cm and 
to N . The normalized step-size σ̄ is proportional to the ratio between the actual step-size and the distance between the 
current mean and the optimal solution. This reflects the scale invariance of the algorithm on the sphere function, that is, 
the single step response is solely determined by the normalized step-size. The dimension N in the numerator implies that 
the step-size σ needs to be inversely proportional to N . The normalized quality gain φ̄ is simply the quality gain given 
σ̄ scaled by N/2. The scaling by N reflects that the convergence speed can not exceed O (1/N) for any comparison based 
algorithm [31]. By taking N → ∞, the normalized quality gain converges pointwise (w.r.t. σ̄ ) to

φ̄∞(σ̄ , (wk)) := lim
N→∞ φ̄(m, σ̄ ) = −σ̄

λ∑
i=1

wiE[Ni:λ] − σ̄ 2

2μw

= μw

2

(
λ∑

i=1

wiE[Ni:λ]
)2 (

1 −
(

σ̄

σ̄ ∗((wk))
− 1

)2
)

, (6)

where σ̄ ∗((wk)) denotes the normalized step-size σ̄ optimizing φ̄∞ given (wk) and is given by

σ̄ ∗((wk)) = −μw

λ∑
i=1

wiE[Ni:λ] . (7)

A formal proof of this result is presented in Theorem 2 of [29] relying on the uniform integrability of some random variable 
proved in [30].

Consider the optimal recombination weights that maximize φ̄∞ in (6). The optimal recombination weights are given 
independently of σ̄ by

w∗
k = − E[Nk:λ]∑λ

i=1 |E[Ni:λ]|
(8)

and φ̄∞ is written as

φ̄∞(σ̄ , (w∗
k )) =

∑λ
i=1 E[Ni:λ]2

2

⎛
⎝1 −

(
σ̄∑λ

i=1 |E[Ni:λ]|
− 1

)2
⎞
⎠ . (9)

Note that σ̄ ∗((w∗
k )) = ∑λ

i=1 |E[Ni:λ]|. Given σ̄ ∗ and (w∗
k ), we achieve the maximal value of φ̄∞ that is φ̄∞(σ̄ ∗((w∗

k )), (w∗
k )) =∑λ

i=1 E[Ni:λ]2/2.

Remarks The optimal normalized step-size (7) and the normalized quality gain (6) given σ̄ ∗ depend on (wk). Par-
ticularly, they are proportional to μw . For instance, under the optimal weights (8), we have −∑λ

i=1 wiE[Ni:λ] =∑λ
i=1 E[Ni:λ]2/ 

∑λ
i=1 |E[Ni:λ]| ≈ (π/2)1/2 for a sufficiently large λ.3 Then, from (6) and (7) we know σ̄ ∝ μw and φ̄∞ ∝ μw . 

Moreover, using the relation μw = (∑λ
i=1 |E[Ni:λ]|

)2
/ 
∑λ

i=1 E[Ni:λ]2 ≈ (2/π)λ, we can reword it as that the optimal step-
size and the normalized quality gain given σ̄ ∗ are proportional to λ. Fig. 1 shows how φ̄∞/λ scales with λ when the optimal 
step-size σ = σ̄ ∗((wk)) ‖m‖/(cm N) is set. This shows that the normalized quality gain, and hence the optimal normalized 
step-size, are proportional to λ for standard weight schemes. When the optimal weights are used, φ̄∞/λ goes up to 0.5 as 
λ increases. On the other hand, nonnegative weights can not achieve the value of φ̄∞/λ above 0.25. The CMA type weights 
are designed to approximate the optimal nonnegative weights, where the first half are proportional to the optimal setting 
and the last half are zero. The truncation weights result in a smaller normalized quality gain. It is shown in [15] that the 
truncation weights achieve φ̄∞ ∈ O (μ log(λ/μ)).

The normalized quality gain limit φ̄∞ depends only on the normalized step-size σ̄ and the weights (wk). Since the 
normalized step-size does not change if we multiply cm by some factor and divide σ by the same factor, cm does not 
have any impact on φ̄∞ , hence on the quality gain φ. This is unintuitive and is not true in a finite dimensional space. 
The step-size σ realizes the standard deviation of the sampling distribution and it has an impact on the ranking of the 

3 We used the facts limλ→∞
∑λ

i=1 E[Ni:λ]2/λ = 1 and limλ→∞
∑λ

i=1 |E[Ni:λ]|/λ = (2/π)1/2. See Appendix A for details.
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Fig. 1. The normalized quality gain limit φ̄∞(σ̄ ∗((wk)), (wk)) divided by λ. Four different weight schemes are employed: the optimal weights (wk ∝
−E[Nk:λ]), the weights used in the CMA-ES (wk ∝ max(ln( λ+1

2 ) − ln(k), 0)), and the truncation weights (wk = 1/μ for k = 1, . . . , μ and wk = 0 for 
k = μ + 1, . . . , λ) with μ = �λ/4	 and μ = �λ/10	. All the weights are scaled so that ∑λ

k=1 |wk| = 1. The value of E[Ni:λ] is approximated by the Blom’s 
formula (see Appendix A).

candidate solutions. On the other hand, the product σ cm is the step-size of the m-update that depends on the ranking of 
the candidate solutions. The normalized quality gain limit provided above tells us that the ranking of the candidate solutions 
is independent of σ̄ in the infinite dimensional space. We will discuss this further in Section 4.

The quality gain is to measure the improvement in one iteration. If we generate and evaluate λ candidate solutions every 
iteration, the quality gain per evaluation ( f -call) is 1/λ times smaller, i.e., the quality gain per evaluation is 1/N , rather than 
λ/N . It implies that the number of iterations to achieve the same amount of the quality gain is inversely proportional to λ. 
This is the best we can hope for when the algorithm is implemented on a parallel computer. However, since the above 
result is obtained in the limit N → ∞ while λ is fixed, it is implicitly assumed that λ � N . The optimal down scaling of 
the number of iterations indeed only holds for λ � N . In practice, the quality gain per iteration tends to level out as λ
increases. We will revisit this point in Section 4 and see how the optimal values for σ̄ and φ̄ depend on N and λ when 
both are finite.

3. Quality gain analysis on general quadratic functions

In this section we investigate the normalized quality gain of Algorithm 1 minimizing a quadratic function with its Hessian 
∇∇ f (x) = A assumed to be nonnegative definite and symmetric, i.e.,

f (x) = 1

2
(x − x∗)TA(x − x∗) , (10)

where x∗ ∈ R
N is the global optimal solution.4 W.l.o.g., we assume Tr(A) = 1.5 For the sake of notation simplicity we denote 

the directional vector of the gradient of f at m by e = ∇ f (m)
‖∇ f (m)‖ = A(m−x∗)

‖A(m−x∗)‖ . To make the dependency of e on m clear, we 
sometimes write it as em .

3.1. Normalized quality gain and normalized step-size

We introduce the normalized step-size and the normalized quality gain. First of all, if the objective function is homoge-
neous around the optimal solution x∗ , the optimal step-size must be a homogeneous function of degree 1 with respect to 
m − x∗ . This is formally stated in the following proposition. The proof is found in Appendix B.1.

Proposition 2. Let f : RN → R be a homogeneous function of degree n, i.e., f (α · x) = αn f (x) for a fixed integer n > 0 for any 
α > 0 and any x ∈ R

N . Consider Algorithm 1 minimizing a function f ∗ : x �→ f (x − x∗). Then, the quality gain is scale-invariant, i.e., 
φ(x∗ + (m − x∗), σ) = φ(x∗ + α(m − x∗), ασ) for any α > 0. Moreover, the optimal step-size σ ∗ = argmaxσ≥0 φ(m, σ), if it is 
well-defined, is a function of m − x∗ . For the sake of simplicity we write the optimal step-size as a map σ ∗ : m − x∗ �→ σ ∗(m − x∗). It 
is a homogeneous function of degree 1, i.e., σ ∗(α · (m − x∗)) = ασ ∗(m − x∗) for any α > 0.

4 We use the following terminology in this paper. A nonnegative definite matrix A is a matrix having only nonnegative eigenvalues, i.e., xTAx ≥ 0 for all 
x ∈R

N . A nonnegative definite matrix A is called positive definite if xTAx > 0 for all x ∈R
N \ {0}, otherwise it is called positive semi-definite. If A is positive 

semi-definite, the optimum x∗ is not unique.
5 None of the algorithmic components and the quality measures used in the paper are affected by multiplying a positive constant to A, or equivalently 

to f . To consider a general A, simply replace A with A/ Tr(A) in the following of the paper.
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Note that the quadratic function is homogeneous of degree 2, and the function m �→ ‖∇ f (m)‖ = ‖A(m − x∗)‖ is homo-
geneous of degree 1 around x∗ . The latter is our candidate for the optimal step-size. We define the normalized step-size, 
the scale-invariant step-size, and the normalized quality gain for a quadratic function as follows.

Definition 3. For a convex quadratic function (10), the normalized step-size σ̄ and the scale-invariant step-size σ given σ̄ are 
defined as σ̄ = (σ cm)/ ‖∇ f (m)‖ and σ = (σ̄ /cm) ‖∇ f (m)‖.

Definition 4. Let g : RN → R be the m-dependent scaling factor of the normalized quality gain defined as g(m) =
‖∇ f (m)‖2 / f (m). The normalized quality gain for a quadratic function is defined as φ̄(m, σ̄ ) = φ(m, σ = σ̄ ‖∇ f (m)‖/cm)/

g(m).

Note that the normalized step-size and the normalized quality gain defined above coincide with (5) if f (x) = ‖x‖2 /(2N), 
where A = I/N , ∇ f (m) = m/N and g(m) = 2/N . Moreover, they are equivalent to Eq. (4.104) in [15] introduced to analyze 
the (1 + λ)-ES and the (1, λ)-ES. The same normalized step-size has been used for (μ/μI , λ)-ES [27,28]. See Section 4.3.1 
of [15] for the motivation of this normalization.

Non-isotropic Gaussian sampling Throughout the paper, we assume that the multivariate normal sampling distributions have 
an isotropic covariance matrix. We can generalize all the following results to an arbitrary positive definite symmetric co-
variance matrix C by considering a linear transformation of the search space. Indeed, let f : x �→ 1

2 (x − x∗)TA(x − x∗), and 
consider the coordinate transformation x �→ y = C− 1

2 x. In the latter coordinate system the function f can be written as 
f (x) = f̄ (y) = 1

2 (y − C− 1
2 x∗)T(C

1
2 AC

1
2 )(y − C− 1

2 x∗). The multivariate normal distribution N (m, σ 2C) is transformed into 
N (C− 1

2 m, σ 2I) by the same transformation. Then, it is easy to prove that the quality gain on the function f given the 
parameter (m, σ , C) is equivalent to the quality gain on the function f̄ given (C− 1

2 m, σ , I). The normalization factor g(m)

of the quality gain and the normalized step-size are then rewritten as

g(m) =
∥∥∥C

1
2 A(m − x∗)

∥∥∥2

f (m)Tr(C
1
2 AC

1
2 )

, σ̄ = σ cm Tr(C
1
2 AC

1
2 )∥∥∥C

1
2 A(m − x∗)

∥∥∥ .

3.2. Conditional expectation of the weight function

The quadratic objective (10) can be written as

f (m + �) = f (m) + ∇ f (m)T� + 1

2
�TA� . (11)

The normalized quality gain on a convex quadratic function can be written as (using (11) with � = m(t+1) − m(t) and 
substituting (3))

φ̄(m, σ̄ ) = − σ̄

λ∑
i=1

E
[
Ei[W (i; (Xk))]eT Zi

]

− σ̄ 2

2

λ∑
i=1

λ∑
j=1

E
[
Ei, j[W (i; (Xk))W ( j; (Xk))]Z T

i AZ j
]

,

where Xk = m(t) + σ (t) Zk , and Ei and Ei, j are the conditional expectations given Xi and (Xi, X j), respectively.
The following lemma provides the expression of the conditional expectation of the weight function, which allows us to 

derive the bound for the difference between φ̄ and ϕ . In the following, let

Pb(k;n, p) =
(

n

k

)
pk(1 − p)n−k

Pt(k, l;n, p,q) =
(

n

l + k

)(
l + k

k

)
pkql(1 − (p + q))n−(k+l)

denote the probability mass functions of the binomial and trinomial distributions, respectively, where 0 ≤ k ≤ n, 0 ≤ l ≤ n, 
k + l ≤ n, 0 ≤ p ≤ 1, 0 ≤ q ≤ 1 and p + q ≤ 1. The proof of the lemma is provided in Appendix B.2.

Lemma 5. Let X ∼ N (m, σ 2I) and (Xi)
λ
i=1 be λ i.i.d. copies of X. Let F f (t) = Pr[ f (X) < t] be the c.d.f. of the function value f (X). 

Then, we have for any i, j ∈ �1, λ�, i �= j,
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Ei[W (i; (Xk))] = u1(F f ( f (Xi))) ,

Ei[W (i; (Xk))
2] = u2(F f ( f (Xi))) ,

Ei, j[W (i; (Xk))W ( j; (Xk))] = u3(F f ( f (Xi)), F f ( f (X j))) ,

where

u1(p) =
λ∑

k=1

wk Pb(k − 1;λ − 1, p) , (12)

u2(p) =
λ∑

k=1

w2
k Pb(k − 1;λ − 1, p) , (13)

u3(p,q) =
λ−1∑
k=1

λ∑
l=k+1

wk wl Pt(k − 1, l − k − 1;λ − 2,min(p,q), |q − p|) . (14)

Thanks to Lemma 5 and the fact that (Xk)
λ
k=1 are i.i.d., we can further rewrite the normalized quality gain as

φ̄(m, σ̄ ) = −σ̄ λE
[
u1(F f ( f (X)))eT Z

] − σ̄ 2λ

2
E
[
u2(F f ( f (X)))

(
Z TAZ − 1

)]
− σ̄ 2λ

2
E[u2(F f ( f (X)))] − σ̄ 2(λ − 1)λ

2
E
[
u3(F f ( f (X)), F f ( f ( X̃)))Z TA Z̃

]
. (15)

Here Z and Z̃ are independent and N (0, I)-distributed, and X = m + σ Z and X̃ = m + σ Z̃ , where σ = σ̄ ‖∇ f (m)‖/cm is 
the scale-invariant step-size. Note that X and X̃ are independent and N (m, σ 2I)-distributed.

The following Lemma shows the Lipschitz continuity of u1, u2, and u3. The proof is provided in Appendix B.3.

Lemma 6. The functions u1 , u2 , and u3 are �1-Lipschitz continuous, i.e., |u1(p1) − u1(p2)| ≤ L1 |p1 − p2|, |u2(p1) − u2(p2)| ≤
L2 |p1 − p2|, and |u3(p1,q1) − u3(p2,q2)| ≤ L3(|p1 − p2| + |q1 − q2|), with the Lipschitz constants

L1 = sup
0<p<1

∣∣∣∣∣(λ − 1)

λ−1∑
k=1

(wk+1 − wk)Pb(k − 1;λ − 2, p)

∣∣∣∣∣ ,

L2 = sup
0<p<1

∣∣∣∣∣(λ − 1)

λ−1∑
k=1

(w2
k+1 − w2

k )Pb(k − 1;λ − 2, p)

∣∣∣∣∣ ,

L3 = max

[
sup

0<p<q<1

∣∣∣∣∣∣
λ−2∑
k=1

λ∑
l=k+2

wl(wk+1 − wk)Pt(k − 1, l − k − 2;λ − 3, p,q − p)

∣∣∣∣∣∣ ,

sup
0<p<q<1

∣∣∣∣∣∣
λ−2∑
k=1

λ∑
l=k+2

wk(wl − wl−1)Pt(k − 1, l − k − 2;λ − 3, p,q − p)

∣∣∣∣∣∣
]
(λ − 2) .

Upper bounds for the above Lipschitz constants are discussed in Appendix B.4.

3.3. Theorem: normalized quality gain on convex quadratic functions

The following main theorem provides the error bound between φ̄ and ϕ .

Theorem 7. Consider Algorithm 1 and let f be a convex quadratic objective function (10). Let the normalized step-size σ̄ and 
the normalized quality gain φ̄ defined in Definition 3 and Definition 4, respectively. Let em = ∇ f (m)/ ‖∇ f (m)‖ and α =
min

(
1, (σ̄ /cm) Tr(A2)1/2

)
. Define

G(α) = min

[
1, α

(
2 + 2

1
2 (ln(1/α))

1
2

π
1
2

+ d1(A) ln(1/α)

(2π)
1
2 Tr(A2)

1
2

)]
(16)

and
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ϕ(σ̄ , (wk), em,A) = −σ̄

λ∑
i=1

wiE[Ni:λ] − σ̄ 2

2

λ∑
i=1

w2
i

(
1 − eT

mAem
)

− σ̄ 2

2
eT

mAem

λ∑
i=1

λ∑
j=1

wi w jE[Ni:λN j:λ] , (17)

and let L1 , L2 , L3 be the Lipschitz constants of u1, u2 and u3 defined in Lemma 5, respectively. Then,

sup
m∈RN\{0}

∣∣φ̄(m, σ̄ ) − ϕ(σ̄ , (wk), em,A)
∣∣ ≤ σ̄ λL1

(
(2/π)

1
2 G(α) + (4π)−

1
2 α

)
+σ̄ cmλL2

(
2− 1

2 G(α) + (8π)−
1
2 α

)
α + σ̄ cmλ(λ − 1)L3

(
(2/π)

1
2 G(α) + (2π2)−

1
2 α

)
α . (18)

The above theorem claims that if the right-hand side (RHS) of (18) is sufficiently small, the normalized quality gain φ̄ is 
approximated by the asymptotic normalized quality gain ϕ defined in (17). Compared to φ̄∞ in (6) derived for the infinite 
dimensional sphere function, ϕ is different even when A ∝ I. We investigate the properties of ϕ in Section 4.1. The situations 
where the RHS of (18) is sufficiently small are discussed in Section 4.2 and Section 4.3. We remark that Theorem 3.4 in [1]
provides a bound for the difference between φ̄ and φ̄∞ , instead of the difference between φ̄ and ϕ . Introducing ϕ allows 
us to consider a finite dimensional case and to derive a tighter bound.

3.4. Outline of the proof of the main theorem

In the following of the section and in Appendix B, let Ze = eT Z , Z⊥ = Z − Zee, and X = m + σ Z for Z ∼ N (0, I). Then, 
Ze ∼N (0, 1) and Z⊥ ∼N (0, I − eeT) and they are independent. Define

H N = f (m + σ Z) −E[ f (m + σ Z)]
σ ‖∇ f (m)‖ and h(Z) = 1

2

σ̄

cm
(Z TAZ − 1) ,

where E[ f (m + σ Z)] = f (m) + σ 2/2. It is easy to see that H N = Ze + h(Z). Let F f and F N be the c.d.f. induced by f (X)

and H N , respectively. Then, F f ( f (X)) = F N(H N ). Let Z̃ be the i.i.d. copy of Z and define Z̃e , Z̃⊥ , X̃ , and H̃ N analogously.
The first lemma allows us to approximate F N (hence F f ) with the c.d.f. � of the standard normal distribution. The proof 

is based on the Lipschitz continuity of � and the tail bound of h(Z) proved in Lemma 1 of [32]. The detail is provided in 
Appendix B.5.

Lemma 8. Let α and G(α) be defined in Theorem 7. Then, supt∈R |F N (t) − �(t)| ≤ G(α).

The following three lemmas are used to bound each term on the RHS of (15). The proofs are straight-forward from 
the Lipschitz continuity of u1, u2 and u3 and Lemma 8. The detailed proofs are found in Appendix B.6, Appendix B.7, and 
Appendix B.8, respectively.

Lemma 9. Let L1 , α, and G(α) be the quantities appeared in Lemma 6 and Theorem 7. Then,∣∣E[u1(F f ( f (X)))Ze] −E[u1(�(Ze))Ze]
∣∣ ≤ L1

(
(2/π)

1
2 G(α) + (4π)−

1
2 α

)
.

Lemma 10. Let L2 , α, and G(α) be the quantities appeared in Lemma 6 and Theorem 7. Then,∣∣E[u2(F f ( f (X)))(Z TAZ − 1)] −E[u2(�(Ze))(Z TAZ − 1)]∣∣
≤ L2

(
2

1
2 G(α) + (2π)−

1
2 α

)
Tr(A2)

1
2 .

Lemma 11. Let L3, α, and G(α) be the quantities appeared in Lemma 6 and Theorem 7. Then,∣∣∣E[u3(F f ( f (X)), F f ( f ( X̃)))Z TA Z̃ ] −E[u3(�(Ze),�( Z̃e))Z TA Z̃ ]
∣∣∣

≤ L3
(
(8/π)

1
2 G(α) + (2

1
2 /π)α

)
Tr(A2)

1
2 .

The asymptotic normalized quality gain ϕ in (17) is obtained by replacing the c.d.f. F f of f (X) in (15) with the c.d.f. �

of the standard normal distribution. The above lemmas are used to bound the difference between φ̄ and ϕ . The following 
lemma provides the explicit form of each term of (17). The proof is straight-forward in light of Lemma 5. The detail can be 
found in Appendix B.9.
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Lemma 12. The functions u1 , u2 and u3 defined in Lemma 5 satisfy the following properties:

λE[u1(�(Ze))Ze] =
λ∑

i=1

wiE[Ni:λ] , (19)

λE[u2(�(Ze))] =
λ∑

i=1

w2
i , (20)

λE[u2(�(Ze))(Z TAZ − 1)] = eTAe
λ∑

i=1

w2
i (E[N 2

i:λ] − 1) , (21)

λ(λ − 1)E[u3(�(Ze),�( Z̃e))Z TA Z̃ ] = 2eTAe
λ−1∑
k=1

λ∑
l=k+1

wk wlE[Nk:λNl:λ] . (22)

Now we finalize the proof of the main theorem. Using Lemma 12, we can rewrite (17) as

ϕ(σ̄ , (wk)
λ
k=1,em,A) = −σ̄ λE[u1(�(Ze))Ze] − σ̄ 2

2
λE[u2(�(Ze))]

− σ̄ 2

2
λE[u2(�(Ze))(Z TAZ − 1)] − σ̄ 2

2
λ(λ − 1)E[u3(�(Ze),�( Z̃e))Z TA Z̃ ] .

From the equation (15) and the above expression of ϕ , we have

φ̄(m, σ̄ ) − ϕ(σ̄ , (wk)
λ
k=1,em,A)

= −σ̄ λE
[
(u1(F f ( f (X))) − u1(�(Ze)))Ze

]
− σ̄ 2λ

2
E[(u2(F f ( f (X))) − u2(�(Ze)))]

− σ̄ 2λ

2
E

[
(u2(F f ( f (X))) − u2(�(Ze)))

(
Z TAZ − 1

)]
− σ̄ 2(λ − 1)λ

2
E
[
(u3(F f ( f (X)), F f ( f ( X̃))) − u3(�(Ze),�( Z̃e)))Z TA Z̃

]
.

From the well-known fact (e.g., Theorem 2.1 of [33]) that for a random variable X with a continuous c.d.f. Fx the random 
variable Fx(X) is uniformly distributed on [0, 1], we can prove both F f ( f (X)) and �(Ze) are uniformly distributed on 
[0, 1]. Therefore, we have E[u2(F f ( f (X)))] = E[u2(�(Ze))] = E[u2(U [0, 1])], and the second term on the RHS of the above 
equality is zero. Applying the triangular inequality and Lemma 9, Lemma 10, and Lemma 11, we obtain (18). It completes 
the proof of Theorem 7.

4. Consequences

Theorem 7 tells that if the RHS of (18) is sufficiently small, the normalized quality gain φ̄(m, σ̄ ) is well approximated 
by ϕ(σ̄ , (wk)

λ
k=1, em, A) defined in (17). First we investigate the parameter values that are optimal for ϕ . Then, we consider 

the situations when the RHS of (18) is sufficiently small.
Let n(λ) be the λ dimensional column vector whose i-th component is E[Ni:λ] and N(λ) be the λ dimensional symmetric 

matrix whose (i, j)-th elements are E[Ni:λN j:λ]. Let w and w̄ be the λ dimensional column vector whose i-th element is 
wi and σ̄ wi , respectively. Now (17) can be written as

ϕ(w̄,e,A) = −w̄Tn(λ) − 1

2

(
1 − eTAe

)
w̄T w̄ − 1

2
(eTAe)w̄TN(λ)w̄ . (23)

In the following we use the following asymptotically true approximation for a sufficiently large λ (see (A.2) in Appendix A)

w̄TN(λ)w̄

λ‖w̄‖2
≈ (w̄Tn(λ))

2

‖w̄‖2
∥∥n(λ)

∥∥2
≈ (w̄Tn(λ))

2

λ‖w̄‖2
. (24)

By “for a sufficiently large λ”, we mean for a λ large enough to approximate the left hand side (LHS) of (24) by the right-most 
side (RMS). For a sufficiently large λ, (23) is approximated by

ϕ(w̄,e,A) ≈ −w̄Tn(λ) − 1

2

(
1 − eTAe

)
w̄T w̄ − 1

2
(eTAe)(w̄Tn(λ))

2 . (25)
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4.1. Asymptotic normalized quality gain and optimal parameters

As we mentioned in the previous section, ϕ in (17) is different from the normalized quality gain limit φ̄∞ in (6). Consider 
the sphere function A = I/N; then, since eTAe = 1/N for any e with ‖e‖ = 1, we have

ϕ(σ̄ , (wk),e,A) = φ̄∞(σ̄ , (wk)
λ
k=1) + σ̄ 2

2N

λ∑
i=1

w2
i − σ̄ 2

2N

λ∑
i=1

λ∑
j=1

wi w jE[Ni:λN j:λ] .

Note that the second and the third terms on the RHS are proportional to 1/N . By taking the limit for N to infinity, we have 
ϕ = φ̄∞ . Therefore, the second and third terms describe how the finite dimensional cases are different from the infinite 
dimensional case. In particular, the last term prevents the quality gain from scaling up proportionally to λ when λ �� N .

Optimal recombination weights The recombination weights optimal for ϕ are provided in the following proposition.

Proposition 13. The asymptotic normalized quality gain ϕ (17) is optimized when w̄ is the solution to the following linear system of 
equations

(I + eTAe(N(λ) − I))w̄ = −n(λ) , (26)

where σ̄ and wi are uniquely determined using the condition 
∑λ

i=1 |wi | = 1. Then the optimal value of ϕ is − 1
2 nT

(λ) w̄∗ where w̄∗ is 
the solution to the linear system (26).

Proof. We obtain (26) by taking the derivative of (23) with respect to w̄ , and requiring ∂ϕ(w̄, e, A)/∂[w̄]i = 0. This ends 
the proof. �

First, consider the limit for N → ∞ while λ is fixed. As long as the largest eigenvalue d1(A) of A converges to zero as 
N → ∞, i.e., limN→∞ d1(A) = 0, we have eTAe → 0 as N → 0. Then, (26) reads w̄ = −n(λ) . Therefore, we have the same 
optimal recombination weights as the ones derived for the infinite dimensional sphere function.

Next, consider a finite dimensional case. If λ is sufficiently large, the optimality condition (26) is approximated by(
1

λ

(
1 − 1

eTAe

)
I + 1

eTAe

n(λ)nT
(λ)∥∥n(λ)

∥∥2

)
w̄ = −n(λ)

λ
.

The solution to the above approximated condition is given by w̄ ∝ −n(λ) independently of A and e. It means, for a suffi-
ciently large λ, the optimal recombination weights are approximated by the weights (8) optimal for the infinite dimensional 
sphere function.

Optimal normalized step-size The optimal σ̄ under a given (wk)
λ
k=1 is provided in the following proposition.

Proposition 14. Given w = (w1, . . . , wλ), the asymptotic normalized quality gain (17) is maximized when the normalized step-size 
σ̄ is

σ̄ ∗ = −∑λ
i=1 wiE[Ni:λ]∑λ

i=1 w2
i

(
1 − eT

mAem
) + eT

mAem
∑λ

i=1
∑λ

j=1 wi w jE[Ni:λN j:λ]
, (27)

then ϕ(σ̄ ∗, (wk), e, A) = σ̄ ∗
2

( − ∑λ
i=1 wiE[Ni:λ]

)
.

Proof. It is a straight-forward consequence from differentiating (17) with respect to σ̄ and solving ∂ϕ/∂σ̄ = 0. �
For a sufficiently large λ (see (24)), one can rewrite and approximate (27) as

σ̄ ∗ = −wTn(λ)(
1 − eT

mAem
)‖w‖2 + eT

mAem wTN(λ)w

≈ (eT
mAem)−1μw(−wTn(λ))

(eT
mAem)−1 − 1 + μw(−wTn(λ))2

. (28)

Note again that −wTn(λ) = − 
∑λ

i=1 wiE[Ni:λ] ∈ O (1) for the optimal weights, CMA-type non-negative weights, and trun-
cation weights with fixed truncation ratio. To provide a better insight, consider the case of the sphere function (A = I/N). 
Then, the RMS of (28) reads
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Fig. 2. Optimal normalized step-size on N = 10, 100, 1000, 10000 dimensional sphere function for different weight schemes and different population size λ.

σ̄ ∗ ≈ Nμw(−wTn(λ))

N − 1 + μw(−wTn(λ))2
. (29)

Then, we find the following: (i) if N � μw , then σ̄ ∗ ≈ μw(−wTn(λ)) and ϕ ≈ μw(−wTn(λ))
2/2; (ii) if μw � N , then 

σ̄ ∗ ≈ N/(−wTn(λ)) and ϕ ≈ N/2. Fig. 2 visualizes the optimal normalized step-size (27) for various w on the sphere 
function. The optimal normalized step-size (27) scales linearly for λ ≤ N and it tends to level out for λ > N .

Geometric interpretation of the optimal situation On the infinite dimensional sphere function, we know that the optimal step-
size puts the algorithm in the situation where f (m) improves twice as much by m moving towards the optimum as it 
deteriorates by m moving randomly in the subspace orthogonal to the gradient direction [13]. On a finite dimensional con-
vex quadratic function, we find the analogous result. From (15) and lemmas in Section 3.4, the first term of the asymptotic 
normalized quality gain (17), i.e. −σ̄

∑λ
i=1 wiE[Ni:λ], is due to the movement of m in negative gradient direction, and the 

second and third terms are due to the random walk in the orthogonal subspaces.6 The asymptotic normalized quality gain 
is maximized when the normalized step-size is set such that the first term is twice as large as the absolute value of the 
sum of the second and the third terms. That is, the amount of the decrease of f (m) by m moving into the negative gradient 
direction is twice greater than the increase of f (m) by m moving in its orthogonal subspace.

6 More precisely, the second and the third terms come from the quadratic term in (11) that contains the information in the gradient direction as well. 
However, the above statement is true in the limit N → ∞ as long as Tr(A2) → 0.
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4.2. Infinitesimal step-size case

The RHS of (18), the error bound between φ̄ and ϕ , converges to zero when α → 0. One such situation is the limit of 
σ/ ‖m‖ → 0 while cmσ can remain positive, i.e., in the mutate small, but inherit large situation, which is formally stated in 
the next corollary.

Corollary 15. For any positive constant C > 0,

lim
σ/‖m‖→0

sup
σ̄∈(0,C]

sup
m∈RN\{0}

1

σ̄

∣∣φ̄(m, σ̄ ) − ϕ(σ̄ , (wk), em,A)
∣∣ = 0 (30)

Proof. Note that the function G(α) ∈ O(α ln(1/α)) as α → 0. Then, (18) reads

sup
m∈RN\{0}

∣∣φ̄(m, σ̄ ) − ϕ(σ̄ , (wk),em,A)
∣∣

∈ σ̄ λO(α ln(1/α))

[
L1 + cmαL2 + cmα(λ − 1)L3

]
. (31)

Note also that

α = σ̄

cm
Tr(A2)

1
2 = σ Tr(A2)

1
2

‖∇ f (m)‖ ≤ σ

‖m‖
Tr(A2)

1
2

dN(A)

and αcm = σ̄ Tr(A2)
1
2 ≤ C Tr(A2)

1
2 . It implies that the RHS of (31) divided by σ̄ is in O (α ln(1/α)) ⊆ o(α1−ε) for any ε > 0

under the condition σ̄ ≤ C. Since α → 0 as σ/ ‖m‖ → 0, (31) implies (30). �
If cm is fixed, we have σ̄ → 0 as σ/ ‖m‖ → 0. Then, the asymptotic normalized quality gain (17) converges towards zero 

as the bound on the RHS of (18) goes to zero. The above corollary tells that the bound converges faster than σ̄ does, while 
the asymptotic normalized quality gain decreases linearly in σ̄ . As a consequence, we find that the normalized quality gain 
approaches −σ̄

∑λ
i=1 wiE[Ni:λ] as σ/ ‖m‖ → 0.

Consider the case that σ̄ is fixed, i.e., cmσ is fixed. Then, from the corollary we find that the normalized quality gain 
converges towards ϕ in (17) as σ/ ‖m‖ → 0.

Taking cm → ∞ we obtain φ̄ → ϕ . Though resembling a numerical gradient estimation when σ → 0, it is not quite 
practical to take a large cm . Indeed we usually rather do the opposite. For noisy optimization, the idea of rescaled mutations
(corresponding to a large σ and a small cm) that was proposed by A. Ostermeier in 1993 (according to [13]) and analyzed 
in [34,35] is introduced to reduce the noise-to-signal ratio. If neither cm �� 1 nor N �� 1, the RHS of (18) will not be small 
enough to approximate the normalized quality gain by ϕ in (17). Then the normalized step-size defined in (27) is not 
guaranteed to provide an approximation of the optimal normalized step-size. However, in practice, we observe that the 
normalized step-size defined in (27) provides a reasonable approximation of the optimal normalized step-size for cm ≥ 1. 
We will see it in Fig. 4.

4.3. Infinite dimensional case

The other situation when α → 0 occurs is the limit N → ∞ under the condition limN→∞ Tr(A2) = 0. In this case, since 
eTAe ≤ Tr(A2)

1
2 → 0, the limit expression ϕ converges to φ̄∞ , i.e., the same limit on the sphere function. It is stated in 

the following corollary, which is a generalization of the result obtained in [9] from the sphere function to a general convex 
quadratic function.

Corollary 16. Let (AN)∞N=1 be the sequence of nonnegative definite matrices satisfying limN→∞ Tr(A2)
1
2 = 0. Then,

lim
N→∞ sup

m∈RN \{0}

∣∣ϕ(σ̄ , (wk)
λ
k=1, e,AN) − φ̄∞(σ̄ , (wk)

λ
k=1)

∣∣ = 0 , (32)

where φ̄∞(σ̄ , (wk)
λ
k=1) = −σ̄

∑λ
i=1 wiE[Ni:λ] − σ̄ 2/(2μw) as defined in (6). Moreover,

lim
N→∞ sup

σ̄∈(0,C]
sup

m∈RN\{0}

∣∣φ̄(m, σ̄ ) − φ̄∞(σ̄ , (wk)
λ
k=1)

∣∣ = 0 . (33)

Corollary 16 shows that the normalized quality gain on a convex quadratic function converges towards the asymptotic 
normalized quality gain derived on the infinite dimensional sphere function as Tr(A2)

1
2 → 0. It implies that the optimal 

values of the recombination weights and the normalized step-size are independent of the Hessian of the objective function, 
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and given by (8). It is a nice feature since we do not need to tune the weight values depending on the function. Since any 
twice continuously differentiable function is locally approximated by a quadratic function, the optimal weights derived here 
are expected to be locally optimal on any twice continuously differentiable function.

In the above corollary, the population size λ is a constant over the dimension N . However, in the default setting of the 
CMA-ES, the population size is λ = 4 + �3 ln(N)	, meaning that the population size is unbounded. If the population size 
increases to infinity as N → ∞, it is not guaranteed that the per-evaluation progress φ̄/λ converges to φ̄∞/λ as N → ∞. 
The following proposition provides a sufficient condition on the recombination weights and the population size such that 
the per-evaluation progress φ̄/λ converges to φ̄∞/λ when λ increases as N increases.

Proposition 17. Let (AN)∞N=1 be the sequence of the Hessian matrix that satisfies limN→∞ Tr(A2
N )

1
2 = 0. Let (λN )∞N=1 be the sequence 

of the population size and (w N
k )

λN
k=1 be the sequence of the weights for the population size λN . Suppose for an arbitrarily small positive ε ,

λ2
N ∈ o

(
1

d1(AN)

)
and

max

(
λN , L

1
1−ε

1 λ
2−ε
1−ε

N , L
1

2−ε

2 λ
3−ε
2−ε

N , L
1

2−ε

3 λ
4−ε
2−ε

N

)
∈ O

(
1

Tr(A2
N)

1
2

)
.

Then,

lim
N→∞ sup

σ̄∈(0,2σ̄ ∗)
sup

m∈RN \{0}
1

λN

∣∣∣φ̄(m, σ̄ ) − φ̄∞(σ̄ , (w N
k )

λN
k=1)

∣∣∣ = 0 , (34)

where σ̄ ∗ is the normalized step-size optimal for φ̄∞(σ̄ , (w N
k )

λN
k=1), which is formulated in (7).

Proof. A sufficient condition for ϕ to converge to φ̄∞ for σ̄ ∈ (0, 2σ̄ ∗) is that the third term on the RHS of (17) converges 
to zero as N → ∞. As we know from Appendix A that wTN(λ) w ≤ d1(N(λ)) ‖w‖2 ≤ Tr(N(λ)) ‖w‖2 = λ/μw . On the other 
hand, eT

mAem is no greater than the greatest eigen value d1(A) of A. The third term on the RHS of (17) is maximized 
when σ̄ = σ̄ ∗ = μw(−wTn(λ)), where, μw(wTn(λ)) ≤ ∑λ

i=1 |E[Ni:λ]| and 1
λ

∑λ
i=1 |E[Ni:λ]| → (2/π)

1
2 . From these arguments 

derives that the third term on the RHS of (17) converges to zero as N → ∞ provided that λ2d1(A) → 0 as N → 0.
Next we consider the convergence of the bound (RHS of (31)). Remember that α = (σ̄ /cm) Tr(A2)

1
2 and G(α) ∈

O (α ln(1/α)). For σ̄ ∈ (0, 2σ̄ ∗), we have (σ̄ /cm) Tr(A2)
1
2 ≤ 2(σ̄ ∗/cm) Tr(A2)

1
2 . Since σ̄ ∗ ∈ O (λ), we have σ̄ ∈ O (λ) and 

α ∈ O (λ Tr(A2)
1
2 ). Then, the RHS of (31) divided by λ,

O (σ̄α ln(1/α)[L1 + L2α + L3λα])
⊆ o

(
σ̄ α1−ε[L1 + L2α + L3λα])

⊆ o
(
λ2−ε Tr(A2)

1−ε
2 [L1 + L2λTr(A2)

1
2 + L3λ

2 Tr(A2)
1
2 ]),

where the convergence of each term is supposed in the proposition. �
Consider the truncation weights with a fixed selection ratio λ = ρμ for some ρ > 1 and the sequence of the Hessian 

matrices such that the condition number is bounded. From Appendix B.4, we have that L1 ∈ O (λ−1/2), L2 ∈ O (λ−3/2), and 
L3 ∈ O (λ−3/2). Moreover, we have 1/d1(A) ∈ O (N) and 1/ Tr(A2)

1
2 ∈ O (N

1
2 ). Then, the condition of Proposition 17 reduces 

to λ ∈ o(N
1
3 ). This condition is a rigorous (but probably not tight) bound for the scaling of λ such that the per-iteration 

convergence rate of a (μ/μ, λ)-ES with a fixed λ/μ on the sphere function scales like O (λ/N) [15, Equation 6.140]. One 
can also deduce the condition for the optimal weights and the CMA-type positive weights (positive half of the optimal 
weights).

4.4. Effect of the eigenvalue distribution of the Hessian matrix

Corollary 16 implies that the optimal recombination weights are independent of the Hessian in the limit N → ∞ as 
long as limN→∞ Tr(A2) = 0. Moreover, Proposition 13 and Corollary 15 together imply that the same values approximate the 
optimal recombination weights for a sufficiently large λ in the limit of σ/ ‖m‖ → 0. On the other hand, the step-size and 
the progress rate depend on the Hessian. In the following we discuss the effect of the Hessian followed by a simulation. 
To make the discussion more intuitive, we remove the condition Tr(A) = 1 and consider an arbitrary non-negative definite 
symmetric A. All the statements above still hold by replacing A with A/ Tr(A).

Given (wk)
λ
k=1, the optimal normalized step-size σ̄ ∗ and the normalized quality gain φ̄∞(σ̄ , (wk)) are indepen-

dent of the Hessian A and the distribution mean m. However, the step-size σ = (σ̄ /cm) ‖∇ f (m)‖ and the quality gain 
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Fig. 3. The asymptotically optimal step-size σ ∗ = σ̄ ∗ ‖∇ f (m)‖ on f (x) = xTAx/2 with A = diag(1, 36). The circles with radius σ̄ ∗ ‖∇ f (m)‖ centered at 
m = 2A− 1

2 (cos(θ), sin(θ)) with θ = π/2, 3π/8, π/4, π/8, 0 are displayed, where the asymptotically optimal normalized step-size σ̄ ∗ is computed using 
(27) with the optimal weights (8) (left) and with the optimal positive weights (right). Red dotted: λ = 2, Blue dashed: λ = 10, Yellow dot-dashed: λ = 50. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

φ(m, σ) = g(m)φ̄∞(σ̄ , (wk)
λ
k=1) depend on them through ‖∇ f (m)‖ and g(m) = ‖∇ f (m)‖2 / f (m). If m is on a contour el-

lipsoid ( f (m) = 1 for example), g(m) increases as ‖∇ f (m)‖. In other words, the greater the optimal step-size is, the greater 
quality gain we achieve. These quantities are bounded as

dN(A)

Tr(A)

∥∥m − x∗∥∥ ≤ ‖∇ f (m)‖ ≤ d1(A)

Tr(A)

∥∥m − x∗∥∥ and

dN(A)

Tr(A)
≤ g(m)

2
≤ d1(A)

Tr(A)
.

The lower and upper equalities for both of the above inequalities hold if and only if m − x∗ , or equivalently em , is parallel 
to the eigenspace corresponding to the smallest and largest eigenvalues of A, respectively. Therefore, the optimal step-size 
and the quality gain can be different by the factor of at most Cond(A) = d1(A)/dN (A). Fig. 3 visualizes example cases. The 
asymptotic optimal step-size heavily depends on the location of m if A is ill-conditioned. If we focus on the area around 
each circle, the function landscape looks like a parabolic ridge function. Note that a relatively large step-size displayed 
at m = (0, 1) for λ > 2 is because eT

mAem � 1 in (27), resulting in σ̄ ∗ ∝ μw . The asymptotic normalized quality gain is 
derived for the limit σ/ ‖m‖ → 0, and the update of the mean vector results in an approximation of the negative gradient 
direction. If the mean vector is exactly on the longest axis of the hyper-ellipsoid, the gradient points to the optimal solution 
and a large normalized step-size is desired. However, this never happens in practice, since the mean vector will not be 
exactly in such a situation with probability one. We also remark that the asymptotically optimal normalized step-size (27)
is not monotonically increasing w.r.t. λ. Indeed, we see in Fig. 3a smaller step-sizes for greater λ values, whereas they are 
monotonic in Fig. 3b. The main difference is that the step-sizes with the optimal weights for λ = 2 can be greater than 
those with the optimal positive weights. Nonetheless, there is no guarantee that these figures reflect the actually optimal 
step-size precisely since displayed are the step-size optimal in the limit of cm to infinity. Further investigation needs to be 
conducted.

Table 1 summarizes dN (A)/ Tr(A), d1(A)/ Tr(A) and Tr(A2)/ Tr(A)2 for different types of A. The greater the first two 
quantities are, the greater the optimal step-size and hence the quality gain are. The smaller the last quantity is, the more 
reliable it is to approximate φ̄ with φ̄∞ . If the condition number α = Cond(A) is fixed, the worst case (dN (A)/ Tr(A)) is 
maximized when the function has a discus type structure and is minimized when the function has a cigar type structure. 
The value of dN (A)/ Tr(A) will be close to 1/N as N → ∞ for the discus type function, whereas it will be close to 1/(Nα)

for the cigar. Therefore, the discus type function is as easy to solve as the sphere function if N � α, while the cigar type 
function takes roughly 1/α times more iterations to reach the same target function value. On the other hand, the inequality 
Tr(A2)/ Tr(A)2 < 1/(N − 1) holds independently of α on the cigar type function, while Tr(A2)/ Tr(A)2 depends heavily on α



Y. Akimoto et al. / Theoretical Computer Science 832 (2020) 42–67 57
Table 1
Different types of the eigenvalue distributions of A. The second to 
fourth types (discus: d1(A) = α and d2(A) = · · · = dN (A) = 1, ellip-

soid: di(A) = α
i−1
N−1 , cigar: d1(A) = · · · = dN−1(A) = α and dN (A) = 1) 

have the condition number Cond(A) = d1(A)/dN (A) = α, while the 
last type has the condition number N .

Type dN (A)
Tr(A)

d1(A)
Tr(A)

Tr(A2)

Tr(A)2

Sphere 1
N

1
N

1
N

Discus 1
(N−1)+α

α
(N−1)+α

(N−1)+α2

((N−1)+α)2

Ellipsoid α
1

N−1 −1

α
N

N−1 −1

α
N

N−1 −α

α
N

N−1 −1

(
α

2N
N−1 −1

)
/
(
α

2
N−1 −1

)
(
α

N
N−1 −1

)2
/
(
α

1
N−1 −1

)2

Cigar 1
(N−1)α+1

α
(N−1)α+1

(N−1)α2+1
((N−1)α+1)2

di(A) = i 1
N(N+1)/2

1
(N+1)/2

1
6 N(N+1)(2N+1)(

N(N+1)/2
)2

on the discus type function. The fraction will not be sufficiently small and we can not approximate the normalized quality 
gain by φ̄∞ unless α � N holds.7

The condition limN→∞ Tr(A2)/ Tr(A)2 = 0 also hold for some positive semi-definite A, where only M < N eigenvalues 
of A are positive and the others are zero. That is, d1(A) ≥ · · · ≥ dM(A) > 0 and dM+1(A) = · · · = dN (A). In this case, the 
condition Tr(A2)/ Tr(A)2 → 0 holds only if the dimension M of the effective search space tends to infinity as N → ∞. The 
above inequalities are refined as follows. Let m+ and m− be the decomposition of m such that m− is the projection of m
onto the hyper-plane through x∗ spanned by the eigenvectors of A corresponding to the zero eigenvalue, and m+ = m −m− . 
Then,

dM(A)

Tr(A)
≤ g(m)

2
≤ d1(A)

Tr(A)

dM(A)

Tr(A)

∥∥m+∥∥ ≤ ‖∇ f (m)‖
Tr(A)

≤ d1(A)

Tr(A)

∥∥m+∥∥ .

In this case, g(m) can be 2/M if d1(A) = · · · = dM(A) > 0 and di(A) = 0 for i ∈ �M + 1, N �. The quality gain is then 
proportional to 2/M , instead of 2/N . That is, the evolution strategy with the optimal step-size solves the quadratic function 
with the effective rank M defined on the N dimensional search space as efficiently as it solves its projection onto the 
effective search space.

Comment on the algorithm dynamics The asymptotic quality gain depends on the distribution mean m through g(m). In 
practice, we observe near worst case performance with g(m) ≈ 2dN (A)/ Tr(A), which implies that m − x∗ is almost parallel 
to the eigenspace corresponding to the smallest eigenvalue dN (A) of the Hessian matrix. We provide an intuition to explain 
this behavior, which will be useful to understand the algorithm, even though the argument is not fully rigorous.

Consider Algorithm 1 with scale-invariant step-size (Definition 3). Lemma 9 implies that the order of the function 
values f (Xi) coincide with the order of [Ni]1 = eT(Xi − m(t))/σ (t) , where e = ∇ f (m(t))/ 

∥∥∇ f (m(t))
∥∥. This is because if 

Z ∼ N (0, I), then Z TAZ/ Tr(A) in (11) almost surely converges to one by the strong law of large numbers as N → ∞
under Tr(A2)/ Tr(A)2 → 0. It means that the function value of a candidate solution is determined solely by the first com-
ponent on the right-hand side of (11), that is, eT(Xi − m(t))/σ (t) . Since the ranking of the function value only depends on 
eT(Xi − m(t))/σ (t) , one may rewrite the update of the mean vector as

m(t+1) = m(t) + cmσ (t)
λ∑

i=1

wiNi:λ(0,1) · e + cmσ (t)μ
− 1

2
w N (0, I − eeT) , (35)

where Ni:λ(0, 1) are the i-th order statistics from λ population of N (0, 1), and N (0, I − eeT) is the normally distributed 
random vector with mean vector 0 and the degenerated covariance matrix I − eeT. It indicates that the mean vector moves 
along the gradient direction with the distribution cmσ (t) ∑λ

i=1 wiNi:λ(0, 1), while it moves randomly in the subspace or-

thogonal to the gradient with the distribution cmσ (t)μ
− 1

2
w N (0, I − eeT).

If the function is spherical, i.e. A ∝ I, the mean vector does a symmetric, unbiased random walk on the surface of a 
hypersphere while the radius of the hypersphere gradually decreases due to the second term on (35). If the function is a 

7 However, the worst case scenario on the discus type function, 1/(α + (N − 1)), describes an empirical observation [36] that the convergence speed of 
evolution strategy with isotropic distribution does not scale down with N for N � α.
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general convex quadratic function, A �∝ I, the corresponding random walk on the surface of a hyperellipsoid becomes biased. 
Then, m − x∗ tends to be parallel to the eigenspace corresponding to the smallest eigenvalue dN (A), which means that 
the quality gain is close to the worst case of dN (A)/ Tr(A). The reason may be explained as follows. The progress in one 
step is the largest in the short axis direction (parallel to the eigenvector corresponding to the largest eigenvalue of A), and 
the smallest in the long axis direction (parallel to the eigenvector corresponding to the largest eigenvalue of A). The short 
axis direction is quickly optimized and the situation gets close to the worst case, where it takes many iterations to escape 
from. Therefore, we observe the near worst situation in practice. Further theoretical investigation on the distribution of 
e = ∇ f (m(t))/ 

∥∥∇ f (m(t))
∥∥ should be done in the future work.

4.5. Experiments

To see the effect of the eigenvalue distribution of A, we run the experiments. Four quadratic functions are consid-
ered: Sphere, Discus, Ellipsoid, Cigar functions of N = 10, 100, 1000 dimensions. The ES with the weights optimal for 
the infinite dimensional sphere, (8), and the optimal normalized step-size σ̄ ∗ derived for cm → ∞, (27), times a con-
stant factor is run for T = 10000 iterations. The empirical normalized quality gain is estimated as (2/T ) 

∑T −1
t=T /2

[
f (m(t)) −

f (m(t+1))
]
/
[

f (m(t))g(m(t))
]
. The mean vector is initialized randomly by the normal distribution N (0, I). Eleven indepen-

dent runs are conduced for each setting. The results are compared with ϕ , which is supposed to approximate the empirical 
normalized quality gain for cm � 1 and N � 1. Note that σ̄ ∗ in (27) and ϕ in (17) depend on m through eTAe/ Tr(A). 
We replace eTAe/ Tr(A) with dN (A)/ Tr(A) based on the observation and the above discussion that the mean vector tends 
to be parallel to the eigenspace corresponding to the smallest eigenvalue of A. Figs. 4 and 5 show the median (marker) 
and the 10%–90% interval (shaded area) of the empirical normalized quality gain for each cm and the theoretically derived 
normalized quality gain formula discussed above. Note that the shaded area is almost invisible, implying that the number 
of runs and the number of iterations are sufficient to get accurate estimates.

We first focus on the results with cm = 1 (the default setting). The empirical normalized quality gain gets closer to the 
normalized quality gain derived for the infinite dimensional quadratic function as N increases. The approach of the empirical 
normalized quality gain to the theory is the fastest for the sphere function (A = I). For convex quadratic functions with the 
same condition number of α = 106, the speed of the convergence of the normalized quality gain to ϕ as N → ∞ is the 
fastest for the cigar function, and the slowest for the discus function. This reflects the upper bound derived in Theorem 7
that depends on the ratio Tr(A2)/ Tr(A)2, whose value is summarized in Table 1. For the cigar function Tr(A2)/ Tr(A)2 is 
close to 1/(N − 1), while for the discus function it is very close to 1 for N � α and we do not observe significant difference 
between results on different N .

A larger cm led to a better empirical normalized quality gain for all cases, i.e., the empirical normalized quality gains 
became monotonically closer to the theoretical curve.8 As cm becomes greater while the normalized step-size is fixed, the 
ratio σ/ ‖m‖ becomes smaller and tends to zero in the limit cm → ∞. As Corollary 15 implies, the normalized quality 
gain converges to ϕ in the limit σ/ ‖m‖ → 0. Therefore, the results reflect the theory. Moreover, the theoretically optimal 
normalized step-size σ̄ ∗ well approximates the empirically optimal normalized step-size σ̄ that maximize the normalized 
quality gain for all cases when cm ≥ 1. As cm becomes smaller, the empirically optimal normalized step-size σ̄ becomes 
smaller compared to σ̄ ∗ . Note that the difference of the empirical normalized quality gain curves on the sphere function 
comes only from the randomness of the length of each step Z . If we replace Z with (E[‖Z‖]/ ‖Z‖)Z in the algorithm, the 
selection is independent of cm values and is determined by the inner product of the step and the gradient of the objective 
function at the mean vector. Then, the effect of cm goes away.

Comparing Fig. 4 and Fig. 5, the empirical curves are closer to the theoretical curves in Fig. 4. It reflects the fact that 
the bound between the normalized quality gain and the asymptotic normalized quality gain derived in Theorem 7 typically 
increases as λ increases. To approximate the theoretical curve, a larger cm value is required when λ is greater. The peak 
of the empirical curves tend to be achieved at a smaller normalized step-size as λ or cm becomes greater or smaller, 
respectively.

5. Conclusion

We perform the quality gain analysis of the weighted recombination evolution strategy (ES) on a convex quadratic 
function. Differently from the previous works, where the limit for the search space dimension N to infinity is considered, 
we derive the error bound between the so-called normalized quality gain and its limit expression for the finite dimension. 
We show that the bound converges to zero when (I) N → ∞ as long as the Hessian A of the objective function satisfies 
Tr(A2)/ Tr(A)2 → 0, or when (II) σ/ ‖m‖ → 0. The limit expression of the normalized quality gain reveals that the optimal 
recombination weights are independent of the Hessian matrix in the limit (I). Moreover, if the effective variance selection 

8 Figure 4 in the previous work [1] shows non-monotonic change of empirical normalized quality gain over cm , whereas in Figs. 4 and 5 of this paper 
shows a monotonic behavior. In Figure 4 in [1] σ̄ ∗ is approximated with (7), whereas in the figures of this paper σ̄ ∗ is computed with (27). The difference 
between these two quantities is less pronounced as N increases. The monotonic changes of the graphs are because σ̄ ∗ in (27) approximates the optimal 
normalized step-size better than (7) on a finite dimensional quadratic function.
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Fig. 4. Empirical normalized quality gain on four convex quadratic functions, Sphere, Discus, Ellipsoid and Cigar (from top to bottom) of dimension N = 10, 
100 and 1000 (from left to right). The optimal weights (8) are used and λ = 10.

mass μw is sufficiently large, the optimal recombination weights for the limit (II) admits the same optimal recombination 
weights. The optimal normalized step-size for given recombination weights is derived. In the limit (I) the optimal normalized 
step-size is independent of A, while the optimal step-size is proportional to the length of the gradient at the distribution 
mean. The limit (II) reveals the dependencies of the normalized step-size on N and μw .

The quality gain analysis provides a useful insight into the algorithmic behavior, even though it does not take into ac-
count the adaptation of the step-size. Knowing the optimal recombination weights (w∗

k ) directly contributes to the optimal 
parameter setting. On the contrary, knowing the optimal normalized step-size σ̄ ∗ does not lead to the optimal step-size 
control. This is because the optimal scale-invariant step-size σ ∗ in Definition 3 where σ̄ is replaced with its optimal value 
σ̄ ∗ is proportional to ‖∇ f (m)‖, which is unknown to the algorithm. The optimal step-size, however, is useful to evalu-
ate step-size control mechanisms and to see how close to the optimal situation the step-size control mechanism is. Some 
theoretical insights into the adaptation mechanism of practical step-size adaptive methods is provided by the approached 
referred to as “dynamical system” approach by its authors. We refer to [27,28] for the recent development in the dynamical 
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Fig. 5. Empirical normalized quality gain on four convex quadratic functions, Sphere, Discus, Ellipsoid and Cigar (from top to bottom) of dimension N = 10, 
100 and 1000 (from left to right). The optimal weights (8) are used and λ = 100.

system approach. An important remaining question is: what is the optimal parameter update? Neither the quality gain anal-
ysis nor the dynamical system approach will answer this question. The optimal step-size on a quadratic function is revealed 
in this paper, however, it depends on the norm of the gradient, which is unknown to the real algorithm. A methodology to 
analyze the optimal update, rather than the optimal parameter value, hopefully including the covariance matrix update is 
desired in future work.
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Appendix A. Normal order statistics

Here we summarize some important properties of the moments of normal order statistics that are useful to understand 
the results in the paper.

The first moments of the normal order statistics have the properties: E[Ni:λ] ≤ E[Ni+1:λ], E[Ni:λ] = −E[Nλ+1−i:λ], 
and 

∑λ
i=1 E[Ni:λ] = 0. The second (product) moments of the normal order statistics have the following properties: ∑λ

j=1 E[Ni:λN j:λ] = 1, 
∑λ

i=1 E[N 2
i:λ] =

∑λ
i=1

∑λ
j=1 E[Ni:λN j:λ] = λ, and E[Ni:λN j:λ] = E[N j:λNi:λ] = E[Nλ+1−i:λNλ+1− j:λ] =

E[Nλ+1− j:λNλ+1−i:λ].
Here we summarize useful inequalities about order statistics that are all listed in Section 35.1.6 of [37]. The posi-

tive dependency inequality tells that the order statistics are non-negatively correlated, Cov(Ni:λ, N j:λ) = E[Ni:λN j:λ] −
E[Ni:λ]E[N j:λ] ≥ 0. Together with 

∑λ
j=1 Cov(Ni:λ, N j:λ) = ∑λ

j=1 E[Ni:λN j:λ] = 1, we have 0 ≤ Cov(Ni:λ, N j:λ) ≤ 1. It im-
plies E[Ni:λ]E[N j:λ] ≤ E[Ni:λN j:λ] ≤ E[Ni:λ]E[N j:λ] + 1.

Another important inequality is David inequality for normal distribution. It tells that �−1
(
i/(λ + 1)

) ≤ E[Ni:λ] ≤
min

{
�−1

(
i/(λ + 0.5)

)
, �−1

(
(i − 0.5)/λ

)}
, where � is the c.d.f. of N (0, 1). It proves an asymptotically tight approximation 

(Blom’s approximation) E[Ni:λ] ≈ �−1
( i−α

λ−2α+1

)
with α = 0.375 for i ≤ �λ/2�. The following asymptotic equalities are also 

used (see Example 8.1.1 in [37])

lim
λ→∞

E[Nλ:λ] −E[N1:λ]
2(2 ln(λ))

1
2

= 1, lim
λ→∞

1

λ

λ∑
i=1

|E[Ni:λ]| = 2
1
2

π
1
2

, lim
λ→∞

1

λ

λ∑
i=1

E[Ni:λ]2 = 1 . (A.1)

Let n(λ) be the λ dimensional column vector whose i-th component is E[Ni:λ] and N(λ) be the λ dimensional symmetric 
matrix whose (i, j)-th element is E[Ni:λN j:λ]. The covariance matrix N(λ) − n(λ)nT

(λ)
is by definition nonnegative definite. 

It implies the eigenvalues of N(λ) are all nonnegative. Moreover, from the above mentioned fact derives that the sum 
of the eigenvalues is Tr(N(λ)) = ∑λ

i=1
∑λ

j=1 Cov(Ni:λ, N j:λ) = λ. Furthermore, the third asymptotic relation of (A.1) reads 
limλ→∞ Tr(n(λ)nT

(λ))/λ = limλ→∞
∥∥n(λ)

∥∥2
/λ = 1. It implies, for any x ∈R

λ \ {0}, we have

lim
λ→∞

xTN(λ)x

λ‖x‖2
= lim

λ→∞
(xTn(λ))

2

λ‖x‖2
= lim

λ→∞
(xTn(λ))

2

‖x‖2
∥∥n(λ)

∥∥2
. (A.2)

Appendix B. Proofs and derivations

B.1. Proof of Proposition 2

Proof. Let � = cm
∑λ

i=1 W (i; (m + σ Zk)
λ
k=1)Zi , where (Zi)

λ
i=1 are independent and N-variate standard normally distributed 

random vectors. Then,

φ(m,σ ) = 1 −E[ f ∗(m + σ�)]/ f ∗(m)

= 1 −E[ f (m + σ� − x∗)]/ f (m − x∗)
= 1 − α−n

E[ f (α · (m + σ� − x∗))/α−n f (α · (m − x∗))
= 1 −E[ f (α · (m + σ� − x∗))]/ f (α · (m − x∗))
= 1 −E[ f ∗(x∗ + α · (m − x∗) + ασ�)/ f ∗(x∗ + α · (m − x∗))
= φ(x∗ + α(m − x∗),ασ ) .

Note that φ(x∗ + (m − x∗), σ) = φ(m, σ). That is, the quality gain is scale invariant around (x∗, 0). Moreover, the above 
equality implies that argmaxσ φ(x∗ + (m − x∗), σ) = argmaxσ φ(x∗ + α(m − x∗), ασ), i.e., the optimal step-size at x∗ +
α(m − x∗) is α times greater than the optimal step-size at x∗ + (m − x∗). Therefore, the optimal step-size as a function of 
m − x∗ is homogeneous of degree 1, i.e., σ ∗(α · (m − x∗)) = ασ ∗(m − x∗). �
B.2. Proof of Lemma 5

Proof. Since (Xk)
λ
k=1 are independent and normally distributed, the conditional probability of 1 f (Xk)< f (Xi) = 1 given Xi for 

any k �= i is F f ( f (Xi)). Then, the probability of 
∑λ

k=1 1 f (Xk)≤ f (Xi) being a for a ∈ �1, λ� is given by Pb(a − 1; λ − 1, p) with 
p = F f ( f (Xi)). Then, for any α ≥ 0,

Ei[W (i; (Xk)
λ
k=1)

α] =
λ∑

k=1

wα
k Pb(k − 1;λ − 1, p) .
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Similarly, the joint distribution of 
∑λ

k=1 1 f (Xk)≤ f (Xi) and 
∑λ

k=1 1 f (Xk)≤ f (X j) is derived. Due to the symmetry be-

tween i and j, we can assume w.l.o.g. that f (Xi) ≤ f (X j). Then, the joint probability of 
∑λ

k=1 1 f (Xk)≤ f (Xi) = a and ∑λ
k=1 1 f (Xk)≤ f (X j) = b for a, b ∈ �1, λ� is given by Pt(a − 1, b −a − 1; λ − 2, p, q − p) with p = F f ( f (Xi)) and q = F f ( f (X j))

if a < b, and zero otherwise. Then,

Ei, j[W (i; (Xk)
λ
k=1)W ( j; (Xk)

λ
k=1)] =

λ−1∑
m=1

λ∑
l=m+1

wm wl Pt(m − 1, l − m − 1;λ − 2, p,q − p) .

This ends the proof. �
B.3. Proof of Lemma 6

Proof. The derivative of u1 is 
∑λ

k=1 wk
(
λ−1
k−1

) d
dp [pk−1(1 − p)λ−k], where

d

dp
[pk−1(1 − p)λ−k] = (k − 1)pk−2(1 − p)λ−k − (λ − k)pk−1(1 − p)λ−k−1 .

Substituting the derivatives and rearranging the terms, we obtain

du1(p)

dp
= (λ − 1)

λ−1∑
k=1

(wk+1 − wk)

(
λ − 2

k − 1

)
pk−1(1 − p)λ−k−1 .

The Lipschitz constant L1 is the supremum of the absolute value of the derivative derived above. It completes the proof for 
the �1-Lipschitz continuity of u1 and its Lipschitz constant. Since u2 is equivalent to u1 if wi are replaced with w2

i in the 
definition of u1, we have the �1-Lipschitz continuity of u2 and its Lipschitz constant by replacing wi with w2

i in the above 
argument.

The partial derivative of u3 with respect to p is

λ−1∑
k=1

λ∑
l=k+1

wk wl

(
λ − 2

l − 2

)(
l − 2

k − 1

)
∂

∂ p
[min(p,q)k−1 |q − p|l−k−1 (1 − min(p,q))λ−l] ,

where

∂

∂ p
min(p,q)k−1 |q − p|l−k−1 (1 − min(p,q))λ−l

=
{

[(k − 1)(q − p) − (l − k − 1)p]pk−2(q − p)l−k−2(1 − q)λ−l (p < q)

[(l − k − 1)(1 − p) − (λ − l)(p − q)]qk−1(p − q)l−k−2(1 − p)λ−l−1 (p > q) .

Substituting the derivatives and rearranging the terms, we obtain

1

λ − 2

∂u3(p,q)

∂ p

=
{∑λ−2

k=1

∑λ
l=k+2 wl(wk+1 − wk)

(
λ−3
l−3

)( l−3
k−1

)
pk−1(q − p)l−k−2(1 − q)λ−l (p < q)∑λ−2

k=1

∑λ
l=k+2 wk(wl − wl−1)

(
λ−3
l−3

)( l−3
k−1

)
qk−1(p − q)l−k−2(1 − p)λ−l (p > q)

Since u3 is differentiable with respect to p almost everywhere in (0, 1), it is Lipschitz continuous with respect to p. Its 
Lipschitz constant is supq∈(0,1) supp∈(0,q)∪(q,1)

∣∣∣ ∂u3(p,q)
∂ p

∣∣∣. Due to the symmetry, u3(p, q) is �1-Lipschitz continuous on [0, 1]2

with the Lipschitz constant L3 = supq∈(0,1) supp∈(0,q)∪(q,1)

∣∣∣ ∂u3(p,q)
∂ p

∣∣∣. This completes the proof. �
B.4. Upper bounds of Lipschitz constants

For a general weight scheme, we have the following trivial upper bounds for the Lipschitz constants derived in Lemma 6,

L1 ≤ (λ − 1) max
k∈�1,λ−1�

∣∣wk+1 − wk
∣∣ , (B.1)

L2 ≤ (λ − 1) max
k∈�1,λ−1�

∣∣∣w2
k+1 − w2

k

∣∣∣ , (B.2)

L3 ≤ (λ − 2) max
k∈�1,λ�

max
l∈�1,k−2�∪�k+1,λ−1�

|wk| ·
∣∣wl+1 − wl

∣∣ . (B.3)
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These upper bounds are straight-forward from the facts 
∑λ−1

k=1 Pb(k − 1; λ − 2, p) = 1 and 
∑λ−2

k=1

∑λ
l=k+2 Pt(k − 1,

l − k − 2; λ − 3, min(p, q), |q − p|) = 1.
For the truncation weights with 3 ≤ μ ≤ λ − 2, we can obtain better bounds. The bounds of the factorial of n ≥ 1 known 

by Robbins [38], namely,

(2πn)
1
2

(n

e

)n
exp

(
1

12n + 1

)
< n! < (2πn)

1
2

(n

e

)n
exp

(
1

12n

)

gives us an upper bound of 
(n

k

)
for 0 < k < n

(
n

k

)
<

(
n

2πk(n − k)

) 1
2 (n

k

)k
(

n

n − k

)n−k

. (B.4)

Here we used exp
( 1

12n − 1
12k+1 − 1

12(n−k)+1

)
< 1. On the other hand, we have for 0 < k < n

sup
0≤p≤1

pk(1 − p)n−k =
(

k

n

)k (
n − k

n

)n−k

. (B.5)

Since wk+1 − wk = −1/μ for k = μ and wk+1 − wk = 0 for k �= μ, we have for 3 ≤ μ ≤ λ − 2,

L1 = sup
0<p<1

∣∣∣∣(λ − 1)
1

μ

(
λ − 2

μ − 1

)
pμ−1(1 − p)λ−μ−1

∣∣∣∣
= λ − 1

μ

(
λ − 2

μ − 1

)(
μ − 1

λ − 2

)μ−1 (
λ − μ − 1

λ − 2

)λ−μ−1

≤ λ − 1

μ

(
λ − 2

2π(μ − 1)(λ − μ − 1)

) 1
2

.

Analogously, since w2
k+1 − w2

k = −1/μ2 for k = μ and w2
k+1 − w2

k = 0 for k �= μ, we obtain the bound of L2: L2 <[
(λ − 1)/μ2

] · [(λ − 2)/(2π(μ − 1)(λ − μ − 1))
]1/2

.
Moreover, since wk(wl − wl−1) = −1/μ2 for l = μ + 1 and wk(wl − wl−1) = 0 otherwise, we have

L3 = sup
q∈(0,1)

sup
p∈(q,1)

μ−1∑
k=1

λ − 2

μ2

(
λ − 3

μ − 2

)(
μ − 2

k − 1

)
qk−1(p − q)μ−k−1(1 − p)λ−μ−1

= sup
p∈(0,1)

(λ − 2)

μ2

(
λ − 3

μ − 2

)
(1 − p)λ−μ−1 sup

q∈(0,p)

μ−1∑
k=1

(
μ − 2

k − 1

)
qk−1(p − q)μ−k−1

= (λ − 2)

μ2

(
λ − 3

μ − 2

)
sup

p∈(0,1)

(1 − p)λ−μ−1 pμ−2

= (λ − 2)

μ2

(
λ − 3

μ − 2

)(
μ − 2

λ − 3

)μ−2 (
λ − μ − 1

λ − 3

)λ−μ−1

≤ (λ − 2)

μ2

(
λ − 3

2π(μ − 2)(λ − μ − 1)

) 1
2

.

Here we used (B.4), (B.5), and the binomial relation 
∑μ−1

k=1

(μ−2
k−1

)
qk−1(p − q)μ−k−1 = pμ−2.

B.5. Proof of Lemma 8

Proof. If α = 1, then G(α) = 1, and the inequality is trivial. Hence, we assume α < 1 in the following.
Remember that H N = Ze + h(Z). The absolute difference between F N (t) and �(t) is rewritten as follows

|F N(t) − �(t)|
= |Pr[H N ≤ t] − Pr[Ze ≤ t]|
= |Pr[Ze + h(Z) ≤ t] − Pr[Ze ≤ t]|
= Pr[h(Z) ≥ 0 and t − h(Z) ≤ Ze ≤ t] + Pr[h(Z) ≤ 0 and t ≤ Ze ≤ t − h(Z)] .
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With an arbitrary ε+ > 0, the first term on the RMS is upper bounded as

Pr[h(Z) ≥ 0 and t − h(Z) ≤ Ze ≤ t]
≤ Pr[h(Z) ≥ ε+] + Pr[h(Z) < ε+ and t − h(Z) ≤ Ze ≤ t]
≤ Pr[h(Z) ≥ ε+] + Pr[h(Z) < ε+ and t − ε+ ≤ Ze ≤ t]
≤ Pr[h(Z) ≥ ε+] + Pr[t − ε+ ≤ Ze ≤ t]
≤ Pr[h(Z) ≥ ε+] + (2π)−

1
2 ε+ .

For the last inequality, we used that the density of the one-dimensional standard normal distribution is at most (2π)− 1
2

and Ze is of the one-dimensional standard normal distribution. Analogously, we have for any ε− > 0

Pr[h(Z) ≤ 0 and t ≤ Ze ≤ t − h(Z)] ≤ Pr[h(Z) ≤ −ε−] + Pr[t ≤ Ze ≤ t + ε−]
≤ Pr[h(Z) ≤ −ε+] + (2π)−

1
2 ε− .

Let h̃(Z) = 2(cm/σ̄ )h(Z) = Z TAZ − 1, ε̃+ = 2(cm/σ̄ )ε+ and ε̃− = 2(cm/σ̄ )ε− . Then, Pr[h(Z) ≥ ε+] = Pr[h̃(Z) ≥ ε̃+] and 
Pr[h(Z) ≤ −ε−] = Pr[h̃(Z) ≤ −ε̃−]. From Lemma 1 in [32] knows that for any x ≥ 0

Pr
[
h̃(Z) ≥ 2 Tr(A2)

1
2 x

1
2 + 2d1(A)x

] ≤ exp(−x) ,

Pr
[
h̃(Z) ≤ −2 Tr(A2)

1
2 x

1
2
] ≤ exp(−x) .

(B.6)

Let x = ln(1/α) and let ε+ and ε− such that

ε̃+ = 2 Tr(A2)
1
2 x

1
2 + 2d1(A)x = 2 Tr(A2)

1
2
(
(ln(1/α))

1
2 + (d1(A)/Tr(A2)

1
2 ) ln(1/α)

)
ε̃− = 2 Tr(A2)

1
2 x

1
2 = 2 Tr(A2)

1
2 (ln(1/α))

1
2 .

Then, from (B.6) derives that

Pr[h(Z) ≥ ε+] + (2π)−
1
2 ε+

= Pr[h̃(Z) ≥ ε̃+] + (σ̄ ε̃+)/(2(2π)
1
2 cm)

≤ α + (σ̄ ε̃+)/(2(2π)
1
2 cm)

= α + (2π)−
1
2 (σ̄ /cm)Tr(A2)

1
2
(
(ln(1/α))

1
2 + (

d1(A)/Tr(A2)
1
2
)

ln(1/α)
)

= α
(
1 + (2π)−

1
2 (ln(1/α))

1
2 + (2π)−

1
2
(
d1(A)/Tr(A2)

1
2
)

ln(1/α)
)

.

Similarly, we have Pr[h(Z) ≤ −ε−] + (2π)− 1
2 ε− ≤ α

(
1 + (2π)− 1

2 (ln(1/α))
1
2
)
. Altogether, we obtain

|F N(t) − �(t)| ≤ α
(
2 + (2/π)

1
2 (ln(1/α))

1
2 + (2π)−

1
2
(
d1(A)/Tr(A2)

1
2
)

ln(1/α)
)

.

Since the RHS of the above inequality is independent of t , taking the supremum of both sides over t ∈ R, we obtain the 
desired inequality. �
B.6. Proof of Lemma 9

Proof. First, note that F f ( f (m + σ Z)) = F N (H N) and H N = Ze + h(Z). Using Lemma 6, we have∣∣E[u1(F f ( f (X)))Ze] −E[u1(�(Ze))Ze]
∣∣ = |E[u1(F N(H N))Ze] −E[u1(�(Ze))Ze]|
≤ E[|u1(F N(H N)) − u1(�(Ze))| · |Ze|] ≤ L1E[|F N(H N) − �(Ze)| · |Ze|] .

Noting that � is Lipschitz continuous with the Lipschitz constant (2π)− 1
2 , we have |�(H N) − �(Ze)| ≤ (2π)− 1

2 |H N − Ze| =
(2π)− 1

2 |h(Z)|. On the other hand, Lemma 8 says that |F N(H N) − �(H N)| ≤ G(α). From these inequalities we obtain

|F N(H N) − �(Ze)| = |F N(H N) − �(H N) + �(H N) − �(Ze)| ≤ G(α) + (2π)−
1
2 |h(Z)| . (B.7)

Using the inequality (B.7) and the Schwarz inequality and the identities E[|Ze|] = (2/π)
1
2 , E[Z 2

e ] = 1, and

E[|h(Z)|2] =
(

1

2

σ̄

cm

)2

E

[(
Z TAZ − 1

)2
]

=
(

1

2

σ̄

cm

)2

(2 Tr(A2)) = α2

2
, (B.8)
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we have

E[|F N(H N) − �(Ze)| · |Ze|] ≤ G(α)E[|Ze|] + (2π)−
1
2 E[|h(Z)| · |Ze|]

≤ G(α)E[|Ze|] + (2π)−
1
2 E[h(Z)2] 1

2 E[Z 2
e ] 1

2

= (2/π)
1
2 G(α) + (2π)−

1
2 E[h(Z)2] 1

2

= (2/π)
1
2 G(α) + (4π)−

1
2 α .

Altogether, we obtain the inequality stated in the lemma. This completes the proof. �
B.7. Proof of Lemma 10

Proof. Analogously to the proof of Lemma 9, we have∣∣E[u2(F f ( f (X)))(Z TAZ − 1)] −E[u2(�(Ze))(Z TAZ − 1)]∣∣
≤ L2E[|F N(H N) − �(Ze)| ·

∣∣Z TAZ − 1
∣∣]

≤ L2E[(G(α) + (2π)−
1
2 |h(Z)|) ∣∣Z TAZ − 1

∣∣]
= L2(G(α)E[∣∣Z TAZ − 1

∣∣] + (2π)−
1
2 E[|h(Z)| · ∣∣Z TAZ − 1

∣∣]) .

Applying the inequalities E[∣∣Z TAZ − 1
∣∣] ≤ E[(Z TAZ − 1)2] 1

2 = (2 Tr(A2))
1
2 and

E[|h(Z)| · ∣∣Z TAZ − 1
∣∣] = 1

2
(σ̄ /cm)E[(Z TAZ − 1)2] = (σ̄ /cm)Tr(A2) = α Tr(A2)

1
2 ,

we obtain the inequality stated in the lemma. This completes the proof. �
B.8. Proof of Lemma 11

Proof. Using Lemma 6, we have∣∣∣E[u3(F f ( f (X)), F f ( f ( X̃)))Z TA Z̃ ] −E[u3(�(Ze),�( Z̃e))Z TA Z̃ ]
∣∣∣

≤ E[
∣∣∣(u3(F N(H N), F N(H̃ N)) − u3(�(Ze),�( Z̃e))

∣∣∣ ·
∣∣∣Z TA Z̃

∣∣∣]
≤ L3E[(|F N(H N) − �(Ze)| +

∣∣∣F N(H̃ N) − �( Z̃e)

∣∣∣) ·
∣∣∣Z TA Z̃

∣∣∣] .

Then, using the equality E[
∣∣∣Z TA Z̃

∣∣∣ | Z ] = (2/π)
1
2 ‖AZ‖ (since 

∣∣∣Z TA Z̃
∣∣∣ given Z is half-normally distributed), the symmetry of 

Z and Z̃ , the Schwarz inequality, and the inequality (B.7), we have

E[(|F N(H N) − �(Ze)| +
∣∣∣F N(H̃ N) − �( Z̃e)

∣∣∣) ·
∣∣∣Z TA Z̃

∣∣∣]
≤ 2G(α)E[

∣∣∣Z TA Z̃
∣∣∣] + 2(2π)−

1
2 E[|h(Z)| ·

∣∣∣Z TA Z̃
∣∣∣] .

On one hand, we have

E[
∣∣∣Z TA Z̃

∣∣∣] = E[E[
∣∣∣Z TA Z̃

∣∣∣ | Z ]] = (2/π)
1
2 E[‖AZ‖]

≤ (2/π)
1
2 E[‖AZ‖2] 1

2 = (2/π)
1
2 Tr(A2)

1
2 ,

where we used E[‖AZ‖2] = E[Tr(AZ Z TA)] = Tr(AE[Z Z T]A) = Tr(A2). On the other hand, we have

E[|h(Z)| ·
∣∣∣Z TA Z̃

∣∣∣] = E[|h(Z)|E[
∣∣∣Z TA Z̃

∣∣∣ | Z ]] = (2/π)
1
2 E[|h(Z)| · ‖AZ‖]

≤ (2/π)
1
2 E[|h(Z)|2] 1

2 E[‖AZ‖2] 1
2 = π− 1

2 α Tr(A2)
1
2 ,

where we used E[|h(Z)|2] = α2/2 derived in (B.8). Altogether, we obtain the inequality stated in the lemma. This completes 
the proof. �
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B.9. Proof of Lemma 12

Proof. Let p be the probability density function of the one-dimensional standard normal distribution and pi:λ be the 
probability density function of Ni:λ and pi, j:λ be the joint probability density function of Ni:λ and N j:λ . It is well 
known that pi:λ(x) = λ

(
λ−1
i−1

)
�(x)i−1(1 − �(x))λ−i p(x) and pi, j:λ(x, y) = λ(λ − 1)

(
λ−2
j−2

)( j−1
i−1

)
�(x)i−1(�(y) − �(x))( j−i−1)(1 −

�(x))λ− j p(x)p(y) for i < j and x < y, and pi, j:λ(x, y) = 0 for i < j and x ≥ y. Note also that pi, j:λ(x, y) = p j,i:λ(y, x).
The functions u1 and u2 are then written using these p.d.f.s of the normal order statistics as λu1(�(x))p(x) =∑λ

k=1 wk pk:λ(x) and λu2(�(x))p(x) = ∑λ
k=1 w2

k pk:λ(x). From these identities, we obtain (19) and (20). The identity (21) is 
derived by using λE[u2(�(Ze))(Z 2

e − 1)] = ∑λ
i=1 w2

i (E[N 2
i:λ] − 1) and E[u2(�(Ze))(Z TAZ − 1)] = E[u2(�(Ze))(Z 2

e − 1)]eTAe, 
where the last equality is proved by using the expression Z TAZ = Z 2

e eTAe + ZeeTAZ⊥ + Z T⊥AZ⊥ , the mutual independence 
between Ze and Z⊥ , and E[Z⊥] = 0 and E[Z T⊥AZ⊥] = 1 − eTAe.

Using pi, j:λ , we can write

λ(λ − 1)u3(�(x),�(y))p(x)p(y) =
λ−1∑
k=1

λ∑
l=k+1

wk wl max(pk,l:λ(x, y), pl,k:λ(x, y)) .

The equality (22) is obtained by substituting the equality

λ(λ − 1)E[u3(�(Ze),�( Z̃e))Ze Z̃e]

=
λ−1∑
k=1

λ∑
l=k+1

wk wl

∫∫
Ze Z̃e max(pk,l:λ(x, y), pl,k:λ(x, y))dxdy

=
λ−1∑
k=1

λ∑
l=k+1

wk wl

⎛
⎝∫∫

x<y

xypk,l:λ(x, y)dxdy +
∫∫
x≥y

xypl,k:λ(x, y)dxdy

⎞
⎠

=
λ−1∑
k=1

λ∑
l=k+1

wk wl

(∫∫
xypk,l:λ(x, y)dxdy +

∫∫
xypl,k:λ(x, y)dxdy

)

= 2
λ−1∑
k=1

λ∑
l=k+1

wk wl

∫∫
xypk,l:λ(x, y)dxdy

= 2
λ−1∑
k=1

λ∑
l=k+1

wk wlE[Nk:λNl:λ]

into E[u3(�(Ze), �( Z̃e))Z TA Z̃ ] = E[u3(�(Ze), �( Z̃e))Ze Z̃e]eTAe. The last equality is obtained by using the expression 
Z TA Z̃ = Ze Z̃eeTAe + ZeeTA Z̃⊥ + Z̃eeTAZ⊥ + Z T⊥A Z̃⊥ , the mutual independence between Ze , Z̃e , Z⊥ , and Z̃⊥ , and the equal-
ities E[Z⊥] = E[ Z̃⊥] = 0. �
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