
Chapter 14

On Object-Oriented Programming of
Optimizers – Examples in Scilab

14.1. Introduction

Optimization algorithms are generally implemented following a functional
paradigm that places the optimization method at the top of the hierarchy. Consider for
instance the package Scilab [CAM 06], where an objective function f is optimized by
a single call to a procedure that performs the whole optimization process, without any
interference of the user:

--> [yopt, xopt] = optim(f, x0)

Remark – Objective functions and constraints are calculated from the outputs of a
(programming) function or an external software, both of which we call simulators. To
keep the text readable, the words “objective function” and “simulator” are used here
as a generalization of objective functions and constraints. The ideas presented also
apply to constraints and multiple objectives.

Such a structure turns out to be very restrictive to implement more versatile strate-
gies, such as changing the optimizer or f during the optimization, which may be
needed, e.g., to couple local and global optimizers (e.g., [HAR 05]) or to replace high
fidelity simulations by metamodels (see Chapter 5).

Chapter written by Yann C, Nikolaus H, Gilles P, Daniel SA and
Rodolphe L R.

527

528 Multidisciplinary Design Optimization in Computational Mechanics

In this chapter, we consider the object-oriented paradigm where both the optimiz-
ers and the models to be optimized (simulators, metamodels, etc.) are conceived as
objects of the same hierarchical level. Such objects are the building blocks assembled
by the user to create its own optimization strategies. Some tutorial notes on imple-
mentation details will be presented along the chapter. In particular we shall develop
two examples of optimizers for deterministic functions, namely the simplex method
and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The examples
are given in the Scilab language, which is a simple, opensource language for scientific
calculations [INR 09]. Although Scilab is not, strictly speaking, an object-oriented
programming (OOP) language, we will apply Scilab programming patterns which
emulate OOP. The last part of the chapter extends the Ask & Tell programming pattern
to optimizers for noisy functions.

14.2. Decoupling the simulator from the optimizer

Optimization can be seen as an iterative exploration of a search domain where a
performance is assigned to each trial point, the goal being to find a point with the
best performance possible. An optimization algorithm controls these moves through
the search space from the beginning (initial point(s)) to the end (stopping condition).
It is quite natural to implement such an algorithm by encapsulating the optimization
loop within which the simulator is called inside a function, such that the simulator is
an argument (f) of the latter. Scilab conforms to this logic, as was just seen with the
optim function.

In practice however, such a structure quickly meets its limits. Optimizers are not
meant (hence not coded) to handle numerically expensive simulators. What if the
simulator crashes ? What if one wishes to take advantage of distributed computing
resources shared with other users ? Advanced optimization users also often wish to
mix various optimizers (like local and global optimizers, [HAR 05]) and simulators of
various fidelities (see Chapter 5).

A programming pattern that decouples the calls to the optimizer(s) from the calls
to the simulator(s) is necessary to make optimization programs more compatible with
engineering facts. To clarify this statement, let us look at the typical calls sequence
made during an optimization procedure which is shown in Figure 14.1: it consists in
a series of operations with periodical calls to the simulator. The optimizer is made of
the piece of code between two simulations. By casting chart 14.1 in the form shown in
Figure 14.2, the “optimizer” and “simulator” objects are decoupled and become more
clearly visible.

One advantage of this object approach is that it makes possible to describe, in a
visible manner, new scenarios. For instance, the flowchart in Figure 14.3 represents an
optimization strategy based on a metamodel, which is updated during the optimization

On Object-Oriented Programming of Optimizers 529

S O S O S O

Figure 14.1. Calls sequence during an optimization procedure.

O S

Figure 14.2. Basic coupling of an optimizer and a simulator.

after each new simulator call. The underlying modular structure of the overall proce-
dure is clear: the group made by an optimizer and a metamodel yields a new optimizer
which is then coupled to a simulator.

A second advantage of the decoupled objects is that the current state of the opti-
mization procedure is stored in a well-defined programming structure, the optimizer
object. This makes it possible to save the optimizer in memory and resume the opti-
mization procedure later. The optimization process can also be transferred to another
machine. Decoupling simulator and optimizer objects enables distributed optimiza-
tion procedures.

SO M

Figure 14.3. Example of an optimization procedure based on a metamodel. The group made of
an optimizer and a metamodel yields a new optimizer which is coupled to a computationally

expensive simulator. After each new simulation, the metamodel is updated. The solution point
found by optimizing the metamodel is presented to the simulator at each outerloop iteration.

530 Multidisciplinary Design Optimization in Computational Mechanics

14.3. The “ask& tell” pattern

As we have seen, the optimizer is the piece of program between two simulation
series. We therefore need to interact with the optimizer upstream (“which simulations
are needed?”) and downstream (“here are the simulations”). This is what is defined
with the ask and tellmethods. Hence, an optimization scheme should be written:

while ~ opt.stop

x = ask(opt)

y = f(x)

opt = tell(opt, x, y)

end

where opt and f are the optimizer and simulator objects. Once the loop is done, the
optimum is retrieved by the bestmethod:

[yopt, xopt] = best(opt)

Remark. It is worth noticing the particular syntax of the tell method, where the
optimizer is present as argument as well as result. It enables optimizer updating,
given that Scilab only allows argument passing by value.

Pseudo1 object-oriented programming is possible in Scilab thanks to typed lists
and operator overloading (see the Scilab help entries mlist and overloading for
further details, [INR 09]). An optimizer is therefore an object (an mlist list of the
specific <optimizer_type>) whose associated methods ask, tell and best should
be defined according to the following syntax:

function x = %<optimizer_type>_ask(this)

function this = %<optimizer_type>_tell(this, x, y)

function [yopt, xopt] = %<optimizer_type>_best(this)

1. The programming pattern used provides neither strict data encapsulation (inner data can
always be changed) nor inheritance. This is the reason why we qualify this programming
scheme of “pseudo” object-oriented.

On Object-Oriented Programming of Optimizers 531

This step overloads the functions ask, tell and best. In Scilab, it is possible to
overload most of the operators (+, -, (), . . .) as well as some internal functions (disp,
plot2d, . . .). However, in order to overload the ask, tell and best methods, it is
necessary to redirect the execution to the methods of the specific optimizer, as is done
by the following code:

function x = ask(this)

execstr(’x = %’ + typeof(this) + ’_ask(this)’)

endfunction

function this = tell(this, x, y)

execstr(’this = %’ + typeof(this) + ’_tell(this, x, y)’)

endfunction

function [yopt, xopt] = best(this)

execstr(’[yopt, xopt] = %’ + typeof(this) + ’_best(this)’)

endfunction

In addition, it is necessary to implement a constructor, i.e. a function in charge of
initializing the optimizer. All these points will be illustrated in details in the rest of
this chapter.

14.4. Example: a “multi-start” strategy

The (pseudo) object-oriented programming pattern provides a first advantage: it
allows to imagine complex optimization scenarii. We illustrate this point through a
“multi-start” strategy which turns out to be quite complicated to program following
the traditional functional paradigm.

A naive multi-start approach consists in performing N successive runs of a
gradient-based optimizer from different initial points. The goal is to locate the global
optimum, defined as the best of the local optima. Assuming that each run performs
n iterations, the multi-start strategy requires N × n evaluations of the objective func-
tion. Figure 14.4(a) illustrates such a strategy applied to the Branin-Hoo function. The
following can be noticed :

1) If the optimizer takes less than n simulations to converge, the remaining simu-
lation budget is not used.

2) The trajectories of different optimization runs tend to follow the same paths,
i.e., some old trajectories are revisited. This is a waste of simulation budget.

532 Multidisciplinary Design Optimization in Computational Mechanics

−5 0 5 10
0

5

10

15

(a)

−5 0 5 10
0

5

10

15

(b)

Figure 14.4. Multistart optimization strategies. In (a), different runs are performed
independently of each other. In (b), the optimization trajectory is interrupted when it meets

that of a precedent run; a new run begins in a different region of the domain.

We now consider the following alternative strategy: the optimizer is stopped if it
is close to an already visited trajectory. Optimization runs are sequentially restarted
from non-explored regions in the limit of the remaining simulation budget. Using the
“ask & tell” optimizer steepdesc, that shall be described in paragraph 14.5.3, the
multi-start strategy is implemented in a few lines:

neval = 1000 // simulation budget

Arch = [] // archive of visited points

i = 0 // optimizer index

// WHILE THE OPTIMIZATION BUDGET IS NOT EXHAUSTED:

while neval > 0

// INITIALIZE A NEW OPTIMIZER;

i = i + 1

opt = steepdesc()

opt.x0 = grand(1, 2, ’def’) .* (xmax - xmin) + xmin

opt.step = 5E-2

opt.eps = 1E-2

// ALLOCATE A FRACTION OF THE BUDGET TO THE OPTIMIZER;

opt.eval = min(100, neval)

neval = neval - opt.eval

// WHILE THE OPTIMIZER DOES NOT STOP;

while ~ opt.stop

// ASK THE OPTIMIZER FOR A POINT,

x = ask(opt)

// CALCULATE THE DISTANCE OF THE CURRENT

On Object-Oriented Programming of Optimizers 533

// POINT TO THOSE OF THE ARCHIVE,

Xj = Arch(Arch(:,3) ~= i, 1:2)

d = min(sqrt(sum((Xj-x(ones(1,size(Xj,1)),:)).^2,’c’)))

// IF THE DISTANCE IS TOO SMALL,

if d < 0.1 then

opt.stop = %t // STOP THE OPTIMIZER,

else

// RUN THE SIMULATION OTHERWISE,

[y, dy] = branin(x)

// UPDATE THE OPTIMIZER,

opt = tell(opt, x, list(y, dy))

// AND ADD THE POINT TO THE ARCHIVE;

Arch($+1,1:3) = [x, i]

end

end

// RESTORE THE BUDGET NOT USED BY THE OPTIMIZER;

neval = neval + opt.eval

end

An example of execution of the above code is presented in Figure 14.4(b). We see
how the optimizer better exploits the simulations budget as the domain is much more
covered than in fig. 14.4(a).

It is important to note that this strategy would be quite complicated to implement
(although it is possible) using the function optim of Scilab, because it is not easy to
stop the optimizer during the execution of the multi-start scheme. By contrast, we
simply did it here with the instruction opt.stop = %t.

14.5. Programming an ask & tell optimizer: a tutorial

We have just introduced the ask & tell optimizer pattern and shown how it can be
used to build customized optimization strategies. We now bring further details by giv-
ing the implementation of three ask & tell optimizers. This section is a programming
tutorial. The optimizer examples have not been chosen for their efficiency but for their
pedagogical interest. The three examples illustrate the following features:

1) random search: optimizer objects and associated methods;
2) (µ/µ, λ)-ES: starting parameters, optimizer based on a density of points;
3) steepest descent: multiple model responses, optimizers with different states,

composite stopping criterion.

534 Multidisciplinary Design Optimization in Computational Mechanics

14.5.1. Example 1: Random Search

The random search is undoubtedly the simplest optimization algorithm: at each
iteration a point is randomly generated within the domain, and it is kept if it performs
better than any other previously found point. Such an approach is indeed naive, but
it illustrates the basic ingredients of stochastic search algorithms such as simulated
annealing, evolutionary algorithms, etc. It is also a benchmark algorithm because it
has no parameter and, no matter the search space dimension, it converges (although
slowly) to the optimum (see e.g. Spall [SPA 03]).

Implementation

We begin by defining a constructor, i.e. a function in charge of initializing the
optimizer object:

function this = rsearch()

this = mlist([’rsearch’, ’d’, ’xmin’, ’xmax’, ’iter’, ’stop’,

’_x’, ’_y’])

this.stop = %f

this.xmin = []

this.xmax = []

this._x = []

this._y = %inf

endfunction

The optimizer returned by this function is a list (mlist) of type “rsearch”, contain-
ing several fields, namely d, the search space dimension, xmin and xmax, the lower
and upper bounds of the domain respectively, iter, the number of remaining itera-
tions, stop, a boolean that indicates if the stopping condition was met, _x and _y, the
best point found so far and its objective function value.

The askmethod fetches a new point from the optimizer. For the random search, it
simply consists in generating a random point inside the domain:

function x = %rsearch_ask(this)

x = (this.xmax - this.xmin) .* grand(1, this.d, ’def’) + ...

this.xmin

endfunction

The tell method updates the optimizer with an evaluated search point. We keep
this point if it is better than any other already known point:

On Object-Oriented Programming of Optimizers 535

function this = %rsearch_tell(this, x, y)

if y < this._y then

this._x = x

this._y = y

end

this.iter = this.iter - 1

this.stop = this.stop | this.iter <= 0

endfunction

Note that the variables iter and stop are simultaneously updated.

Finally, the bestmethod reports the best point found:

function [yopt, xopt] = %rsearch_best(this)

yopt = this._y

xopt = this._x

endfunction

Test

The random search just programmed is tested on the Branin-Hoo func-
tion [JON 98] :

f (x1, x2) =
(
x2 −

5.1
4π2 x2

1 +
5
π

x1 − 6
)2
+ 10

(
1 − 1

8π

)
cos(x1) + 10 (14.1)

This function has three local minima in [−5, 10]× [0, 15]. The following implementa-
tion of Branin-Hoo returns the function value as well as the gradient,

function [y, dy] = branin(x1, x2)

a = -5.1 / (4 * %pi^2) * x1

b = x2 + (a + 5 / %pi) .* x1 - 6

c = 10 * (1 - 1 / (8 * %pi))

y = b^2 + c * cos(x1) + 10

dy = [2 * b .* (-2 * a + 5 / %pi) - c * sin(x1), 2 * b]~.

endfunction

Use of the optimizer starts with the initialization of an object of type “rsearch”
with the chosen parameters:

536 Multidisciplinary Design Optimization in Computational Mechanics

−5 0 5 10
0

5

10

15

Figure 14.5. Sample run of the rsearch optimizer with 100 iterations on the Branin-Hoo
function.

opt = rsearch()

opt.d = 2

opt.xmin = [-5, 10]

opt.xmax = [0, 15]

opt.iter = 100

Next, the ask & tell optimization loop is straightforward:

while ~opt.stop

x = ask(opt)

y = branin(x)

opt = tell(opt, x, y)

end

It yields results such as those shown in Figure 14.5. As expected, the points are
uniformly spread in the domain.

Possible improvements

Spall [SPA 03] suggests two improvements for the random search. The first one
(“localized random search”) consists in biasing the point’s sampling towards the

On Object-Oriented Programming of Optimizers 537

neighborhood of the best known point. We recover in this way the notion of opti-
mization trajectory. The second improvement (“enhanced random search”) adds an
average of recent successful steps to the search trajectory. These two improvements
are implemented according to the ask & tell logic in the OMD_toolbox toolbox
[Con 09].

14.5.2. Example 2: (µ/µ, λ) Evolution Strategy

The (µ/µ, λ) evolution strategy (see e.g. [BEY 01]) consists in evolving a density
of points from an iteration to the next, according to the following principle: for i =
1, . . . , n,

1) randomly generate λ points of probability density pi which followsN(x̄i, σ2I) :

xi
1, . . . , xi

λ ∼ pi (14.2)

2) select the µ best points (µ < λ):

xi
1:λ, . . . , xi

µ:λ (14.3)

(where xi
j:λ denotes the j-th best point)

3) from these points estimate the next iteration search density, pi+1 (here we only
update the mean):

x̄i+1 =
1
µ

µ∑

j=1
xi

j:λ (14.4)

Using the evolution strategy jargon, the µ points are called parents, whereas the λ
points of the next iteration are called offsprings.

Implementation

The optimizer parameters are: the mu and lambda integers, the vector of standard
deviations sigma and the initial point x0. Some optimizer’s inner variables join this
group, viz. iter, the number of remaining iterations, stop, the stopping condition,
_X, the µ parents and finally _y, the corresponding performances. Once these parame-
ters are identified, the implementation of the mulambda constructor is straightforward:

function this = mulambda()

this = mlist([’mulambda’, ’mu’, ’lambda’, ’sigma’, ’x0’, ’iter’, ...

’stop’, ’_X’, ’_y’])

this.stop = %f

this._X = []

this._y = %inf

endfunction

538 Multidisciplinary Design Optimization in Computational Mechanics

The ask method generates a population centered on the initial point for the first
iteration, and on the barycenter of the µ parents for the subsequent iterations:

function X = %mulambda_ask(this)

if this._X == [] then

xbar = this.x0

else

xbar = mean(this._X, ’r’)

end

X = grand(this.lambda, ’mn’, xbar’, diag(this.sigma.^2))’

endfunction

The tell method selects the µ best points and updates the inner variables of the
optimizer:

function this = %mulambda_tell(this, X, y)

[s, k] = gsort(y, ’c’, ’i’)

i = k(1 : this.mu)

this._X = X(i, :)

this._y = y(i)

this.iter = this.iter - 1

thi.stop = this.stop | this.iter <= 0

endfunction

Finally, the bestmethod retrieves the best point in the parent population (i.e., the
best point out of the already selected µ points . . .) :

function [yopt, xopt] = %mulambda_best(this)

[yopt, iopt] = min(this._y)

xopt = this._X(iopt,:)

endfunction

Test

The mulambda optimizer is also tested on the Branin-Hoo function. The initializa-
tion of the mulambda object is:

opt = mulambda()

opt.x0 = [6, 12]

opt.mu = 2

opt.lambda = 10

opt.sigma = [1, 1]

opt.iter = 10

On Object-Oriented Programming of Optimizers 539

−5 0 5 10
0

5

10

15

1

2

3

4

5

6

7

8

9

10

Figure 14.6. Example of a mulambda optimizer (evolution strategy (µ/µ, λ)) convergence on
the Branin-Hoo function with µ = 2 parents, λ = 10 offsprings and 10 iterations (i.e., 100

evaluations in total).

The ask & tell optimization loop slightly differs from the preceeding case as it man-
ages a set of points, which induces a new for loop:

while ~opt.stop

X = ask(opt)

n = size(X, 1)

y = zeros(1, n)

for i = 1:n

y(i) = branin(X(i, :))

end

opt = tell(opt, X, y)

end

A sample mulambda run is shown in Figure 14.6. The method seems to converge to a
local optimum.

Possible improvements

The standard deviation, σ, can be adapted to improve convergence. The rule of
thumb is the so-called “one-fifth-rule” that aims at tuning the standard deviation σ for
keeping the improvement probability around 20%. In the (µ/µ + λ)-ES variant, the µ

540 Multidisciplinary Design Optimization in Computational Mechanics

parents are kept until the next tell call, where the selection of the µ parents of the
next generation is made out of µ + λ points. Hence one never risks to lose the best
point, at the cost of a higher risk to converge prematurely to a location different from
the global optimum. These two variations are implemented according to the ask & tell
logic inside the OMD_toolbox [Con 09].

14.5.3. Example 3: Steepest descent

The steepest descent method consists in descending in the direction opposite to the
gradient:

x0 given (14.5)

xi = xi−1 − αi∇ f (xi−1) , i ≥ 1 (14.6)

where αi is the size of the displacement that minimizes the function in this direction:

αi = argmin
α

f (xi−1 − α∇ f (xi−1)) (14.7)

This step is called “line search” and is often replaced by simpler heuristics, like using
a constant αi. The variant we implement here consists in reducing αi because, for
arbitrarily small steps and unless we are at a stationary point, it is guaranteed that the
algorithm will progress [MIN 86]:

– set αi to the initial value α0 > 0 (given by the user);
– divide αi by two (αi ← αi/2) while

f (xi−1 − αi∇ f (xi−1)) ≥ f (xi−1)

A composite stopping criterion is implemented:
dist(xi, xi−1) ≤ ε
or maximum number of iterations reached
or maximum number of objective function evaluations reached
Such a condition is necessary because, during the adaptation of αi (the line search),
the number of function evaluations is not known in advance.

Implementation

The constructor initializes an mlist of type steepdesc:

function this = steepdesc()

this = mlist([’steepdesc’, ’x0’, ’step’, ’eps’, ’iter’, ...

’eval’, ’stop’, ’_x’, ’_y’, ’_dy’, ’_step’])

this.iter = %inf

On Object-Oriented Programming of Optimizers 541

this.eval = %inf

this.stop = %f

this._x = []

this._y = %inf

endfunction

The parameters are x0, the initial point, step, the initial value of parameter αi at the
beginning of each iteration (the current value is _step), eps, the tolerance over the
xi’s (written ε in mathematical format), as well as the usual inner variables. Notice
that the gradient (_dy) is also stored.

The ask method returns the initial point x0 during the first iteration, and later the
points given by (14.6):

function x = %steepdesc_ask(this)

if this._x == [] then

x = this.x0

else

x = this._x - this._step * this._dy

end

endfunction

The tell method should manage two optimizer states, either the returned point
corresponds to a new iteration or to an adaptation step of αi :

function this = %steepdesc_tell(this, x, y)

if y(1) > this._y then

this._step = this._step / 2

else

this._x = x

this._y = y(1)

this._dy = y(2)

this._step = this.step

this.iter = this.iter - 1

end

this.eval = this.eval - 1

this.stop = this.stop | this.iter <= 0 | this.eval <= 0 | ...

this._step * sqrt(sum(this._dy.^2)) <= this.eps

endfunction

542 Multidisciplinary Design Optimization in Computational Mechanics

Within this function, y is assumed to be a list with the objective function value in the
first field and the gradient in the second field.

The bestmethod returns the current point:

function [yopt, xopt] = %steepdesc_best(this)

yopt = this._y

xopt = this._x

endfunction

Test

The steepdesc optimizer is run on the same Branin-Hoo function with the fol-
lowing initial parameters:

opt = steepdesc()

opt.x0 = [6, 10]

opt.iter = 100

opt.step = 5E-2

opt.eps = 1E-2

Note that, as we do not fix the maximum number of the objective function evaluations,
eval, its default value is +∞ (cf. the constructor implementation).

Besides the handling of the (f (xi),∇ f (xi)) couple within a list, the ask & tell opti-
mization loop introduces no novelties:

while ~opt.stop

x = ask(opt)

[y, dy] = branin(x)

opt = tell(opt, x, list(y, dy))

end

Figure 14.7 shows a steepdesc trajectory. Note that, in general, the optimizer con-
verges to local optima.

Possible improvements

The line search of steepdesc should be improved with a strategy that allows to
take larger steps if necessary, e.g., Goldstein’s rule.

On Object-Oriented Programming of Optimizers 543

−5 0 5 10
0

5

10

15

Figure 14.7. Example of a steepdesc execution with 100 iterations on the Branin-Hoo
function.

14.6. The Simplex method

14.6.1. Principle

The Simplex algorithm, also called Nelder-Mead algorithm [NEL 65], is a
derivative-free non-linear optimization algorithm. It should not be mistaken with the
simplex method used in linear programming.

The simplex method uses k+1 trial points (where k represents the dimension of the
decision variable −→x) for defining an improvement direction of the objective function.
Such k + 1 vertices geometrical figure is called a simplex.

14.6.2. Presentation of the method

First, the algorithm chooses the k+1 values of the decision variables −→x at random.
The objective functions of these points is then evaluated. The simplex will henceforth
be updated by deletion of the least efficient vertex and replacement by a new point
which is evaluated. The generation of the new point is based on three rules that aim at
i) creating an improvement direction and ii) having a large step size.

The simplex rules are now introduced using the following notation.
– W: worst (rejected) point.

544 Multidisciplinary Design Optimization in Computational Mechanics

B

A

C

A’

Figure 14.8. Generation of a new point by symmetry.

– B: best point.
– N: second best point.
– C̄: barycenter of the remaining points.
– α: reflexion coefficient (α = 1 by default).
– γ: expansion coefficient (γ = 2 by default).
– β+: positive contraction coefficient (β+ = 0.5 by default).
– β−: negative contraction coefficient (β− = 0.5 by default).

The simplex rules are:

Rule 1. Reject the worst solution by reflection. A new realization R of the deci-
sion variable −→x is calculated by homothety of the rejected position about the
barycenter of the simplex points but the worst (see Figure 14.8).
Reflection: R = C̄ + α ·

(
C̄ −W

)

Rule 2. Expand the displacement towards the objective function improvement zone.
This rule permits to increase the step size along favorable search directions.
Expansion: E = C̄ + γ ·

(
C̄ −W

)

Rule 3. Contract the displacement if this has been done towards a non favorable zone.
This rule allows not to go back to the previous position and prevents oscillations
within the same iteration between two bad points.
Positive contraction: C+ = C̄ + β+ ·

(
C̄ −W

)

Negative contraction: C− = C̄ − β− ·
(
C̄ −W

)

Expansions and contractions are sketched in 2D in Figure 14.6.2.

A flow chart of the algorithm, showing how these rules are architectured, is given
in Figure 14.9. Figure 14.10 illustrates on a simple 2D landscape how the simplex
may move and, on the average of several iterations, find the right search direction.

On Object-Oriented Programming of Optimizers 545

no

yes

no

yes

no

yes

yes

no

yes

yes

no

no

contraction C+

R>B ? R>N ? R>W ?

E>R ?

satisfied ?

Perform a positive

optimization

Produce the first

Store the points in
variables B, N, W

Replace W by R

Replace W by E Replace W by R Replace W by C+ Replace W by C−

contraction C−
Produce a dilatation E

Perform the reflection R

Stop the optimization

Are the objectives
active ?

Start the

simplex points

Perform a negative

Is the re−evaluation rule

Evaluate the
retained points

Update B,N and W

Figure 14.9. Flow chart of the simplex method algorithm.

14.6.3. Implementation

Our Ask & Tell implementation of the Nelder and Mead algorithm uses a “step by
step” version of the simplex algorithm. This method has the following prototype in
Scilab:

function [x_next, data_next, eval_Func, f_hist, x_hist] = ...

step_nelder_mead(f_current, x_current,...

data_current, nm_mode, Log, kelley_restart,...

kelley_alpha)

The different parameters of the optimization method have the following meaning:

546 Multidisciplinary Design Optimization in Computational Mechanics

x2

x1

90%

80%

70%

60%

50%

Figure 14.10. Path of a simplified simplex method (only reflections are made). The algorithm
correctly finds an uphill direction (the function is maximized here).

C+ R EW C−

Figure 14.11. Expansion and contraction steps of the simplex method.

– f_current: objective value of x_current. If nm_mode=’init’, then f_current is
a vector of n + 1 components corresponding to the coordinates of the simplex;

– x_current: the initial simplex (n+1 columns vectors) or the last created vertex
whose objective function has been calculated (1 column vector), depending on the
value of nm_mode;

– data_current: current state of the optimization method. This parameter
should be void at the first iteration (nm_mode=’init’);

– nm_mode: operation mode of the Nelder & Mead “step by step” method. Admis-
sible values are:

- ’init’: for the initial iteration;
- ’run’: for all the remaining iterations;
- ’exit’: for retrieving the best solution.

– Log: a boolean. If it is %T, the information is displayed during the optimization
run (this is an optional parameter set to %F by default);

On Object-Oriented Programming of Optimizers 547

– kelley_restart: a boolean. If it is %T, the simplex is re-initialized around the
current best point when the simplex aspect ratio reaches a maximum value (this is an
optional parameter set to %F by default);

– kelley_alpha: a scalar related to the shape of the current simplex. It controls
the maximum amount of simplex degeneracy allowed during the optimization (this is
an optional parameter set to 1e-4 by default);

– x_next: a parameter vector for which the values of the objective function should
be calculated or the best solution already found by the Nelder & Mead method (if
nm_mode equals ’init’, x_next corresponds to a n + 1 columns vector);

– data_next: structure containing the state of the Nelder & Mead method. This
structure should be transmitted to the function at each iteration;

– eval_Func: the number of evaluations of the objective function (this parameter
is optional);

– f_hist: the best objective function value at each iteration (this parameter is
optional);

– x_hist: the points making the simplex at each iteration (n + 1 column vector,
optional).

We will use now this function to define a Nelder & Mead algorithm complying with
the Ask & Tell formalism.

The relevant parameters of the algorithm are:
– ItMX: maximum number of iterations;
– x0: starting point of the optimization (the initial simplex will be instantiated

around x0);
– upper and lower: the upper and lower bounds of the optimization variables;
– simplex_relsize: the relative size of the simplex that will be defined around

x0;

The constructor of the nmomdmethod is the following:

function this = nmomd()

this = mlist([’nmomd’, ’ItMX’, ’x0’, ’x_init’, ...

’f_init’, ’upper’,’lower’, ...

’kelley_restart’, ’kelley_alpha’, ...

’simplex_relsize’, ’log’, ’stop’, ...

’data_next’, ’init’]);

this.ItMX = 100;

this.x0 = [];

548 Multidisciplinary Design Optimization in Computational Mechanics

this.kelley_restart = %F;

this.kelley_alpha = 1e-4;

this.simplex_relsize = 0.1;

this.log = %F;

this.stop = %F;

this.upper = 1e6*ones(size(x0,1),size(x0,2));

this.lower = - 1e6*ones(size(x0,1),size(x0,2));

this.data_next = [];

this.init = %T;

this.x_init = [];

this.f_init = [];

endfunction

We now overload the ask and tell functions.
At the first iteration, the ask function generates the initial simplex. Later, the value
x_init is the variables vector for which the objective function should be calculated.

function x = %nmomd_ask(this)

if this.init then

// We set the initial simplex

for i=1:length(this.x0)+1

this.x_init(:,i) = this.x0 + ...

this.simplex_relsize*0.5* ...

((this.upper - this.lower) .* ...

rand(size(this.x0,1),size(this.x0,2)) ...

+ this.lower);

end

end

x = this.x_init;

endfunction

The tell function updates the parameter vector x_init with the objective function
values just calculated. It then updates the internal structure of the nmomd object,
i.e., the number of remaining iterations is decremented, the stopping boolean and the
method state are updated.

function this = %nmomd_tell(this, x, y)

if this.init then

[this.x_init, this.data_next] = ...

step_nelder_mead(y, x, [], ’init’, ...

On Object-Oriented Programming of Optimizers 549

this.log, this.kelley_restart, ...

this.kelley_alpha);

this.init = %F;

else

[this.x_init, this.data_next] = ...

step_nelder_mead(y, x, this.data_next, ’run’, ...

this.log, this.kelley_restart, ...

this.kelley_alpha);

end

this.ItMX = this.ItMX - 1;

this.stop = this.stop | (this.ItMX <= 0);

endfunction

Finally, a method for retrieving the best parameter vector found as well as the corre-
sponding objective function value is defined.

function [yopt, xopt] = %nmomd_best(this)

[xopt, yopt] = step_nelder_mead(this.f_init, this.x_init, ...

this.data_next, ’exit’, ...

this.log, this.kelley_restart, ...

this.kelley_alpha);

endfunction

14.6.4. Example

We will now apply the Ask & Tell version of the Nelder & Mead method to the
Branin-Hoo function (see paragraph 14.5.1). We start by initializing the parameters of
the method:

ItMX = 100;

nmopt = nmomd();

nmopt.ItMX = ItMX;

nmopt.kelley_restart = %F;

nmopt.kelley_alpha = 1e-4;

nmopt.simplex_relsize = 0.1;

nmopt.log = %F;

The search domain is also defined:

nmopt.lower = [-5, 0]’;

nmopt.upper = [15, 10]’;

550 Multidisciplinary Design Optimization in Computational Mechanics

An initial point is randomly selected from the search domain:

nmopt.x0 = (Max - Min).*rand(size(Max,1),size(Max,2)) + Min;

And the optimization method is started:

y_min = [];

while ~ nmopt.stop

printf(’nmopt running: iteration %d / %d - ’, ...

ItMX - nmopt.ItMX + 1, ItMX);

x = ask(nmopt);

y = [];

for i=1:size(x,2)

y(i) = branin(x(:,i));

end

y_min($+1) = min(y);

printf(’ fmin = %f\n’, y_min($));

nmopt = tell(nmopt, x, y);

end

We recover the best parameter vector and the corresponding objective function values:

[f_opt, x_opt] = best(nmopt);

An example run of this program is shown in Figure 14.12.

14.7. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [HAN 01,
HAN 03, HAN 04, HAN 06] (used in Chapter 12) is a state-of-the-art stochastic
search method.

14.7.1. Principle

New candidate solutions, ~xi, are sampled according to a multi-normal distribution
of mean ~m, and covariance matrix the product of C with the square of a step size σ,

~xi = ~m + σ ×Ni

(
~0,C

)
for i = 1, . . . , λ . (14.8)

On Object-Oriented Programming of Optimizers 551

−5 0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

Nelder and Mead

x1

x2

(a) Initial (dark) and final point (bright).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Evolution of the objective function

Iteration

y

(b) Evolution of the best values of the
objective functions vs. the number of iter-
ations.

Figure 14.12. Example of a run of the Ask & Tell version of the Nelder &Mead algorithm on
Branin’s function.

The λ new points created using Eq. 14.8 followN
(
~m, σ2C

)
. Typically, λ is of the order

of 10 although, in some cases, larger values (λ � 100) may be advisable. Besides
the starting point and the stopping criterion, the population size λ > 3 is the main
parameter of the algorithm.

In the (µ/µ, λ)-CMA-ES, the best µ < λ newly generated solutions are selected to
update the mean ~m and the other distribution parameters σ and C. These updates rely
on two principles.

– The time evolution of the mean solution ~m in the search space is analyzed. The
covered distance determines changes of the step-size σ. The direction shapes the
covariance matrix C. The time evolution is captured in a so-called evolution path and
is computed in a momentum equation.

– The distribution shape, that is the covariance matrix C, is updated such that
successful steps become more likely to be sampled again. All updates are unbiased,
given random selection.

The (µ/µ, λ)-CMA-ES turns out to be a robust and efficient stochastic search algo-
rithm.

– Sampling λ � 1 new solutions and the (µ/µ, λ) selection are robust to noisy
evaluations and help not getting trapped into local minima. Increasing the population
size λ can further improve the capacity of locating global optima [HAN 04].

– The adaptation of the covariance matrix is particularly helpful on ill-conditioned
functions, while the performance on well-conditioned functions is not affected. As a

552 Multidisciplinary Design Optimization in Computational Mechanics

drawback, the internal computational complexity is in n2 (for the sampling of a general
multi-variate normal distribution), where n is the search space dimension.

– The step-size control allows a fast increase of the sample variance, which is
essential to prevent premature convergence, and later in the search a fast decrease to
accurately converge to the optimum.

14.7.2. Implementation and Interfaces

The implementation follows very closely the descriptions given in [HAN 04,
HAN 06, HAN 09]. We will not detail the basic %cma_ask, %cma_tell and
%cma_best functions, which have been sufficiently illustrated in the preceeding
examples. Other important functions are now briefly discussed.

param = cma_new([])

[es, param] = cma_new(param)

In the first case, cma_new returns its parameters. In the second case it returns a new
optimizer, assigned to es. At least two mandatory parameters in param need to be set
by the user, as will be seen below. A full param struct is returned which contains
the actually used parameters.

cma_plot(fignb, name_prefix, name_extension,

object_variables_name, plotrange)

allows to plot optimization runs. Data visualization can be very insightful and, in
many cases, helps to improve the problem formulation.

[xopt, f, out, param] = cma_optim(costf, x0, sigma0, param)

[xopt, f, out, param] = cma_optim_restarted(costf, x0, sigma0,

restarts, param)

provide a functional interface to the object-oriented implementation, similar to the
built-in Scilab function optim. cma_optim_restarted implements restarts, where
λ is increased for each restart by a factor of two [AUG 05].

On Object-Oriented Programming of Optimizers 553

14.7.3. Examples

In this section we discuss a few examples from scratch. A cma-object is generated
with the function cma_new(param). The struct param has two mandatory fields,
x0 and sigma0. First, we get a parameter struct filled with default values:

-->p = cma_new();

cma_new has two mandatory fields in its input parameter struct:

x0 (or typical_x) and sigma0.

A complete parameter struct has been returned.

-->disp(p)

x0: [0x0 constant]

typical_x: [0x0 constant]

sigma0: [0x0 constant]

opt: [1x1 struct]

stop: [1x1 struct]

verb: [1x1 struct]

readme: [1x1 struct]

The returned parameter struct contains a few short comments in the readme field
explaining also the role of x0 and sigma0.

-->disp(p.readme)

x0: "initial solution, either x0 or typical_x MUST be provided"

typical_x: "typical solution, the genotypic zero for more conveni...

sigma0: "initial coordinate-wise standard deviation MUST be provided"

stop: "termination options, see .stop.readme"

opt: "more optional parameters, see .opt.readme"

verb: "verbosity parameters, see .verb.readme"

Parameters x0 and sigma0 do not have default values. All other optional parameters have
default values and do not need to be part of the input struct for cma_new. We continue with a
short example minimizing the 8-D Rosenbrock function. The initialization reads

clear param

param.x0 = zeros(8,1);

param.sigma0 = 0.001; // far too small for testing purpose

es = cma_new(param);

554 Multidisciplinary Design Optimization in Computational Mechanics

sigma0 was deliberately chosen too small. It should be such that the optimum is
expected to be within x0 ± 3*sigma0, in our case sigma0 = 0.5 would be appropri-
ate. If different values are appropriate for different coordinates, the optional parameter
opt.scaling_of_variables can be used.

We define the Rosenbrock function2

function f=frosen(x)

f = -1e-5 + 1e2*sum((x(1:$-1).^2 - x(2:$)).^2) ...

+ sum((x(1:$-1)-1).^2);

endfunction

The following optimization iterations resembles previous examples given in this chapter.

while ~es.stop

X = ask(es);

y = [];

for i = 1:length(X)

y(i) = frosen(X(i));

end

es = tell(es, X, y);

end

[yopt, xopt] = best(es);

Here, the function ask delivers a list of solution vectors (since Version 0.99), where solu-
tions are column vectors. The output from the example looks as follows.

(5/5_W,10)-CMA-ES (W=[46,27,16,...]%, mueff=3.2) in 8-D

Iter, Evals: Function Value (worst) |Axis Ratio |idx:Min SD, idx:Max SD

1, 10: +6.9926606e+000 +(2e-002)| 1.05e+000 | 2:8.80e-004, 8:8.96e-004

2, 20: +6.9908033e+000 +(1e-002)| 1.15e+000 | 2:8.93e-004, 8:9.62e-004

3, 30: +6.9840590e+000 +(1e-002)| 1.28e+000 | 2:1.01e-003, 8:1.11e-003

101, 1010: +4.5686563e+000 +(6e-001)| 6.63e+000 | 8:1.15e-002, 2:3.62e-002

201, 2010: +1.4533785e+000 +(8e-001)| 1.09e+001 | 8:1.23e-002, 5:3.71e-002

301, 3010: +1.4976704e-001 +(3e-002)| 1.63e+001 | 1:3.11e-003, 8:1.69e-002

401, 4010: +1.0262306e-005 +(5e-005)| 4.81e+001 | 2:8.23e-005, 8:1.50e-003

501, 5010: -9.9999987e-006 +(4e-012)| 5.95e+001 | 1:2.74e-008, 8:6.83e-007

537, 5370: -1.0000000e-005 +(1e-014)| 6.22e+001 | 1:1.24e-009, 8:3.18e-008

The “Axis Ratio” (5-th column) is the square root of the condition number of the covariance
matrix C. Large values indicate an ill-conditioned problem. Observing a final condition number

2. For demonstration purposes, we have subtracted 10−5 from the original function value such
that solutions close to the optimum yield negative values. The CMA-ES is invariant to adding
a constant to the function value and has other important invariance properties, see [HAN 01,
HAN 06].

On Object-Oriented Programming of Optimizers 555

of about 602 ≈ 4 × 103, the Rosenbrock function appears to be moderately ill-conditioned.
Condition numbers up to 107 are not uncommon in practice. The numerics involved allow to
handle condition numbers up to 1014.

Useful output can be found in the es.out struct.

-->disp(es.out)

seed: 1.151D+09

version: 0.99

genopheno: [3 genopheno]

dimension: 8

stopflags: [2 list]

solutions: [1x1 struct]

evals: 5370

iterations: 537

The final mean solution is delivered in es.out.solutions.mean.x. The termination rea-
sons were small deviations in the function values:

-->for s = es.out.stopflags, printf(s + ’\n’); end

tolfun

tolfunhist

Figure 14.13 shows the output graphics that was generated while running the example. The
plot can also be generated by calling

-->cma_plot

after the run has finished. cma_plot reads data from files written in tell(). In the lower
left subplot of Figure 14.13, we find that the ill-conditioning of the Rosenbrock function is
related to one long axis in the distribution (one large eigenvalue). This means that one search
direction yields much quicker progress than any other direction. In the upper right, the evolution
of the parameters reveals the structure of the Rosenbrock function.

To control the frequency of output figures plotting and files writing, the “modulo” options
can be changed, plotmodulo or logmodulo respectively.

556 Multidisciplinary Design Optimization in Computational Mechanics

Figure 14.13. Output of cma_plot from an optimization run on the 8-D Rosenbrock function,
where 10−5 was subtracted from the original function value. Upper left: The function value

(thick line in blue and magenta) becomes negative after about 4000 function evaluations (400
iterations). The cyan line (final value 10−15) shows the difference to the best achieved function
value and reveals a continuing improvement, as the line is decreasing until termination. Lower
left: The principle axes lengths of the sample distribution (in log-scale) adapt to the minimized

function. They reveal the (local) structure of the underlying optimization problem. Upper
right: the variables move from zero to one in an ordered fashion. The global optimum is at
xi = 1 for all i = 1, . . . , 8. Lower right: the standard deviations quickly increase during the

first iterations by about one order of magnitude from 10−3 to 10−2. They also vary during the
optimization by a factor of about three and quickly decrease during the final convergence

phase after 4000 function evaluations.

-->p = cma_new([]);

-->disp(p.verb)

logmodulo: 1

displaymodulo: 100

plotmodulo: "max(logmodulo, 500)"

logfunvals: [0x0 constant]

readfromfile: "signals.par"

On Object-Oriented Programming of Optimizers 557

filenameprefix: "outcmaes"

append: 0

readme: [1x1 struct]

-->p.verb.plotmodulo = 0 // do not plot

-->p.verb.logmodulo = 10 // write only every 10-th iteration

For running the loop quietly, logmodulo and displaymodulo would be set to zero, limiting
the output information to a minimum.

14.8. Ask & Tell formalism for uncertainty handling

14.8.1. The additional data created by simulation uncertainties

The underlying assumption of the optimization methods studied so far, and any other gen-
eral optimization algorithm, is that it is possible to assign a stationary performance value to
any decision vector, i.e. if we say y = f (x) then y is a unique vector of scalars. Within such a
deterministic formulation, the optimization becomes the search for the vector x which has the
best performance vector y. However, in industrial contexts and in real life in general, such a
deterministic performance measure is rarely possible due to the existence of ill-known factors
(prices, boundary conditions, material state, demand, ...): physical systems have an inherent
variability and there are practical and theoretical limitations to collect and handle all the nec-
essary information to describe a system. The practical consequence is that the decision vectors
are no longer associated to single objective values but to sets of possible performances.

14.8.1.0.1. The simple case: removal of uncertainties by a statistical transformation.
A first step consists in transforming the original single or multi-objective problem into

another one, based on some pertinent criteria for uncertainty handling (typically robustness,
reliability or risk) and the characteristics of the uncertainty sources [Sal 09]. Some examples of
this approach can be found in Chapters 9, 10 and 11 in this book.

Coming back to the basic Ask & Tell formalism introduced in section 14.2, we notice that,
in the presence of uncertainty, every decision vector x generates a set of objective instances.
If the criteria for uncertainty handling allow to reduce such sets to single values, e.g. some
random variable central moments, such values can be sent directly to the tell procedure. In
such a case we get:

while ~ opt.stop

x = ask(opt)

y = f(x)

z = r(y)

opt = tell(opt, x, z)

end

558 Multidisciplinary Design Optimization in Computational Mechanics

where r is a function that assesses the new criteria and returns a vector of scalars z upon which
the quality order is built inside tell. Noticing that z=r(f(x)), the above optimization loop is,
in terms of programming, equivalent to the deterministic Ask & Tell pattern discussed earlier in
this Chapter.

In the context of Monte Carlo simulations for example, y is typically a set of samples of the
performance distribution and r is the value of a statistical estimator.

Notice that we have not yet specified whether the uncertainty is attached to x or to f (x) or
both. We are only assuming at this stage that the simulator f(x) is able to return a set. For
instance, if y = f (x) is a random variable whose probability distribution function (PDF) may
be fully known for every x, the optimization problem entails a sequence of pairwise compar-
isons of PDFs, which can be transformed to mean value comparisons if the adopted criterion,
programmed in r, establishes so. Function r should then calculate the mean, µ = z = r(y),
leaving the rest of the processing (store x and z, make decisions based on them) to tell. If the
resulting PDF is not fully known, which is the general case, µ could be estimated via ȳ = 1

n

∑n
i yi.

However, it turns out that since ȳ is also a random variable whose value depends on the
available samples yi, the use of the transformation r is somewhat naive.

14.8.1.0.2. Example of Monte Carlo simulations.
We now illustrate how uncertainties change the optimization program by giving an exam-

ple of Monte Carlo simulations embedded into a Scilab code. Different scenarios of uncer-
tainty handling may occur, namely a) uncertainty attached to the decision vectors x, b) noisy
objective functions and c) the combination of the previous cases. We can build a simulator
for uncertainty handling with a generic interface F(x,u) based on a deterministic simulator
f(x), considering for the case a) f(x+ux), for the case b) f(x)+uf and finally for the case
c) f(x+ux)+uf, where u is a vector of realizations of random variables, which is conveniently
split into two subvectors ux and uf for simulating the uncertainty associated to x and to f,
respectively. As an example, consider the Branin-Hoo function introduced in section 14.5.1.
We are going to optimize f (x1, x2) adding uncertainty to its argument and outcome, so that it
becomes Fu(x1, x2, u) = f (x1 + ux1 , x2 + ux2) + u f . Vector u = (ux1 , ux2 , u f) is a random vector
such that ux1 ∼ U(−1, 1), ux2 ∼ U(−1, 1) and u f ∼ N(0, 1). If we want to perform one itera-
tion of minimization of the mean of the Branin-Hoo function with the naive deterministic-like
approach, we write

x = ask(opt)

u = [grand(nmc,1,’unf’,-1,1), grand(nmc,1,’unf’,-1,1),...

grand(nmc,1,’nor’,0,1)]

y = mean(branin(x(1)*ones(budget,1)+u(:,1),...

x(2)*ones(budget,1)+u(:,2))+u(:,3))

opt = tell(opt,x,y)

where nmc is the number of Monte Carlo realizations of the random vector u. Notice that
branin returns a column vector of nmc entries corresponding to nmc evaluations of the function
for a fixed x and nmc realizations of u. The effect of varying nmc on the estimation of E[Fu] is
illustrated in Figure 14.14.

On Object-Oriented Programming of Optimizers 559

50-5

15

10

5

0
10

10 samples

50-5

15

10

5

0
10

30 samples

50-5

15

10

5

0
10

100 samples

50-5

15

10

5

0
10

1000 samples

Figure 14.14. Effect of the number of Monte Carlo simulations on the average estimation of
the Branin function with uncertainties. From left to right and top to bottom, 10, 30, 100 and

1000 samples.

14.8.1.0.3. The general case : ranking of statistical estimators.

Statistical estimations introduce a new level of uncertainty into the problem that has been
neglected in the two previous paragraphs. A vector x1 can be classified as better or worse than
another vector x2 depending on several factors such as the size of the samples of f (x1) and f (x2),
the type of statistical estimation used in the comparison and the variances of such estimators.
Note that many rank-based optimizers (e.g., evolution strategies, the simplex) do not need to
know the real values of the different y to work. They only need a procedure to rank the decision
vectors well enough to guide the search towards the optimum. When comparing two points in
the search space, for example two successive iterates x1 and x2, rank-based optimizers do not
need to know the values of f (x1) and f (x2), they just need to know if f (x1) < f (x2).

As an example of ranking under uncertainty, consider the use of statistical hypothesis tests
for comparing the outcomes. Let Y1 and Y2 denote the random variables associated to the
outcomes of f (x1) and f (x1), and let ȳ1 and ȳ2 denote their respective estimated means. In most
real situations, the Monte Carlo simulation budget allows to perform only a few simulations, so
the ȳ estimates are prone to lie significantly far from the real means. In such a case the use of
statistical hypothesis tests may represent an additional safety for ensuring good rankings. If we
opt for a parametric test, it suffices to estimate the means, ȳ1 and ȳ2, and the variances of Y1 and
Y2 using known sample sizes n1 and n2, respectively, to draw a conclusion. By contrast, the use
of non-parametric tests requires to handle the whole populations comprising n1 observations of
Y1 and n2 samples of Y2 to apply the test. The reader is referred to Chapter 9 for examples of
how theses tests can actually apply to optimization.

560 Multidisciplinary Design Optimization in Computational Mechanics

14.8.2. An Ask & Tell pattern accounting for simulation uncertainties

The preceding discussion shows how the Ask & Tell programming template should evolve
to account for uncertainties in the optimization formulation: it should be able to handle sets
of performance values of different sizes; the ranking of alternatives should allow advanced
comparisons beyond the lines

if y < this._y then

this._x = x

this._y = y

end

which were used in the previous examples to update the tell function; finally, the stop pro-
cedure needs to know how many simulations were run during the Monte Carlo simulations to
halt the execution loop when the total number of simulations reaches its maximum. Similarly,
it could be interesting to let the optimizer control the number of Monte Carlo simulations. In
order to illustrate how these features can be integrated into the Ask & Tell formalism, we revisit
the random search algorithm described in section 14.5.1 and add the following features:

1) Decoupled ranking: the ranking procedure is performed outside the tell procedure by
a new function (rankpop). tell now receives a vector of ranks instead of a vector of objective
functions values. In this way, we can account for uncertainties and keep using the rank-based
optimizers presented earlier in this chapter without changing their inner structure.

2) Extended parameters passing: for decoupling the ranking of solution points, the ask
procedure should return the new x vectors to be evaluated along with the current xopt and its
corresponding sample of vector of performance (or use an archive to recover already calculated
performances).

3) Control of the number of objective function evaluations: the deterministic formulation
of the ask and tell functions assumes that only one evaluation of the objective functions is
performed for every vector. When optimizing with uncertainties, the update of the optimizer
should account for a variable number of evaluations for each alternative.

4) Addition of an archive: in order to avoid reevaluating old search points, the optimizer can
be assisted by an external memory that stores the points already visited in previous iterations.

Let us now look at the modifications of the ask and tell functions through the simple
example of a random search.

function this = rsearchu(parameters)

this = mlist([’rsearchu’, ’d’, ’xmin’, ’xmax’, ’iter’,...

’stop’,’_x’, ’_y’])

this.stop = %f

this.xmin = []

this.xmax = []

this._x = []

On Object-Oriented Programming of Optimizers 561

this._y = %inf

endfunction

function [x,max_budget] = %rsearchu_ask(this)

x = (this.xmax - this.xmin) .* grand(1, this.d, ’def’) +...

this.xmin

// output the new point and the current best one

x = [x ; this._x]

max_budget = this.iter;

endfunction

function this = %rsearchu_tell(this, x, y, varargin)

// sort the new points

[sorted,k] = gsort(y(:,1),’g’,’i’);

this._x = x(k(1),:)

this._y = y(k(1),:)

// update budget with an optional additional argument

if(argn(2) > 3) then

used_budget = varargin(1);

else

used_budget = 1;

end

this.iter = this.iter - used_budget;

this.stop = this.stop | this.iter <= 0

endfunction

There are mainly two modifications to the ask function with respect to the deterministic
case. Firstly, in order to allow ranking the alternatives outside tell, it is necessary to return the
new points generated along with those already stored as best ones (line x = [x ; this._x]).
Secondly, the optimization loop can be stopped using the number of points to be evaluated,
the number of iterations of the loop or the number of evaluations of the objective function.
These criteria are not necessarily proportional since the number of Monte Carlo simulations
performed for assessing each search point can be variable. Hence, by returning this.iter, the
programmer has an additional argument available for deciding when to stop the optimization
and/or the Monte Carlo simulations.

The tell function is completed accordingly with a fourth, optional, parameter, varargin,
that allows to decrement the total simulation budget by quantities other than 1 (the default).
The structure of tell assumes that the first column of y is the rank of the associated row of
x, and the other columns allow to store any other optional information (e.g., an estimate of
performance value). In this way, all the information related to the already calculated analyzed
points can be kept by the optimizer (independently of the archive) along the run.

The functions for overloading ask and tell need to be modified to comply with the new
structure. They become:

function [x,max_budget] = ask(this)

562 Multidisciplinary Design Optimization in Computational Mechanics

execstr(’[x,max_budget] = %’ + typeof(this) + ’_ask(this)’)

endfunction

function this = tell(this, x, y, varargin)

sargin = ’’;

if (argn(2) > 3) then

for i = 1 : length(varargin)

sargin = sargin + ’,’ + ’varargin(’ + string(i) +’)’;

end

end

execstr(’this = %’ + typeof(this) +...

’_tell(this, x, y’ + sargin + ’)’)

endfunction

In order to use the new “rsearchu” optimizer, we keep the same parameters as for rsearch
except the number of iterations opt.iter which is set to 500 and we add a new parameter, mcs,
that indicates the maximal number of Monte Carlo simulations to perform for each point. We
also add two vectors xlast and ylast for storing the visited points:

opt = rsearch()

opt.d = 2

opt.xmin = [-5, 10]

opt.xmax = [0, 15]

opt.iter = 500

mcs = 50;

xlast = [];

ylast = [];

The subsequent “ask & tell” optimization loop is written:

while ~opt.stop

[x,max_budget] = ask(opt);

// Seach archive for already calculated points

// if x(i,:) has already been calculated,

// output the pendant in xold along with yold.

// otherwise copy x(i,:) into xnew

[xnew,xold,yold] = memory_search(x,xlast,ylast).

s_xnew = size(xnew,1);

used_budget = 0;

// Determine how many evaluations can be

//allocated per vector (row)

On Object-Oriented Programming of Optimizers 563

budget = min(mcs,ceil(max_budget/s_xnew));

// Create variables for counting the vectors evaluated

x_evaltd =0;

// Evaluate by MC simulations

for i = 1 : s_xnew

if max_budget - used_budget > 0 then

u = [grand(budget,1,’unf’,-1,1),...

grand(budget,1,’unf’,-1,1),...

grand(budget,1,’nor’,0,1)];

y = branin(xnew(i,1)*ones(budget,1)+u(:,1),...

xnew(i,2)*ones(budget,1)+u(:,2))+u(:,3);

ynew = [ynew ; mean(y)];

x_evaltd = x_evaltd + 1;

used_budget = used_budget + budget;

end

end

// Update memory and optimizer

xnew = xnew(1:x_evaltd,:);

xlast = [xlast ; xnew];

ylast = [ylast ; ynew];

ycurrent = [yold;ynew];

xcurrent = [xold;xnew];

ranks = rankpop(ycurrent);

opt = tell(opt, xcurrent, [ranks,ycurrent], used_budget);

end

[yopt, xopt] = best(opt)

An example of the outcome of this program is given in Figure 14.15. To keep the example
simple, only the estimated mean of the Monte Carlo samples is stored in the archive. Other
characteristics of the Monte Carlo samples could be stored (the number of simulations per-
formed, the variance, ... , and even all the y’s of the Monte Carlo simulations, at a high memory
cost). In some cases, it could be interesting to complete the evaluation of the current best with
new samples, for instance if it has been the best for a long time, to rule out biased samples.

The code of the rankpop function is not provided. An example of non trivial ranking can
be found in Chapter 9, where the ranking is based on hypothesis testing.

14.9. Concluding remarks

This Chapter has presented a programming pattern for optimization algorithms. It is called
“ask & tell” after the name of the two main pattern functions. Examples of optimization meth-
ods (random search, simplex, evolution strategies, CMA-ES) written in Scilab in such an object-
oriented fashion have been given. Although it may seem as if ask & tell makes programming
more complex, it enables

564 Multidisciplinary Design Optimization in Computational Mechanics

50-5

15

10

5

0
10

Figure 14.15. Example run of the Ask & Tell algorithm on an uncertain version of the
Branin-Hoo function, 50 Monte Carlo simulations per point. The best point found after testing

10 points is enclosed within a circle. The contour lines were also calculated with 50 Monte
Carlo simulation.

– more versatile optimizers, assembled from several basic optimizers (e.g., the multistart
strategy of Section 14.4),

– decoupling the calls to the optimization algorithm from the calls to the simulation which,
in turns, allows multi-fidelity strategies and distributed computing,

– coupling the optimization and statistical estimations strategies for handling noisy func-
tions without changing the optimization algorithms.

14.10. Bibliography

[AUG 05] A A., HN., “A Restart CMA Evolution Strategy With Increasing Popula-
tion Size”, Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005),
IEEE Press, p. 1769-1776, 2005.

[BEY 01] B H.-G., The Theory of Evolution Strategies, Springer, 2001.

[CAM 06] C S. L., C J.-P., N R., Modeling and Simulation in
Scilab/Scicos, Springer, 2006.

On Object-Oriented Programming of Optimizers 565

[Con 09] C OMD, “OMD Toolbox for Scilab”, www.scilab.org, (see contributions),
2009.

[HAN 01] H N., O A., “Completely derandomized self-adaptation in evolution
strategies”, Evolutionary Computation, vol. 9, num. 2, p. 159–195, MIT Press, 2001.

[HAN 03] HN., M̈ S. D., K P., “Reducing the Time Complexity of the
Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)”, Evolu-
tionary Computation, vol. 11, num. 1, p. 1-18, 2003.

[HAN 04] H N., K S., “Evaluating the CMA evolution strategy on multimodal test
functions”, Parallel Problem Solving from Nature-PPSN VIII, vol. 3242, p. 282–291,
Springer, 2004.

[HAN 06] H N., “The CMA evolution strategy: a comparing review”, L J., L-
̃ P., I I., B E., Eds., Towards a new evolutionary computation. Advances
on estimation of distribution algorithms, p. 75–102, Springer, 2006.

[HAN 09] H N., N S. P. N., G L., K P., “A Method for
Handling Uncertainty in Evolutionary Optimization with an Application to Feedback Con-
trol of Combustion”, IEEE Transactions on Evolutionary Computation, 2009, to appear.

[HAR 05] H W. E., K N., S J., “Recent Advances in Memetic Algorithms”,
Series: Studies in Fuzziness and Soft Computing, vol. 166, Springer, 2005.

[INR 09] INRIA, D, ENPC, “Scilab : a free software for scientific computing”,
www.scilab.org, 2009.

[JON 98] J D. R., SM., WW. J., “Efficient global optimization of expensive
black-box functions”, Journal of Global Optimization, vol. 13, p. 455–492, 1998.

[MIN 86] M M., Mathematical programming: Theory and Algorithms, Wiley, 1986.

[NEL 65] N J. A., M R., “A Simplex method for function minimization”, Computer
Journal, vol. 7, p. 308-313, 1965.

[Sal 09] SAD. E., R S. C. M., Ǵ B., “On Uncertainty and Robustness in
Evolutionary Optimization-based MCDM”, EM., F C., G X., H
J.-K., S M., Eds., Evolutionary Multi-Criterion Optimization. Proceedings of the 5th
International Conference, EMO 2009, vol. 5467 of Lectures Notes in Computer Science,
p. 51–65, Springer, 2009.

[SPA 03] S J. C., Introduction to stochastic search and optimization, Wiley, 2003.

