Ten+ Years of Benchmarking with
COCO/BBOB

Nikolaus Hansen
Inria
CMAP, CNRS, Ecole Polytechnigue, Institut Polytechnigue de Paris, France

Presented at the Lorentz Center Workshop Benchmarked: Optimization meets Machine
Learning, Leiden 2020

COCO — Comparing Continuous Optimisers

IS a (software) platform for comparing continuous optimisers in a black-box scenario
https://github.com/numbbo/coco

automatises the tedious and repetitive task of benchmarking numerical optimisation
algorithms in a black-box setting

advantage: saves time and prevents common (and not so common) pitfalls

COCO provides

experimental and measurement methodology
main decision: what is the end point of measurement

suites of benchmark functions
single objective, bi-objective, noisy, mixed-integer, more to come...

data of already benchmarked algorithms to compare with

Nikolaus Hansen, Inria, IP Paris 2 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Benchmarking: Related Goals

1. Understanding algorithms

2. Measuring performance in a systematic way (a
performance “profile”)

3. Running a competition

Nikolaus Hansen, Inria, IP Paris 3 Ten+ Years of Benchmarking With COCO/BBOB: A Resume

Benchmarking: The Global Picture

Two surprisingly (but not completely) independent puzzles to solve

- What to benchmark: for example, which collection of test
problems?

- How to assess performance?
- experimental setup
- data collection

+ measures used and presented

Nikolaus Hansen, Inria, IP Paris 4 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BB0OB: The Global Picture

1 Sphere 107 best 2009
v v T’ MCS hU; nOiS v v 15 inStanCles %5 an instances
X NELDERDOERR do 0.81 NIPOPaCM;, 51
54~ NEWUOA ros noi :

NEWUOA r _

34
2, |
>
()

=i~ RANDOMSEARCH a
==~ NIPOPaCMA losh

o
o

Imm-CMA-ES aug

data collection R g

4—AImm-CMA-I

\SBFGS-P-St #
g 3
\NELDERDC g

o
IS

3]

Fraction of function,target pairs

1_ 0.2 MCS huyer 2
C / C+ + 1insta|*es * * * 5 vl XVJ —YRANDOMSI + 221218 | |
. target Df: 1e-8 i v2.2.1.216 : . 0 2 4 6 2 3 4 5
I nte rface Res u ltS Of Oth e r 2 3 5 10 20 40 log10(# f-evals / dimension) log10(# f-evals)

solvers PDF, SVG

COCO experiments Tables

Python
interface

A fopt lel 1e0 le-1 le-2 le-3 le-3 le-7 #succ

H . f1,5-D 11 12 12 12 12 12 12 15/15

Test suites: Results of the COCO MCS huyer noiseless 1(0.1) 19(09) 25@2) 262 262 26@2) 26@2) 1515

— bbob User‘p rOVid ed NELDERDOERR doerr noiseless 1.5 (0.7) 3.5 (2) 56(04) 7.6(1.0) 10(2) 14 (0.5) 18(3) 15/15

- 1 . i _ *3 *3 *4 *4 *4 *4 15/

_ b bo b_ b|0 bJ p OSt p r'O CeSS | n g NEWUOA ros nmsefess' 1.1(0) 1.0(0) 1.0 (0) 1.0 (0)*4 1.0 (0.1)*# 1.0 (0)** 1.0 (0.1)*# 15/15
SO lve r RANDOMSEARCH auger noiseless 7.5 (11) 1698 (1325) 6.9¢5 (7e5) = 0 o0 wSeb 0/15

NIPOPaCMA loshchilov noiseless 2.7 (2) 7.5 (3) 14 (3) 2003) 26(4) 37(2) 51(4) 15/15

Java

Interface Logging functionality

Imm-CMA_ES auger noiseless 1.6(0.9)2.9(04) 3.6(02) 4.4(0.6) 51(0.5) 6.8(0.6) 85(0.6) 15/15
BFGS-P-StPt 1.5(0) 1.3(0) 13(0) 13(0) 13(0) 13(0) 14(03) 1515

Latex, HTML
A4

HTML pages Latex templates

User-provided Matlab/Octave
SO lVQ I —— i n te rfa ce Benchmarking Results on the bbob Suite

Home
Runtime distributions (ECDFs) per function
M at la b M a t l a b Runtime distributions (ECDFs) summary and function groups
Scaling with dimension for selected targets
Tables for
Runtime distribution for selected targets and f-distributior
R

what to benchmark measures used
and and presented

experimental setup

Figure by Tea Tusar, in Hansen et al (2020), COCO: A platform for comparing continuous optimizers
Nikolaus Hansen, Inria, [P Paris in a black-box setting. Optimization Methods and Software, published online, Aug20220 of Benchmarking With COCO/BBOB: A Resumé

...feel free to ask questions...

Nikolaus Hansen, Inria, IP Paris O Ten+ Years of Benchmarking With COCO/BBOB: A Resume

COCO/BBOB: Test Suite(s)

 Functions are
e Based on known (analytical) functions, modelling a *known” difficulty
e Comprehensible
e Scalable

e Difficult (also: non-separable)

compared to the “typical standard” (at that time)

e Quasi-randomized as instances

with arbitrary shifts and smallish irregularities to avoid artificial exploits and mitigate overfitting, emulates repetition of experiments

e The bad

e Rastrigin function type is somewhat overrepresented

partly due to function pairing

e 10% of the default targets for F23 Katsuuras are trivial to hit

evaluating the domain middle at first is a good “algorithm"

 Require to define target values (function + target = problem)

natural targets in the discrete search domain are known fitness levels and the global optimum, we may need experiments to define useful targets

Nikolaus Hansen, Inria, IP Paris / Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Data Format

with hindsight 20/20
- The good:
- scattered experiments can be “merged” (and “unmerged”) with a single “drag-and-drop”
- separation between .info (meta- and summary-data) and .dat files is helpful
- 10+ years old data are still smoothly usable
- backwards compatible adjustments are/were possible
-+ The bad:
- slightly too few targets (too coarse discretization, not a format issue though with backward compatible fix)
- “handling” of restarts is suboptimal
- meta-data are not json-style (key-value Python-dict-style) formatted

- COCO maintains/writes two somewhat incompatible formats

Nikolaus Hansen, Inria, IP Paris 8 Ten+ Years of Benchmarking With COCO/BBOB: A Resume

...feel free to ask questions...

Nikolaus Hansen, Inria, IP Paris O Ten+ Years of Benchmarking With COCO/BBOB: A Resume

COCO/BBOB: Performance Assessment

“‘quality indicator” versus “time”
convergence graphs

is all we have (and all we use)

Nikolaus Hansen, Inria, IP Paris 10 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Specifically

time: we use number of function evaluations

is invariant under changes of computer hardware, OS, programming language, compiler, ...

quality indicator:

SO: affine transformation of the function value (to be minimized)

different for each instance

MO: negative hypervolume value after objective-wise affine
transformation (to be minimized)

Affine transformations are considered as part of the function
definition (benchmark suite definition)

they also affect the target values that define a problem: target precisions are defined identical for all functions in a suite

Nikolaus Hansen, Inria, IP Paris 11 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Convergence Graphs is All We Have

110 | | | | | | ___- aconvergence graph
' ' | ' | ' |- lower envelope (a monotonous graph)

100+

Q

-

© 90r

>

-

S ﬁ 5 s 5 s 5 z

C gol S S S SR S -

E f : f : : : i

0020 20 60 80 100 120 140
function evaluations

we only use the lower envelope

Nikolaus Hansen, Inria, IP Paris 12 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Discretization: Two Possibilities

110 pyrrry ? ? _ ? o @ convergence graph
: : I : {lll- lower envelope (a monotonous graph)
Q : 4" 3 ' : :
- : T | E
o OO HHHHHHHHHHHHHFEHEFECHHFEHE - EFEERHCEEEEH L EEE L
>
-
2 ; ; | ; 5
=
ol HTHHUEHTHUHE LT T T
I i Iljill
60 i i | | ;
0 20 40 60 80 100 12 140
function evaluations

vertical: by evaluation is a natural discretization

for wall clock or CPU time we would need to determine discretization intervals

evaluations are the independent variable

function value is the dependent variable, the measurement

Nikolaus Hansen, Inria, IP Paris 13 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Discretization: Two Possibilities

110 v r f r f 1 __ - aconvergence graph

- lower envelope (a monotonous graph)

100

90

30

function value

70

A

T+ WAWN A
Y

00— 20 20 60 80 100 120 140
function evaluations

- horizontal: not a “natural” discretization

we need to determine discretization intervals

- function “target” values are the independent variable

time is the dependent variable, the measurement

- still recovers the original data

a time measurement for each discretization function value, these measurements can be plotted as ECDF
Nikolaus Hansen, Inria, IP Paris 14 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Runtime distribution from a single graph

110 ?
100_
v i
- E :
E 90_ -
> s
c i
0 z
o ;
- 80_
=
70_
60 ; i ; ; ; ; ;
O 20 40 60 80 100 120 140

Nikolaus Hansen, Inria, IP Paris

function evaluations

15

Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Runtime distribution from a single graph

110

100+

90+

80+

function value

70+

60

0 20 40 60 80 100
function evaluations

runtime distribution

Nikolaus Hansen, Inria, IP Paris

140

16

1

10.8

10.6

{0.4

10.2

the ECDF recovers
the monotonous
graph

Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Runtime distribution from a single graph

110

100}
90+

go A— S— -

function value

60

0 20 40 60 80
function evaluations

runtime distribution

Nikolaus Hansen, Inria, IP Paris

100 120 140

17

1

10.8

10.6

0.4

the ECDF recovers
the monotonous
graph, discretised
and flipped

Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Runtime distribution from a single graph

110pv—

90

function value

100+ N P S e }”§Hm.”€ % |

oL o S N S

| 37l — S— . S 1)

0020 40 60 80 100
function evaluations

120

140

1

the ECDF recovers
08 the monotonous
~graph, discretised

and flipped

10.6

0.4

® recovering the convergence graph from discretized data

e collecting runtimes from a single experiments as ECDF

are two interpretations of the same thing

Nikolaus Hansen, Inria, IP Paris

18

Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

function value

70

60

Nikolaus Hansen, Inria, IP Paris

F A
F A NYY LA
\Na/\ A

ha— . WM

: 1

, 1

: 1
|
|
|
|
|
|
i..
|

60 80 100
function evaluations

Runtime distribution from a single graph

the ECDF recovers
the monotonous
graph, discretised
and flipped

the

curve is the
average runtime
(the geometric
average if the x-axis
IS In log scale)

Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

110 py—

100
Q
-}
= 90
>
C
o
S 80
=

70

uses only

0—=>0 20 60 80 100 120 140

function evaluations

horizontal discretization

Nikolaus Hansen, Inria, IP Paris 20 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB

NOt

just

a technical subtlety

because it crucially determines what measurement we are looking at in the end

Nikolaus Hansen, Inria, IP Paris 21 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB: Fixed Target(s) versus Fixed Budget

A =

- five convergence graphs
“quality indicator” versus “time”

quality indicator (to be minimized)

number of function evaluations

e | eads to different imprecise data in both cases
‘too” bad performance

then the data only provide a lower bound estimate for the runtime (and a fixed budget measure at maximum budget)

‘to0” good performance

(reached global optimum up to the relevant or numerical precision before the given budget)
Nikolaus Hansen, Inria, IP Paris 29 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

b

COCO/BBOB: Fixed Target(s) versus Fixed Budgéfft

quality indicator (t

The resulting measurement

Fixed budget (vertical) design: function values

Fixed target design: evaluations

Nikolaus Hansen, Inria, IP Paris 23 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

COCO/BBOB: Fixed Target(s) versus Fixed Budg%t

b
f

(t

t

The fixed budget (vertical) design is (much) easier to setup, | "\ N |
choosing a budget is simpler than choosing a target and we need to chose a maximal “timeout” btidget either way |

I
number of function evaluations

d

For the (very) same reason, results from the fixed target
(horizontal) design results are (much) simpler to interpret and more

conclusive

without specific insight, a function value is impossible to interpret beyond ordering

Fixed target results are “budget-free”

we can compare results run with different maximal “timeout” budgets

Fixed target results can be meaningfully aggregated in ECDFs and
geometric averages

whereas function values from different functions are not commensurable

Nikolaus Hansen, Inria, IP Paris 24 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Scales of Measurement (“Quality” of Data)

Nominal - categorial, define a classification
Ordinal - define an order, ranks, function values (fixed budget)
Interval - differences are meaningful

Rational - ratios are meaningful, we can take the logarithm, time (function
evaluations, fixed target)

CAVEAT: mathematical and semantic treatment of data is not the same. From a classification with values {1, 2} we
can mathematically take differences and ratios of the values, but they have no meaningful semantic interpretation.

Nikolaus Hansen, Inria, IP Paris 25 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Treating Success Probabilities

Solving the fast-versus-successful comparison dilemma

ps(Algo A) << 1, fast convergence

Ps (Algo B) ~ 1, slow convergence

function (or indicator) value

number of evaluations

Nikolaus Hansen, Inria, IP Paris 20 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Treating Success Probabilities

Solving the fast-versus-successful comparison dilemma

Short answer: consider as runtime

something

Psuccess

that is, roughly,

1

runtime <
Psuccess

Nikolaus Hansen, Inria, IP Paris 27 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Treating Success Probabilities

Solving the fast-versus-successful comparison dilemma

We can simulate a runtime distribution by simulated
(artificial) restarts using the given independent runs

Algo Restart A:

————————R™

ps(Algo Restart A) =1
Algo Restart B:

— | RTs
ps(Algo Restart B) = 1

Caveat: the performance of algorithm A critically depends on termination
methods (before to hit the target)

which reflects the situation on a practical problem unless many runs can be done in parallel

Nikolaus Hansen, Inria, IP Paris 28 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Treating Success Probabilities
Solving the fast-versus-successful comparison dilemma

Replacing the success probability with the expected runtime (ERT, aka Enes,
SP2, aRT) to hit a target value in #evaluations is computed (estimated) as:

ERT — #evaluations(until to hit the target) unsuccessful runs count
+#SUCCESSES (only) in the nominator
odds ratio
N
— avg(evalsgyce) + ——— x avg(evalsynsucc)
NSUCC
N
~ avg(evalsgycc) + ——— x avg(evalssycc)
NSUCC

~ Nsuce + Nunsucc

NSUCC

1
— X avg(evals
success rate 9 succ)

x avg(evalssycc)

defined (only) for #successes > 0. The last three lines are AKA Q-

measure or SP1 (success performance).
See [Price 1997] and [Auger&Hansen 2005]

Nikolaus Hansen, Inria, IP Paris 20 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

Data Sets and Usage Statistics

Table 1. Visibility of COCO. All citations as of November 19, 2019, in Google Scholar.

Data sets online bbob suite 227
bbob-noisy suite 45
bbob-biobj suite 32
bbob-largescale suite 11
bbob-mixint suite 4
BBOB workshop papers using COCO 143
Unique authors on the workshop papers 109 from 28 countries

Papers in Google Scholar found with the search 559

phrase “comparing continuous optimizers” OR
“black-box optimization benchmarking (BBOB)”

Citations to the COCO documentation including 1,455

Any cocopp.archiving.create (folder) -ed data sets provided under an URL
can be loaded with 'av = cocopp.archiving.get (URL) and used in the data
processing. See [Hansen et al 2020].

Nikolaus Hansen, Inria, IP Paris 30 Ten+ Years of Benchmarking With COCO/BBOB: A Resumé

