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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Task: minimize an objective function (fitness function, loss
function) in continuous domain

f : X ✓ Rn ! R, x 7! f (x)

Black Box scenario (direct search scenario)

f(x)x

I gradients are not available or not useful
I problem domain specific knowledge is used only within the black

box, e.g. within an appropriate encoding
Search costs: number of function evaluations
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Typical Applications

(e.g. for the RoboCup)
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Optimization of walking gaits

http://www.icos.ethz.ch/cse/research/highlights/research_highlights_august_2004!
[Dürr & Pfister 2004]  

CMA-ES, Covariance Matrix Adaptation Evolution Strategy [Hansen et al 2003] 
IDEA, Iterated Density Estimation Evolutionary Algorithm [Bosman 2003]  
Fminsearch, downhill simplex method [Nelder & Mead 1965]
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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Goal
I fast convergence to the global optimum

. . . or to a robust solution x
I solution x with small function value f (x) with least search cost

there are two conflicting objectives

Typical Examples
I shape optimization (e.g. using CFD) curve fitting, airfoils
I model calibration biological, physical
I parameter calibration controller, plants, images

Problems
I exhaustive search is infeasible
I naive random search takes too long
I deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
Anne Auger & Nikolaus Hansen CMA-ES July, 2014 4 / 81
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Problem Statement Black Box Optimization and Its Difficulties

Objective Function Properties
The objective function f : X ⇢ Rn ! R has typically moderate
dimensionality, say n 6⌧ 10, and can be

non-linear
non-separable
non-convex
multimodal

there are possibly many local optima
non-smooth

derivatives do not exist
discontinuous, plateaus
ill-conditioned
noisy
. . .

Goal : cope with any of these function properties
they are related to real-world problems
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Problem Statement Black Box Optimization and Its Difficulties

What Makes a Function Difficult to Solve?
Why stochastic search?

non-linear, non-quadratic, non-convex
on linear and quadratic functions much better

search policies are available

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function

dimensionality (size of search space)
(considerably) larger than three

non-separability
dependencies between the objective variables

ill-conditioning
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Problem Statement Black Box Optimization and Its Difficulties

Ruggedness
non-smooth, discontinuous, multimodal, and/or noisy
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cut from a 5-D example, (easily) solvable with evolution strategies
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Problem Statement Black Box Optimization and Its Difficulties

Ruggedness
non-smooth, discontinuous, multimodal, and/or noisy
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Problem Statement Black Box Optimization and Its Difficulties

Curse of Dimensionality
The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]10. To get similar
coverage in terms of distance between adjacent points requires
20

10 ⇡ 10

13 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions
might be useless in moderate or large dimensional search spaces.
Example: exhaustive search.
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Problem Statement Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if

arg min
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Problem Statement Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one (1,2)

Rotating the coordinate system
f : x 7! f (x) separable
f : x 7! f (Rx) non-separable

R rotation matrix
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1Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Problem Statement Ill-Conditioned Problems

Ill-Conditioned Problems
Curvature of level sets
Consider the convex-quadratic function
f (x) = 1

2

(x�x⇤)TH(x�x⇤) = 1
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H is Hessian matrix of f and symmetric positive definite

gradient direction �f

0(x)T

Newton direction �H�1

f

0(x)T

Ill-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10

10

are not unusual in real world problems.

If H ⇡ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H�1) is necessary.
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Landscape of Continuous Search Methods
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Gradient-based (Taylor, local)

• Conjugate gradient methods [Fletcher & Reeves 1964]

• Quasi-Newton methods (BFGS) [Broyden et al 1970]

Derivative-free optimization (DFO)

• Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

• Simplex downhill [Nelder & Mead 1965]

• Pattern search [Hooke & Jeeves 1961, Audet & Dennis 2006]

Stochastic (randomized) search methods

• Evolutionary algorithms (broader sense, continuous domain)

– Differential Evolution [Storn & Price 1997]

– Particle Swarm Optimization [Kennedy & Eberhart 1995]

– Evolution Strategies [Rechenberg 1965, Hansen & Ostermeier 2001]

• Simulated annealing [Kirkpatrick et al 1983]

• Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000]
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Problem Statement Ill-Conditioned Problems

What Makes a Function Difficult to Solve?
. . . and what can be done

The Problem Possible Approaches

Dimensionality exploiting the problem structure
separability, locality/neighborhood, encoding

Ill-conditioning second order approach
changes the neighborhood metric

Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator
serves as repair mechanism

restarts
. . . metaphors

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 12 / 81
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Problem Statement Ill-Conditioned Problems

Metaphors
Evolutionary Computation Optimization/Nonlinear Programming

individual, offspring, parent  ! candidate solution
decision variables
design variables
object variables

population  ! set of candidate solutions
fitness function  ! objective function

loss function
cost function
error function

generation  ! iteration

. . . methods: ESs
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