Introduction to Black-Box Optimization in Continuous Search Spaces

Definitions, Examples, Difficulties

I am happy to answer questions at any time!

Problem Statement

Continuous Domain Search/Optimization

Task: minimize an objective function (*fitness* function, *loss* function) in continuous domain

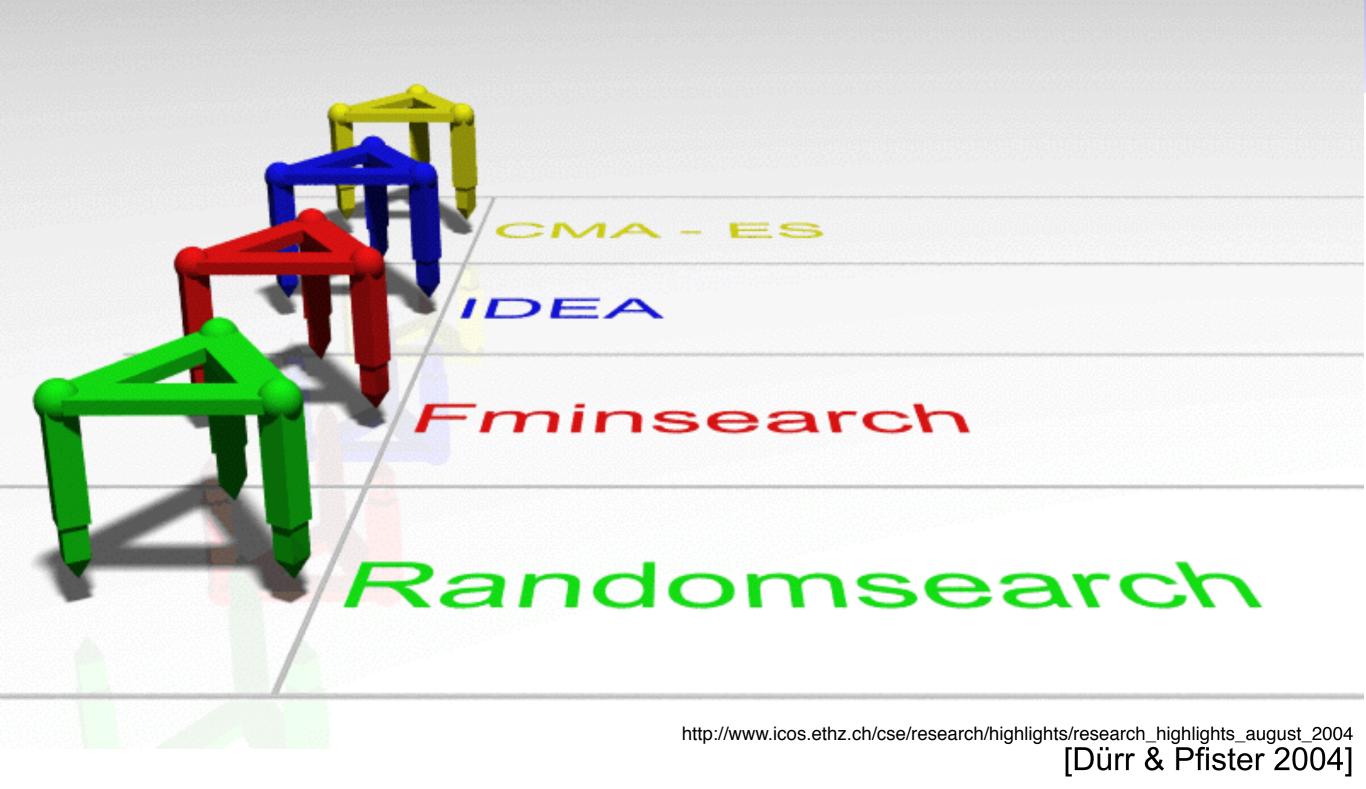
$$f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}, \qquad \mathbf{x} \mapsto f(\mathbf{x})$$

Black Box scenario (direct search scenario)

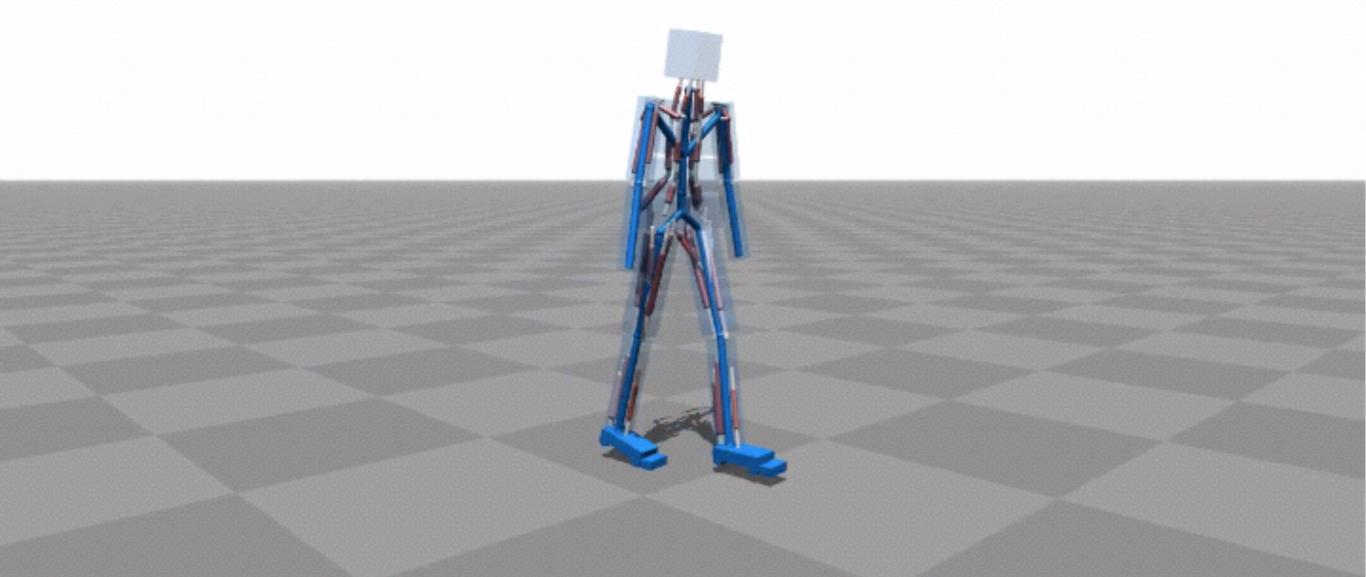
- gradients are not available or not useful
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- Search costs: number of function evaluations

SQA

Typical Applications


- model/system calibration
 - biological/chemical/physical \implies universal constants
 - production process
- optimization of control parameters
 - movements of a robot (e.g. for the RoboCup)
 - trajectory of a rocket
 - stability of a gas flame
- shape optimization
 - curve fitting
 - aero- or fluid dynamics design (airfoil, airship)

Optimization of walking gaits


http://www.icos.ethz.ch/cse/research/highlights/research_highlights_august_2004 [Dürr & Pfister 2004]


CMA-ES, Covariance Matrix Adaptation Evolution Strategy [Hansen et al 2003] IDEA, Iterated Density Estimation Evolutionary Algorithm [Bosman 2003] Fminsearch, downhill simplex method [Nelder & Mead 1965]

CMA-ES, Covariance Matrix Adaptation Evolution Strategy [Hansen et al 2003] IDEA, Iterated Density Estimation Evolutionary Algorithm [Bosman 2003] Fminsearch, downhill simplex method [Nelder & Mead 1965]

We present a control system based on 3D muscle actuation

from John Goatstream 2 months ago ALL AUDIENCES

Problem Statement

Continuous Domain Search/Optimization

Goal

- fast convergence to the global optimum
- or to a robust solution x
 solution x with small function value f(x) with least search cost

there are two conflicting objectives

Typical Examples

- shape optimization (e.g. using CFD)
- model calibration
- parameter calibration

curve fitting, airfoils biological, physical controller, plants, images

Problems

- exhaustive search is infeasible
- naive random search takes too long
- deterministic search is not successful / takes too long

Problem Statement

Continuous Domain Search/Optimization

Goal

- fast convergence to the global optimum
- or to a robust solution x
 solution x with small function value f(x) with least search cost

there are two conflicting objectives

- Typical Examples
 - shape optimization (e.g. using CFD)
 - model calibration
 - parameter calibration

curve fitting, airfoils biological, physical controller, plants, images

Problems

- exhaustive search is infeasible
- naive random search takes too long
- deterministic search is not successful / takes too long

Objective Function Properties

The objective function $f : \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ has typically moderate dimensionality, say $n \not\ll 10$, and can be

- o non-linear
- on non-separable
- on non-convex
- multimodal
- non-smooth
- o discontinuous, plateaus
- ill-conditioned
- o noisy
- . . .

Goal : cope with any of these function properties they are related to real-world problems

there are possibly many local optima

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □

derivatives do not exist

Anne Auger & Nikolaus Hansen

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Objective Function Properties

The objective function $f : \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ has typically moderate dimensionality, say $n \not\ll 10$, and can be

- on non-linear
- non-separable
- non-convex
- multimodal
- non-smooth
- discontinuous, plateaus
- ill-conditioned
- noisy
- ...

Goal : cope with any of these function properties

they are related to real-world problems

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Anne Auger & Nikolaus Hansen

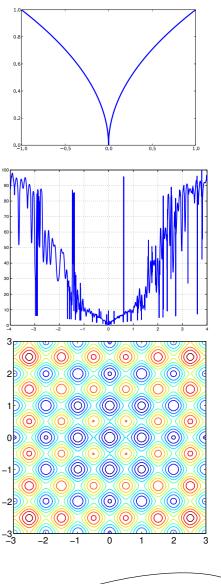
 $\checkmark Q (~$

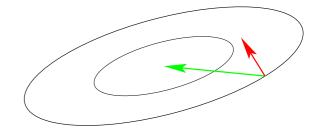
there are possibly many local optima

derivatives do not exist

Why stochastic search?

 non-linear, non-quadratic, non-convex on linear and quadratic functions much better search policies are available

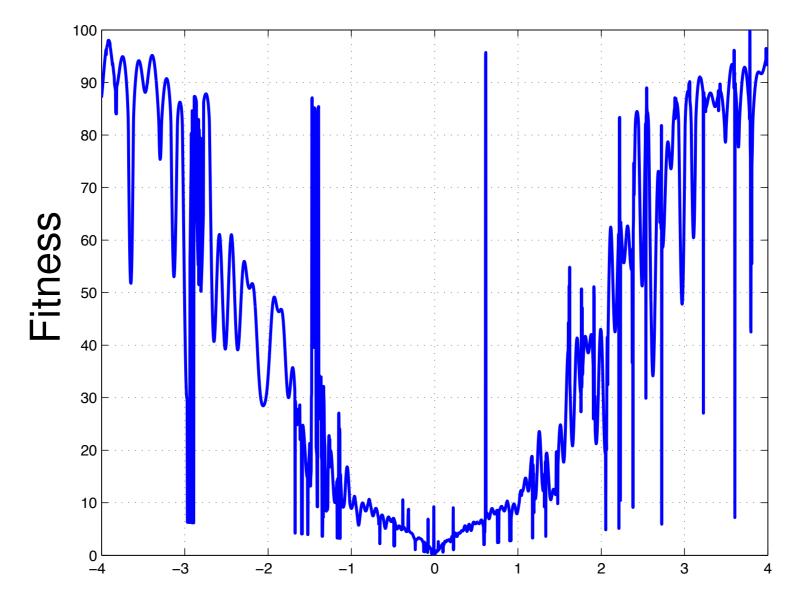

- ruggedness non-smooth, discontinuous, multimodal, and/or noisy function
- dimensionality (size of search space)


(considerably) larger than three

non-separability

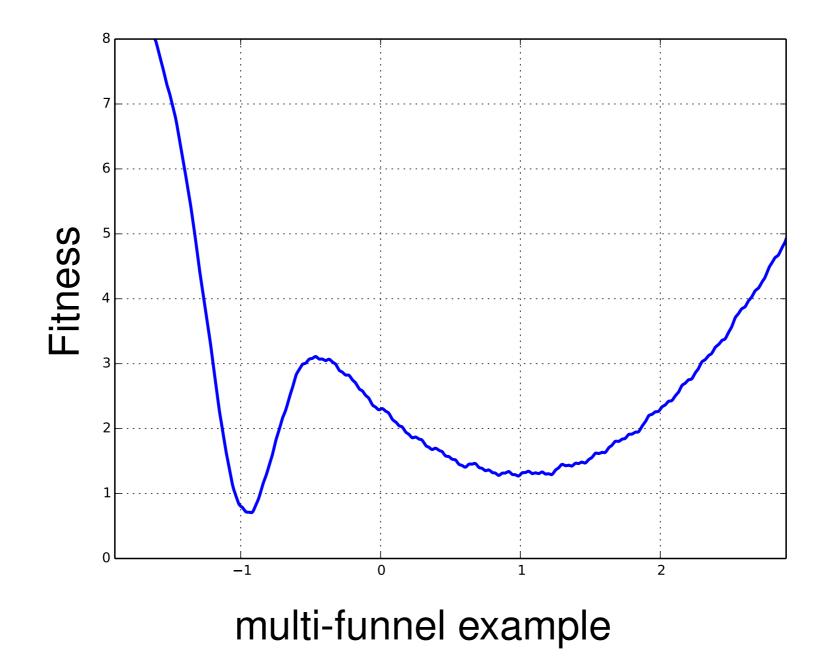
dependencies between the objective variables

ill-conditioning



gradient direction Newton direction

Ruggedness


non-smooth, discontinuous, multimodal, and/or noisy

cut from a 5-D example, (easily) solvable with evolution strategies

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

臣

 $\checkmark Q (\land$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0,1]. Now consider the 10-dimensional space $[0,1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Separable Problems Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

 \Rightarrow it follows that *f* can be optimized in a sequence of *n* independent 1-D optimization processes

Example: Additively decomposable functions

$$f(x_1,\ldots,x_n)=\sum_{i=1}^n f_i(x_i)$$

example: Rastrigin function, where $f_i = f_j \forall i, j$

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (\bigcirc) (\bigcirc) (\bigcirc) (\bigcirc) (0) (\mathbf{O}) \bigcirc \bigcirc \bigcirc (\bigcirc) (\bigcirc) (\bigcirc) (\bigcirc) (\bigcirc) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (\bigcirc) 2 0 1 3 Э ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ $\checkmark Q (~$

Non-Separable Problems

Building a non-separable problem from a separable one ^(1,2)

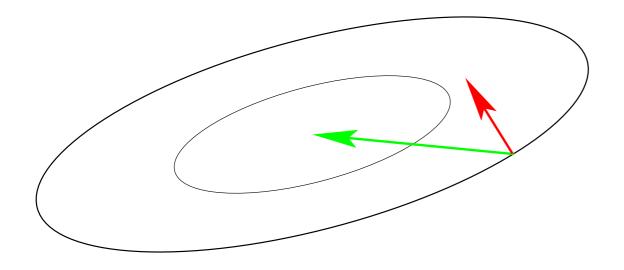
Rotating the coordinate system

- $f : \mathbf{x} \mapsto f(\mathbf{x})$ separable
- $f : x \mapsto f(\mathbf{R}x)$ non-separable

R rotation matrix

¹Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278


III-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

 $f(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_i h_{i,i} (x_i - x_i^*)^2 + \frac{1}{2} \sum_{i \neq j} h_{i,j} (x_i - x_i^*) (x_j - x_j^*)$

 \boldsymbol{H} is Hessian matrix of f and symmetric positive definite

gradient direction $-f'(\mathbf{x})^{T}$ Newton direction $-\mathbf{H}^{-1}f'(\mathbf{x})^{T}$

Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) is necessary.

Landscape of Continuous Search Methods

Gradient-based (Taylor, local)

- Conjugate gradient methods [Fletcher & Reeves 1964]
- Quasi-Newton methods (BFGS) [Broyden et al 1970]

Derivative-free optimization (DFO)

- Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]
- Simplex downhill [Nelder & Mead 1965]
- Pattern search [Hooke & Jeeves 1961, Audet & Dennis 2006]

Stochastic (randomized) search methods

- Evolutionary algorithms (broader sense, continuous domain)
 - Differential Evolution [Storn & Price 1997]
 - Particle Swarm Optimization [Kennedy & Eberhart 1995]
 - Evolution Strategies [Rechenberg 1965, Hansen & Ostermeier 2001]
- Simulated annealing [Kirkpatrick et al 1983]
- Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000]

... and what can be done

The Problem	Possible Approaches
Dimensionality	exploiting the problem structure separability, locality/neighborhood, encoding
Ill-conditioning	second order approach changes the neighborhood metric
	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
	population-based method, stochastic, non-elitistic
	recombination operator serves as repair mechanism
	restarts
	metaphors
	ふしん 叫 くばをくむを

12/81

... and what can be done

Possible Approaches
exploiting the problem structure separability, locality/neighborhood, encoding
second order approach changes the neighborhood metric
non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
population-based method, stochastic, non-elitistic
recombination operator serves as repair mechanism
restarts
metaphors
▲□▶▲□▶▲ 클▶▲ 클▶ 클

... and what can be done

The Problem	Possible Approaches
Dimensionality	exploiting the problem structure separability, locality/neighborhood, encoding
III-conditioning	second order approach changes the neighborhood metric
Ruggedness	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
	population-based method, stochastic, non-elitistic
	recombination operator serves as repair mechanism
	restarts
	metaphors
	ふしん 叫 ・山・・四・・日・

Questions?

1
