
Ten+ Years of Benchmarking with
COCO/BBOB

Nikolaus Hansen
Inria

CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France

Presented at the Lorentz Center Workshop Benchmarked: Optimization meets Machine
Learning, Leiden 2020

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé2

COCO — Comparing Continuous Optimisers

• is a (software) platform for comparing continuous optimisers in a black-box scenario
https://github.com/numbbo/coco

• automatises the tedious and repetitive task of benchmarking numerical optimisation
algorithms in a black-box setting

• advantage: saves time and prevents common (and not so common) pitfalls

COCO provides

• experimental and measurement methodology
main decision: what is the end point of measurement

• suites of benchmark functions
single objective, bi-objective, noisy, mixed-integer, more to come…

• data of already benchmarked algorithms to compare with

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Benchmarking: Related Goals

1. Understanding algorithms

2. Measuring performance in a systematic way (a
performance “profile”)

3. Running a competition  
 

3

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Benchmarking: The Global Picture

Two surprisingly (but not completely) independent puzzles to solve

• What to benchmark: for example, which collection of test
problems?

• How to assess performance?

• experimental setup

• data collection

• measures used and presented

4

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB: The Global Picture

5

COCO experiments
Test suites:
– bbob
– bbob-biobj
. . .
Logging functionality

C

Results of the
user-provided

solver
Log �les

COCO
post-processing

Python

Results of other
solvers

Log �les

Tables

Latex, HTML

Plots

2 3 5 10 20 40

1

3

5

15 LnsWDnFHs
WDUgHW DI: 1H-8 v2.2.1.216

1 6ShHUH
0C6 huyHU nRLs
1ELDE5D2E55 GR
1E:82A URs nRL
5A1D206EA5CH D
1I323DC0A ORsh
OPP-C0A-E6 Dug
BFG6-3-6W3W

0 2 4 6
ORg10(# I-evDOs / GLPensLRn)

0.0

0.2

0.4

0.6

0.8

1.0

)r
DF

tLR
n

RI
 Iu

nF
tLR

n,
tD

rg
et

 S
DL

rs

5A1D206(A

0C6 huyer

1(/D(5D2(

B)G6-P-6t

OPP-C0A-(

1(:82A rR

1,P2PDC0A

Eest 2009EERE I1-I24, 20-D
51 tDrgets: 100..1e-08
15 LnstDnFes

v2.2.1.216

PDF, SVG

HTML pages

HTML

Latex templates

Latex

C/C��
interface

C

Python
interface

Python

Java
interface

Java

Matlab/Octave
interface

Matlab

User-provided
solver

C

User-provided
solver

Python

User-provided
solver

Java

User-provided
solver

Matlab

what to benchmark • what to benchmark

what to benchmark
and

experimental setup

measures used
and presented

data collection

Figure by Tea Tušar, in Hansen et al (2020), COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software, published online, Aug 2020.

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé6

…feel free to ask questions…

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB: Test Suite(s)
• Functions are

• Based on known (analytical) functions, modelling a “known” difficulty

• Comprehensible

• Scalable

• Difficult (also: non-separable)
compared to the “typical standard” (at that time)

• Quasi-randomized as instances
with arbitrary shifts and smallish irregularities to avoid artificial exploits and mitigate overfitting, emulates repetition of experiments

• The bad

• Rastrigin function type is somewhat overrepresented
partly due to function pairing

• 10% of the default targets for F23 Katsuuras are trivial to hit
evaluating the domain middle at first is a good “algorithm"

• Require to define target values (function + target = problem)
natural targets in the discrete search domain are known fitness levels and the global optimum, we may need experiments to define useful targets

7

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Data Format
with hindsight 20/20

• The good:

• scattered experiments can be “merged” (and “unmerged”) with a single “drag-and-drop”

• separation between .info (meta- and summary-data) and .dat files is helpful

• 10+ years old data are still smoothly usable

• backwards compatible adjustments are/were possible

• The bad:

• slightly too few targets (too coarse discretization, not a format issue though with backward compatible fix)

• “handling” of restarts is suboptimal

• meta-data are not json-style (key-value Python-dict-style) formatted

• COCO maintains/writes two somewhat incompatible formats

8

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé9

…feel free to ask questions…

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB: Performance Assessment

“quality indicator” versus “time”
convergence graphs 

 
 

is all we have (and all we use)

10

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Specifically

• time: we use number of function evaluations
is invariant under changes of computer hardware, OS, programming language, compiler, …

• quality indicator:

• SO: affine transformation of the function value (to be minimized)
different for each instance

• MO: negative hypervolume value after objective-wise affine
transformation (to be minimized)

Affine transformations are considered as part of the function
definition (benchmark suite definition)

they also affect the target values that define a problem: target precisions are defined identical for all functions in a suite

11

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Convergence Graphs is All We Have

we only use the lower envelope

12

● a convergence graph
● lower envelope (a monotonous graph)

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Discretization: Two Possibilities

• vertical: by evaluation is a natural discretization
for wall clock or CPU time we would need to determine discretization intervals

• evaluations are the independent variable
function value is the dependent variable, the measurement

13

● a convergence graph
● lower envelope (a monotonous graph)

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Discretization: Two Possibilities

14

● a convergence graph
● lower envelope (a monotonous graph)

• horizontal: not a “natural” discretization
we need to determine discretization intervals

• function “target” values are the independent variable
time is the dependent variable, the measurement

• still recovers the original data
a time measurement for each discretization function value, these measurements can be plotted as ECDF 

•

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Runtime distribution from a single graph

15

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

AKA runtime distribution

16

the ECDF recovers
the monotonous
graph

1

0.8

0.6

0.4

0.2

0

Runtime distribution from a single graph

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé17

the ECDF recovers
the monotonous
graph, discretised
and flipped

1

0.8

0.6

0.4

0.2

0

AKA runtime distribution

Runtime distribution from a single graph

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé18

the ECDF recovers
the monotonous
graph, discretised
and flipped

1

0.8

0.6

0.4

0.2

0

Runtime distribution from a single graph

• recovering the convergence graph from discretized data

• collecting runtimes from a single experiments as ECDF
are two interpretations of the same thing

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé19

the ECDF recovers
the monotonous
graph, discretised
and flipped
the area over the
ECDF curve is the
average runtime
(the geometric
average if the x-axis
is in log scale)

1

0.8

0.6

0.4

0.2

0

Runtime distribution from a single graph

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB

20

uses only

horizontal discretization  

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB

21

this is 

not
just 

a technical subtlety 
because it crucially determines what measurement we are looking at in the end

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB: Fixed Target(s) versus Fixed Budget

• Leads to different imprecise data in both cases
• “too” bad performance

then the data only provide a lower bound estimate for the runtime (and a fixed budget measure at maximum budget)

• “too” good performance
(reached global optimum up to the relevant or numerical precision before the given budget)

22

● five convergence graphs
“quality indicator” versus “time”

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

The resulting measurement

• Fixed budget (vertical) design: function values

• Fixed target design: evaluations

23

COCO/BBOB: Fixed Target(s) versus Fixed Budget

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

• The fixed budget (vertical) design is (much) easier to set up
choosing a budget is simpler than choosing a target and we need to chose a maximal “timeout” budget either way

• For the (very) same reason, results from the fixed target
(horizontal) design results are (much) simpler to interpret and more
conclusive

without specific insight, a function value is impossible to interpret beyond ordering

• Fixed target results are “budget-free”
we can compare results run with different maximal “timeout” budgets

• Fixed target results can be meaningfully aggregated in ECDFs and
geometric averages

whereas function values from different functions are not commensurable

•

24

COCO/BBOB: Fixed Target(s) versus Fixed Budget

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

• Nominal - categorial, define a classification

• Ordinal - define an order, ranks

• Interval - differences are meaningful

• Rational - ratios are meaningful, we can take the logarithm

CAVEAT: mathematical and semantic treatment of data is not the same. From a classification with values {1, 2} we
can mathematically take differences and ratios of the values, but they have no meaningful semantic interpretation.

Scales of Measurement (“Quality” of Data)

• Nominal - categorial, define a classification

• Ordinal - define an order, ranks, function values (fixed budget)

• Interval - differences are meaningful

• Rational - ratios are meaningful, we can take the logarithm, time (function
evaluations, fixed target)

25

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Treating Success Probabilities

26

number of evaluations

fu
nc

tio
n

(o
r i

nd
ic

at
or

) v
al

ue

F-Target

Solving the fast-versus-successful comparison dilemmaSolving the fast-versus-successful comparison dilemma  
Treating Success Probabilities

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Short answer: consider as runtime

 

that is, roughly,

 

something
psuccess

runtime ∝
1

psuccess

27

Treating Success Probabilities
Solving the fast-versus-successful comparison dilemmaSolving the fast-versus-successful comparison dilemma  

Treating Success Probabilities

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé28

We can simulate a runtime distribution by simulated
(artificial) restarts using the given independent runs

Caveat: the performance of algorithm A critically depends on termination
methods (before to hit the target)

which reflects the situation on a practical problem unless many runs can be done in parallel

Treating Success Probabilities
Solving the fast-versus-successful comparison dilemmaSolving the fast-versus-successful comparison dilemma  

Treating Success Probabilities

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

ERT =
#evaluations(until to hit the target)

#successes

= avg(evalssucc) +

odds ratioz }| {
Nunsucc

Nsucc
⇥ avg(evalsunsucc)

⇡ avg(evalssucc) +
Nunsucc

Nsucc
⇥ avg(evalssucc)

=
Nsucc + Nunsucc

Nsucc
⇥ avg(evalssucc)

=
1

success rate
⇥ avg(evalssucc)

29

defined (only) for #successes > 0. The last three lines are AKA Q-
measure or SP1 (success performance).  
See [Price 1997] and [Auger&Hansen 2005]

unsuccessful runs count
(only) in the nominator

Solving the fast-versus-successful comparison dilemma  
Replacing the success probability with the expected runtime (ERT, aka Enes,
SP2, aRT) to hit a target value in #evaluations is computed (estimated) as:

Treating Success Probabilities

Nikolaus Hansen, Inria, IP Paris Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Data Sets and Usage Statistics

30

Any `cocopp.archiving.create(folder)`-ed data sets provided under an URL
can be loaded with `av = cocopp.archiving.get(URL) and used in the data
processing. See [Hansen et al 2020].

