
Chapter 12

Multidisciplinary Optimization in the Design
of Future Space Launchers

As industrial prime contractor ASTRIUM Space Transportation is responsible for
the design of space launchers. A space launcher is a complex system, requiring contri-
butions from many disciplines. In this chapter we will endeavour to limit ourselves to
the launch vehicle design problem, which proves to be a multidisciplinary optimiza-
tion problem.

12.1. The space launcher problem

The mission of a space launcher is to place a payload in a given orbit expressed as
a speed at a given point. The payloads are classically near Earth artificial satellites,
solar system exploration probes or spacecraft able to transport people.

The orbit required depends on the payload’s missions. Low orbits are often used
for Earth observation missions, geostationary orbits are the preferred orbits for com-
munication satellites. By the term launcher, we therefore understand the vehicle that
places a payload in orbit.

A launcher’s objective is to communicate high energy to the payload with a gain in
altitude (potential energy) and a gain in speed (kinetic energy). To obtain high energy
in both the atmosphere and in vacuum, the technology adopted is the rocket motor,
which is based on the action-reaction principle with the continuous ejection of fuel.
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At present, a single body vehicle cannot be used to launch a satellite payload due to
the available technologies; the principle used is to progressively eliminate the masses
of structures that have ceased to be useful. This elimination is done progressively by
a multistage launcher design, where a stage is understood to mean a motor and tank
assembly allowing the provision of a certain speed increment. The energy gain must
be done in a limited time whilst ensuring the precision of injection into orbit and the
integrity of the payload.

The problem thus posed results in a certain number of constraints on the launcher
design to guarantee the success of the mission. The payload, whose main purpose is to
survive in orbit for several years, is designed to withstand moderate environments. The
level of acceleration, acoustic and mechanical vibrations and thermal fluxes applied to
the payload must in consequence be limited during the launch phase. These constraints
must be taken into account from the start of design, during the preliminary design
phase.

In addition to these constraints, due to the payload, there are limitations for
launcher reliability. Forces on the launcher, such as the maximum dynamic pressure
and the maximum heat flux, are constraints for problems of the strength of structures
and the controllability of the launcher. Finally operational constraints must also be
considered. Among others we can cite the falling of stages into uninhabited areas, the
visibility of the launcher from a network of stations during the flight and the safety
constraints close to the launch site.

12.2. Launcher design

Looking at this description of the problem, it is evident that the design of new
launchers, from the preliminary design phases to the end of launcher development,
involves a large number of disciplines that have greater or lesser interactions and cou-
pled effects between them. These disciplines also have greater or lesser effects on high
level objectives and on the global cost and performance of the launcher.

In an ideal world the problem of designing a new launcher would simply be posed
as follows: given a customer requirement (specified by type of payload that should
be placed in a type of orbit and complying with a certain number of satellite and
operational constraints) and a high level criterion (minimising the recurrent cost of a
launch, for example), find the best compromise for the system.

In practice the problem is more complicated, because the specifications can include
requirements to reuse technologies or entire subsystems such as motors or complete
existing stages, which means that the global optimization process must handle discrete
and continuous parameters at the same time. In addition, there can be more than one
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high level criterion to manage (for example the development cost, reuse of the system
in other orbits, robustness,. . . ).

However, even if we only consider the basic problem presented above, the system
design loop as currently implemented is relatively slow taking into account the use
of different services associated with different disciplines. The current method can be
roughly described as below:

1) a first selection of technologies is made covering the type of fuels, motors,
pressurisation, etc. based on a priori ideas of costs or industrial, political or operational
constraints;

2) from these choices, a preliminary staging is made by evaluating the speed incre-
ment to be provided by the launcher. This simplified calculation takes into account
strong assumptions on the energy loss levels, the fuel mass to inert mass ratio and the
specific impulse 1 of the motors;

3) secondly, a simplified propulsion force calculation provides more realistic
motor parameters (mass-flow rate, thrust level,. . . ) and a summary description of the
motor subsystem;

4) next, a simplified stage layout exercise based on local force calculations pro-
vides a first estimate of the launcher mass budget;

5) these four steps are sufficient to provide inputs for the trajectory and perfor-
mance optimization;

6) The reference trajectory from the calculation will start the dimensioning loop
that includes the general force calculations, thermal, aerodynamic, control and transi-
tion phase studies. The payload mass optimization also allows the fuel mass and thrust
level to be refined. These studies aim to arrive at a consolidated mass budget and an
update of the constraints.

The complete loop is performed a number of times, with increasingly precise
and computing time greedy tools, until convergence on a stable concept, if possi-
ble. This approach has disadvantages. The process is sequential and not integrated,
which means that there is no guarantee that the launcher finally obtained achieves the
best compromise, in particular in the case where disciplines interact strongly. In addi-
tion, the final result can be heavily dependent on the initial simplification assumptions.
Finally, a dead end can be reached, which is the most serious case. The process is long,
and in consequence onerous (a large number of loops are performed). This approach
does not allow for easy traceability and justification of the final design is difficult.

1. The specific impulse is a value in seconds representing the effectiveness of a motor is equal to
the ejection speed of the gases divided by the gravitational acceleration on the ground Isv = Ve

g0
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Figure 12.1. Launcher design loop

12.3. Multidisciplinary optimization in the launcher preliminary design phase

An alternative to the classic approach is to call on methods belonging to the family
generally described by the term “multidisciplinary optimization”.

For preliminary designs developed at ASTRIUM Space Transportation, the use of
a multidisciplinary approach has resulted in the development of a platform [DUR 04]
combining a certain number of essential disciplines considered to be sufficient in the
first stages of system engineering activities. The approach developed is to integrate
the different disciplines into a single environment using technical skill toolboxes con-
taining simplified models and to optimize the high level launcher parameters for a
given payload and a desired orbit, with respect to global criteria and complying with
constraints applying to the outputs from these toolboxes. The disciplines represented
for the preliminary design phases are:

– mission analysis (optimization of the trajectory and staging under con-
straints,. . . );

– the design office (stage geometry and dimensions, structure, materials, MCI,
parallel or linear implementation, layout,. . . );

– propulsion: motor definitions and technologies (cryogenic or storable propellant,
flow rate, thrust law, output section, pressurisation,. . . );
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– control (controllability and maximum deflection of nozzles providing flight con-
trol,. . . );

– aerodynamic (drag and lift coefficient,. . . );
– simplified cost evaluation.

For each discipline, the simplified models are designed by teams dedicated to the
field, with the aim of taking their main first order effects on global system design into
account. Then the main parameters for each discipline are identified to participate in
the global optimization process.

The principle of multidisciplinary optimization is to combine architecture opti-
mization and trajectory optimization into an integrated process.

The optimization of the launcher architecture or staging uses the criterion of min-
imising the launcher cost or mass with launcher high level characteristics like motor
type, launcher configuration, stage mass and size as parameters and the required
energy increment to be communicated to the payload as constraint.

Traditionally, trajectory optimization is done for a fixed launcher architecture
[JEA 06]. The criterion is the maximization of payload mass of the minimization of
fuel consumption for a fixed payload for a required orbit. The trajectory calculation is
done by solving the following simplified dynamic system:

ẋ = v

v̇ = γ

ṁ = −Q

γ = g +
faero + fprop

m

faero = −1
2ρv2

rCDS re f
vr

vr

fprop = t (cos θ cosψi + cos θ sinψj + sin θk)

At each instant the orientation of the launcher acceleration is completely defined
by the control law expressed by the two angles θ and ψ, which are the parameters for
the trajectory optimization problem.
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Multidisciplinary optimization must thus take discrete and continuous parameters
into account. The discrete parameters are typically the architecture type (number of
stages, parallel or linear configuration) and the technology type (solid or liquid propul-
sion) The continuous parameters to be optimized are configuration related (fuel mass
of each stage, thrust laws, control laws, tank pressure,. . . ).

The aim of the multidisciplinary approach developed at ASTRIUM Space Trans-
portation is to find consistent solutions with regard to the different disciplines to ini-
tiate the new launcher design process, limit the risks of finishing in a dead end and
obtain an optimum solution taking a larger number of system constraints into account.
Justification of the selected solution is then easier. The platform is operational and is
already used in the preliminary design phase to guide designs of future civil launchers.

Managing uncertainties is a constant preoccupation during the development of a
new launcher and must be considered from the preliminary design stage. The method-
ologies presented in this work are to be implemented in the multidisciplinary tools
that are used in preliminary design by ASTRIUM.

Because of both the approach adopted until now to solve the multidisciplinary
problem and the complexity of the system studied, ASTRIUM Space Transportation
is extremely interested in the scientific advances described in preceeding chapters,
in particular the reduction of the model and multi-level optimization. As previously
stated, the ASTRIUM multidisciplinary optimization approach allows a global start
to the launcher design process. The developments presented in this book could allow
for the continued use of multi-disciplinary tools in later preliminary design phases,
through the integration of more complex models coupled to metamodels.

12.4. Evolutionary Optimization for Space Launcher Design: An Example

We give an example for a launcher with n = 23 continuous parameters to be opti-
mized. Nine of the parameters are architecture parameters (stage diameters, stage
masses, and mass flows) and 14 parameters characterizing the trajectory command
law for the launcher. The optimization criterion, i.e. the cost function, is the launcher
recurrent cost that can be computed with a Fortran code within a few seconds. The
code admits additionally 18 inequality and 4 equality constraint values. For this rea-
son we introduce in the following section an adaptive constraint handling technique
which addresses both inequality and equality constraints in a unified manner.

12.4.1. Constraint Handling

The constraint handling algorithm computes first normalized constraint values γi,
for each i = 1, . . . ,m, either from an equality constraint hi(x) = 0 or from an inequality
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constraint gi(x) ≤ 0. The normalization relies on a user-specified external parameter
εi. The constraint values γi are used for penalization of the cost function within a
weighted sum, where the weights are adapted mainly based on the ratio of feasible
solutions. We will denote the ratio of feasible solutions in constraint i in the recent
iteration as rfeas

i . Additionally, we use ri
feas for the ratio of feasible solutions in con-

straint i averaged over the last n + 2 iterations, and r i
feas
[ j,k] averages only between the

j-th and k-th last iterations.

All the computations are specified in the following.

12.4.1.1. Epsilon-normalized constraint values

For each given constraint, indexed with i = 1, . . . ,m, and for a given solution x we
compute the epsilon-normalized constraint value to

γi(x) def
=

1
εi
×


gi(x) + εi for inequality constraints gi(x) ≤ 0
|hi(x)| for equality constraints hi(x) = 0

, (12.1)

where εi are strictly positive user-defined constants. We call a constraint active, when
γi > 0, i.e. respectively gi > −εi or |hi| > 0. Active constraints get penalized. We call
a constraint infeasible when γi > 1, i.e. respectively gi > 0 or |hi| > εi. By definition
infeasible constraints are also active.

For each constraint a user-defined εi must be provided. For inequality constraints
the value decides when the constraint becomes active and therefore changes the cost
function via penalization. For equality constraints the ε-value decides when the con-
straint becomes infeasible (in the continuous search domain an algorithm cannot, in
general, satisfy an arbitrary equality constraint exactly).

The objective of the constraint handling is to provide feasible solutions, that is
single solutions x where γi(x) ≤ 1 for all i.

12.4.1.2. Penalty for constraint violations

For a solution vector x the penalization due to active constraints reads

fpen(x) =
m∑

i=1
wiγ

+
i (x)2 , (12.2)

where γ+i (x) =

γi(x) if γi(x) > 0
0 otherwise

is the positive part of γi and wi > 0 denote adap-

tive weights for i = 1, . . . ,m. The penalization value is added to the original launcher
recurrent cost (the cost function value) of the solution x.
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12.4.1.3. Target probability

The desired probability for each γi to be feasible, i.e. γi ≤ 1 is in general

ptarget = 0.5 (12.3)

and never smaller. When at most one solution of the recent population of size λ is
feasible, the target probability is computed to the maximum of 0.5 and

ptarget =

(
1
λn

)1/(|{i=1,...,m|ri
feas<1}|+10−6)

. (12.4)

The target value is chosen such that at least one solution within n iteration steps
should remain feasible, under the assumption that the constraints are independent.

12.4.1.4. Adaptive Weights

The penalization weights wi in (12.2) are adaptive and updated after each iteration
step of the underlying search algorithm. The weight i is updated only if the respective
constraint appeared to be active (i.e. γi > 0) at least once within the last n+2 iterations
and additionally either

rfeas
i < ptarget ∧ ri

feas < ptarget ∧ ri
feas
[1,2] ≤ ri

feas
[3,4] ∧ IQR(γi) < 15 × IQR( f ),

where IQR(.) denotes the inter-quartile range from the value of the recent iteration and
f denotes the recurrent cost value (cost function) in the recent iteration (we assume
that several solutions are evaluated in each iteration), or

rfeas
i > ptarget ∧ ri

feas
[1,2] ≥ ri

feas
[3,4] .

In the first case the weight i increases, in the second case the weight decreases, because
the update for each selected weight i ∈ {1, . . . ,m} reads

wi ← wi exp
(
ptarget − rfeas

i

) 1
n . (12.5)

The update equation aims in changing the weight wi in that rfeas
i comes closer to ptarget

in the following iterations.

12.4.2. Optimization

The evolutionary optimization was carried out with the covariance matrix adapta-
tion evolution strategy (CMA-ES) [HAN 01, HAN 06] implemented in Scilab. The
Scilab code provides an unconstrained stochastic optimization routine which was
coupled with an implementation of the constraint-handling as described above. The
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Figure 12.2. Time evolution of the ratio of feasible solutions overall (lowest line) and for each
constraint, where the abscissa shows number of cost function evaluations. Each line i varies

between i and i + 1 for i = 0, . . . ,m. The variation depicts the ratio of feasible solutions in the
recent iteration, ranging between zero and one. The lowest line denotes the ratio of overall

feasible solutions (γi ≤ 1 for all i), the second to forth and the tenth lowest lines are the
equality constraints.

implementation details of CMA-ES in an object-oriented manner are discussed in sec-
tion 14.7.

The CMA-ES is a stochastic search method which is not only robust in rugged
search landscapes, but can also address ill-conditioned, non-separable cost functions
effectively. In a comprehensive benchmarking study, the CMA-ES has revealed excel-
lent performance not only, but in particular, on noisy functions [HAN 09a, FIN 09].
In our experiments we applied the CMA-ES with all default values and without taking
special measures to address noise in the cost function values (like a large population
size or a decreased learning rate for the covariance matrix or a specific noise handling
routine [HAN 09b]).

In Figure 12.2 the time evolution of the ratio of feasible constraints (i.e. of γi ≤ 1)
is shown. During the first thousand iterations (each iteration conducts 13 cost function
evaluations) no feasible solution was evaluated. Later on, another period of similar
length without any feasible solution can be observed, due to infeasibility of γ5. During
the remaining optimization feasible solutions are found regularly.
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The overall optimization procedure was conducted several times. Depending on
the chosen initial solution, not always a feasible solution could be found. The best
obtained feasible solution could reduce the cost of the reference case (1331.7) by
more than 10%. The acquired covariance matrix, which gives some insight into the
optimization problem revealed a final condition number between 105 and 1010, indi-
cating a considerably ill-conditioned cost function.

Future work will include systematic studies of the influence of population size and
initial solution on the success probability to find at least one feasible solution and
consider different policies before and after the first feasible solution were found.
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