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COCO — Comparing Continuous Optimisers

IS a (software) platform for comparing continuous optimisers in a black-box scenario
https://github.com/numbbo/coco

automatises the tedious and repetitive task of benchmarking numerical optimisation
algorithms in a black-box setting

advantage: saves time and prevents common (and not so common) pitfalls

COCO provides

experimental and measurement methodology
main decision: what is the end point of measurement

suites of benchmark functions
single objective, bi-objective, noisy, mixed-integer, more to come...

data of already benchmarked algorithms to compare with
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Benchmarking: Related Goals

1. Understanding algorithms

2. Measuring performance in a systematic way (a
performance “profile”)

3. Running a competition
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Benchmarking: The Global Picture

Two surprisingly (but not completely) independent puzzles to solve

- What to benchmark: for example, which collection of test
problems?

- How to assess performance?
- experimental setup
- data collection

+ measures used and presented
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COCO/BB0OB: The Global Picture
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what to benchmark measures used
and and presented

experimental setup

Figure by Tea Tusar, in Hansen et al (2020), COCO: A platform for comparing continuous optimizers
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...feel free to ask questions...
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COCO/BBOB: Test Suite(s)

 Functions are
e Based on known (analytical) functions, modelling a *known” difficulty
e Comprehensible
e Scalable

e Difficult (also: non-separable)

compared to the “typical standard” (at that time)

e Quasi-randomized as instances

with arbitrary shifts and smallish irregularities to avoid artificial exploits and mitigate overfitting, emulates repetition of experiments

e The bad

e Rastrigin function type is somewhat overrepresented

partly due to function pairing

e 10% of the default targets for F23 Katsuuras are trivial to hit

evaluating the domain middle at first is a good “algorithm"

 Require to define target values (function + target = problem)

natural targets in the discrete search domain are known fitness levels and the global optimum, we may need experiments to define useful targets
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Data Format

with hindsight 20/20
- The good:
- scattered experiments can be “merged” (and “unmerged”) with a single “drag-and-drop”
- separation between .info (meta- and summary-data) and .dat files is helpful
- 10+ years old data are still smoothly usable
- backwards compatible adjustments are/were possible
-+ The bad:
- slightly too few targets (too coarse discretization, not a format issue though with backward compatible fix)
- “handling” of restarts is suboptimal
- meta-data are not json-style (key-value Python-dict-style) formatted

- COCO maintains/writes two somewhat incompatible formats
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...feel free to ask questions...
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COCO/BBOB: Performance Assessment

“‘quality indicator” versus “time”
convergence graphs

is all we have (and all we use)
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Specifically

time: we use number of function evaluations

is invariant under changes of computer hardware, OS, programming language, compiler, ...

quality indicator:

SO: affine transformation of the function value (to be minimized)

different for each instance

MO: negative hypervolume value after objective-wise affine
transformation (to be minimized)

Affine transformations are considered as part of the function
definition (benchmark suite definition)

they also affect the target values that define a problem: target precisions are defined identical for all functions in a suite
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Convergence Graphs is All We Have
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we only use the lower envelope
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Discretization: Two Possibilities
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vertical: by evaluation is a natural discretization

for wall clock or CPU time we would need to determine discretization intervals

evaluations are the independent variable

function value is the dependent variable, the measurement
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Discretization: Two Possibilities
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- horizontal: not a “natural” discretization

we need to determine discretization intervals

- function “target” values are the independent variable

time is the dependent variable, the measurement

- still recovers the original data

a time measurement for each discretization function value, these measurements can be plotted as ECDF
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Runtime distribution from a single graph

110 ?
100_ ......................................... ....................................................
v i
- E :
E 90_ ............................. ...................................... -
> s
c i
0 z
o ;
- 80_ ............................. ...............................................................................
=
70_ ............................. ...............................................................................
60 ; i ; ; ; ; ;
O 20 40 60 80 100 120 140

Nikolaus Hansen, Inria, IP Paris

function evaluations

15

Ten+ Years of Benchmarking With COCO/BBOB: A Resumé



Runtime distribution from a single graph
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Runtime distribution from a single graph
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Runtime distribution from a single graph
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function value
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COCO/BBOB

NOt

just

a technical subtlety

because it crucially determines what measurement we are looking at in the end
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COCO/BBOB: Fixed Target(s) versus Fixed Budget

A =

- five convergence graphs
“quality indicator” versus “time”

quality indicator (to be minimized)

number of function evaluations

e | eads to different imprecise data in both cases
‘too” bad performance

then the data only provide a lower bound estimate for the runtime (and a fixed budget measure at maximum budget)

‘to0” good performance

(reached global optimum up to the relevant or numerical precision before the given budget)
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b

COCO/BBOB: Fixed Target(s) versus Fixed Budgéfft

quality indicator (t

The resulting measurement

Fixed budget (vertical) design: function values

Fixed target design: evaluations
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COCO/BBOB: Fixed Target(s) versus Fixed Budg%t
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The fixed budget (vertical) design is (much) easier to setup, | "\ N |
choosing a budget is simpler than choosing a target and we need to chose a maximal “timeout” btidget either way |

I
number of function evaluations

d

For the (very) same reason, results from the fixed target
(horizontal) design results are (much) simpler to interpret and more

conclusive

without specific insight, a function value is impossible to interpret beyond ordering

Fixed target results are “budget-free”

we can compare results run with different maximal “timeout” budgets

Fixed target results can be meaningfully aggregated in ECDFs and
geometric averages

whereas function values from different functions are not commensurable
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Scales of Measurement (“Quality” of Data)

Nominal - categorial, define a classification
Ordinal - define an order, ranks, function values (fixed budget)
Interval - differences are meaningful

Rational - ratios are meaningful, we can take the logarithm, time (function
evaluations, fixed target)

CAVEAT: mathematical and semantic treatment of data is not the same. From a classification with values {1, 2} we
can mathematically take differences and ratios of the values, but they have no meaningful semantic interpretation.
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Treating Success Probabilities

Solving the fast-versus-successful comparison dilemma

ps(Algo A) << 1, fast convergence

Ps (Algo B) ~ 1, slow convergence

function (or indicator) value

number of evaluations
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Treating Success Probabilities

Solving the fast-versus-successful comparison dilemma

Short answer: consider as runtime

something

Psuccess

that is, roughly,

1

runtime <
Psuccess
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Treating Success Probabilities

Solving the fast-versus-successful comparison dilemma

We can simulate a runtime distribution by simulated
(artificial) restarts using the given independent runs

Algo Restart A:

————————R™

ps(Algo Restart A) =1
Algo Restart B:

— | RTs
ps(Algo Restart B) = 1

Caveat: the performance of algorithm A critically depends on termination
methods (before to hit the target)

which reflects the situation on a practical problem unless many runs can be done in parallel
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Treating Success Probabilities
Solving the fast-versus-successful comparison dilemma

Replacing the success probability with the expected runtime (ERT, aka Enes,
SP2, aRT) to hit a target value in #evaluations is computed (estimated) as:

ERT — #evaluations(until to hit the target) unsuccessful runs count
+#SUCCESSES (only) in the nominator
odds ratio
N
— avg(evalsgyce) + ——— x avg(evalsynsucc)
NSUCC
N
~ avg(evalsgycc) + ——— x avg(evalssycc)
NSUCC

~ Nsuce + Nunsucc

NSUCC

1
— X avg(evals
success rate 9 succ)

x avg(evalssycc)

defined (only) for #successes > 0. The last three lines are AKA Q-

measure or SP1 (success performance).
See [Price 1997] and [Auger&Hansen 2005]
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Data Sets and Usage Statistics

Table 1. Visibility of COCO. All citations as of November 19, 2019, in Google Scholar.

Data sets online bbob suite 227
bbob-noisy suite 45
bbob-biobj suite 32
bbob-largescale suite 11
bbob-mixint suite 4
BBOB workshop papers using COCO 143
Unique authors on the workshop papers 109 from 28 countries

Papers in Google Scholar found with the search 559

phrase “comparing continuous optimizers” OR
“black-box optimization benchmarking (BBOB)”

Citations to the COCO documentation including 1,455

Any cocopp.archiving.create (folder) -ed data sets provided under an URL
can be loaded with 'av = cocopp.archiving.get (URL) and used in the data
processing. See [Hansen et al 2020].
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