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Abstract

Comparable to other optimization techniques, the performance of Evolution Strate-

gies (ESs) depends on a suitable choice of internal strategy control parameters. Apart

from a �xed setting, ESs facilitate an adjustment of such parameters within a self-

adaptation process. For step-size control in particular, various adaptation concepts have

been evolved early in the development of ESs. These algorithms mostly work very e�-

ciently as long as the scaling of the parameters to be optimized is known. If the scaling

is not known, the strategy has to adapt individual step-sizes for all the parameters. In

general, the number of necessary step-sizes (variances) equals the dimension of the prob-

lem. In this case, step-size adaptation proves to be di�cult, and the algorithms known

are not satisfactory.

The algorithm presented in this paper is based on the well known concept of muta-

tive step-size control. Our investigations indicate that the adaptation by this concept

declines due to an interaction of the random elements involved. We show that this weak

point of mutative step-size control can be avoided by relatively small changes in the al-

gorithm. The modi�cations may be summarized by the word \de-randomization". The

derandomized scheme of mutative step-size control facilitates a reliable self-adaptation

of individual step-sizes.

Keywords

evolution strategy, adaptation, self-adaptation, mutative step-size control, step-size, individual step-

size, scaling

1. Introduction: Step-size Adaptation in Evolution Strategies

In biology, mutation rates are of essential importance for evolutionary progress. Low muta-

tion rates would not ensure a su�ciently high variability in the population. Too high mutation

rates would result in a chaotic loss of genetic information. The evolutionary process is obvi-

ously able to adjust the mutation rates to sensible values, which vary very much for di�erent

species. Furthermore, the mutation rates are not constant for one species, but depend on the

location in the genome (compare Eigen 1992). In the case of real valued continuous parameter

optimization with evolution strategies (ESs), the biological mutation rate can be interpreted
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as the size of mutation steps in the parameter space. Varying mutation rates on di�erent

locations in the genome can be interpreted as individual step-sizes for the di�erent object

parameters.

In ESs, there are two commonways of realizing a step-size adaptation. One is Rechenberg's

1/5-success-rule (Rechenberg 1973). This algorithm works satisfactorily in most cases, but

depends on the applicability of an external model of parameter space topology and is only

able to adapt one general step-size, but no individual step-sizes.

The other method is the mutative step-size control proposed by Rechenberg and Schwefel

(Rechenberg 1973, 1978; Schwefel 1977, 1981). This adaptation scheme does not depend on

an external model and in principle facilitates the adaptation of individual step-sizes. Here, the

strategy parameters (step-sizes) are treated similarly to the other (object-)parameters. They

are incorporated in the genome of the individuals and thus a�ected by mutation and selection.

In the following this is shown in a simple (1; �)-ES algorithm with mutative step-size control

of both general and individual step-sizes.

First, the object parameter vector ~x

E

of the parent is mutated by adding a normally

distributed random vector ~z, which is scaled by the vector of individual step-sizes

~

�. Step-

size variation is guaranteed by multiplying with the variation factors � and
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where all multiplications of vectors refer to components and used symbols are
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(0, 1){normally distributed

Second, the �tness of all � o�spring is evaluated. The best object parameter vector ~x

N

sel

and the corresponding step-size vector are selected as parent of the next generation:

~x

g+1

E
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g

N

sel
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= �

sel

~

�

sel
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�

g

where sel 2 f1; : : : ; �g is the index of selected o�spring of generation g.

2. Why Does this Adaptation Scheme Fail in Adapting Individual Step-Sizes in

Small Populations?

Mutative step-size control generally works very well on the adaptation of a general step-size.

Regardless of the distribution of �

i

, which may also be continuously distributed, corresponding

adaptation of individual step-sizes is not possible within small populations of simple ESs, as

Schwefel (1987) pointed out. Schwefel favours the use of more complex ESs with larger

populations. This works, but does not clarify the basic shortcomings, which are, in our

opinion, the following:
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� First, the standard algorithm of mutative step-size control presented above does not en-

sure that the selection of a large or small parameter variation leads to a corresponding

increase or decrease of the individual step-size. For instance, a relatively large parameter

variation may occur in spite of a small �

i

due to a large random number instantiation of

z

i

. In such a case, the step-size will be reduced although a large mutation was selected.

In general, the same parameter mutations (random number instantiations) can be gen-

erated with totally di�erent sets of step-size variations. This problem is insigni�cant for

the global step-size because k~zk becomes virtually constant with increasing n, whereby

� determines the length of the entire mutation step.

� Second, and most important, the step-size variation between competing o�spring in

one generation is identical to the step-size variation from one generation to another.

This leads to a conict because on the one hand, o�spring have to be produced with

clearly di�erent step-sizes | otherwise they are of no selection relevance. On the other

hand, step-size variations in the generation sequence (i.e. between succeeding genera-

tions) have to be much smaller in order to reduce random uctuations. Concerning the

general step-size, this conict has been analyzed extensively by Scheel (1985). Using

intermediate recombination in large populations leads to signi�cant reduction of these

random uctuations, which can produce long phases of stagnation in the optimization

process.

3. Derandomized Mutative Step-Size Control

The modi�ed mutative step-size control presented in the following section avoids the two

di�culties discussed above. The possibility of producing the same mutations followed by

di�erent strategy parameter changes is prevented by using the instantiation of ~z for the step-

size variation. Using the absolute values of the selected mutations as step-size adaptation

factors ensures a variation of the individual step-sizes corresponding to the size of the se-

lected mutations. Thus, it is guaranteed that the selection of large or small mutations leads

to a corresponding adaptation of the step-sizes. The geometric mean of the �

1

-distributed

absolute values of the mutations is less than one. Without selection, this causes systemati-

cally decreasing step-sizes, which can be prevented by a monotonic transformation jz

i

j 7! �

i

generating a distribution with geometric mean equal to one. In the following algorithm, this

is realized by �

i

= exp

n

jz

i

j �

p

2=�

o

.

The conict step-size variation in one generation versus step-size adaptation in the genera-

tion sequence cannot be resolved by choosing a good compromise for the step-size modi�cation

factor �. It appears promising, for instance, to determine the step-size adaptation rate not

only by the step-size modi�cation factor �, but by �

�

, with 0 < � < 1. The e�ect is clear: A

step-size adaptation by a factor � is not realized in just one, but in at least 1=� > 1 gener-

ations. Thus, the adaptation rate, and therefore the stochastic uctuation, will be reduced

without decreasing the variation between competing o�spring. The information given by the

selection of a large step-size is now interpreted as an indication to enlarge the step-size, while

the selected step-size is not interpreted to be really the best one occurring in the population.

From a general point of view, step-size adaptation can be interpreted as a problem of

disturbed optimization (Rechenberg 1994). Disturbed means that the quality/�tness value is

not exactly measurable. Corresponding tests have shown that the concept of relatively large

mutations within one generation, but passing only smaller variations to the next generation,

is applicable successfully to parameter optimization superimposed with Gaussian noise.
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4. (1; �)-ES algorithm with derandomized mutative step-size

In this section we formally present the derandomized ES algorithm. All multiplications and

powers of vectors refer to components.

1. Creation of � o�spring (k = 1; : : : ; �):

~x

g

N

k

= ~x

g

E

+ �

k

~

�

g

~z

k

2. Selection / Adaptation:

~x

g+1

E

= ~x

g

N

sel

~

�

g+1

=

�

�

sel

�

�

�

~

�

~z

sel

�

�

scal

~

�

g

Symbols used:
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o

individual step-size adaptation,

where

p

2=� is the expectation of jz

i

j. This is a simple way to prevent a

systematic drift without selection. It is also possible to transform jz

i

j by an

integral transformation into a logarithmic normal distribution. This solves

the problem in an elegant but much more costly way and, corresponding to

our tests, does not a�ect the performance of the algorithm.

~z

k

= (z

1

; : : : ; z

n

) with z

i

(0, 1){normally distributed

sel index of selected o�spring of generation g

n number of object parameters to be optimized (size of all vectors used)

� =

p

1=n

�

scal

= 1=n

Adaptation speed and precision depend on these two exponents. Sen-

sible values are in the range (0, 1). Small values facilitate a precise

but time-consuming adaptation and vice versa. The given values

yield a good compromise. In the case of very di�cult problems, a

reduction of �

scal

might be necessary.

Derandomization is introduced at three places in the algorithm:

� First, the step-size adaptation rate can be adjusted by choosing � � 1 such that

disturbing random uctuations of the step-sizes are reduced.

� Second, the (0,1)-normally distributed z

i

realize mutations that are of clearly di�erent

sizes jz

i

j. This ensures selection relevance with respect to the individual step-size adap-

tation. Otherwise, step-sizes would be adapted by chance and perform nearly random

walks.

� Third, the change of the individual step-sizes directly depends on the absolute value of

a selected mutation. This ensures a corresponding adaptation of the step-sizes in the

case of small or large selected mutations.
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5. Simulations

Tests of the described agorithm have been performed with � = 10. Thus, the number of

function evaluations equals ten times the number of generations. Simulations have been done

on axis-parallel hyper-ellipsoids, Schwefel's problem, a generalized Rosenbrock's function, on

a sum of di�erent powers and on a Steiner-net.

In order to assess the performance of the new step-size adaptation, simulation results with

an (15/2,100)-ES according to Schwefel (1981), with adaptation of global and n individual

step-sizes and intermediate recombination on object and strategy parameters, are also pre-

sented. Here, for reliable adaptation the number of parents has to be chosen | depending on

n | clearly greater than one. Therefore in general, one may not be able to choose population

size optimal according to the given objective problem.

The simulations with Schwefel's (15/2,100)-ES have been carried out with the Evolution

Machine developed by Voigt, Born and Treptow (1991).

5.1 Axis-Parallel Hyper-Ellipsoids

Objective function:

F

n

(~x) =

n

X

i=1

(i � x

i

)

2

! minimum (= 0)

~x

0

= (1; : : : ; 1); F

10;30;100

= 385; 9455; 338350; F

stop

= 10

�10

The simulation results show that optimization speeds up considerably with derandomized

adaptation of individual step-sizes, compared to the (1,10)-ES without individual step-size

adaptation (see �gure 1). The feasible speed-up factor (10 to 200 here) increases with n due

to the increasing ratios of the ellipsoid-axes (see �gure 2).

The optimization runs shown in �gure 1 demonstrate clearly the ability of the deran-

domized step-size adaptation to adjust the correct set of individual step-sizes by which the

problem is transformed into a hyper-sphere. After about 8000 function evaluations, the step-

sizes are adapted correctly, and the convergence rate is nearly as high as with �xed individual

step-sizes, that are preadjusted correctly. Schwefel's (15/2,100)-ES shows no distinct adap-

tation phase and is �ve to six times slower than the ES with correctly preadjusted individual

step-sizes. Even taking into account the smaller progress rate due to the large population,

this indicates that actually no complete adaptation of the correct scaling takes place, but

some kind of subspace search is performed.

In order to �nd out how to choose �

scal

, the number of function evaluations needed to

reach F

stop

are measured for di�erent values of �

scal

. The plots in �gure 2 show clearly minima

of function evaluations needed to reach F

stop

(maxima of convergence speed). They result

from the conict of fast versus precise adaptation. For small values of �

scal

, the adaptation

process is slow, but �nally approximates very precisely the correct set of individual step-

sizes. Medium values of �

scal

enable a faster adaption but cause more stochastic uctuations

of the individual step-sizes. Too large values of �

scal

provoke such stochastic uctuations

that no sensible adaptation is possible. For �

scal

= 0, no adaptation of individual step-sizes

takes place and only one general step-size is adapted (symbols on the left). Choosing F

stop

less / greater than 10

�10

will somewhat move the minima to the left / right respectively.

According to �gure 2, the optimal values of �

scal

depend on the dimension n. Additional

simulations have shown that this dependency does not change signi�cantly with di�erent

ratios of the ellipsoid-axes. Thus, the value �

scal

= 1=n seems to be a good choice for a wide

range of di�erent problems.
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Figure 1: Convergence plots of optimization runs on the hyper-ellipsoid. = (1,10)-

ES with /without derandomized individual step-size adaptation, respectively (�

scal

=

(1=n) / 0, respectively); 2 = (15/2,100)-ES with mutative individual step-size adapta-

tion according to Schwefel (1981); � = (1,10)-ES with mutative global step-size adaptation

and correctly adjusted scaling of individual step-sizes. The lower �gure is an enlarged detail

of the �rst 25000 function evaluations of the optimization runs shown above.

5.2 Schwefel's Problem

Objective function:

F (~x) =

n

X

i=1

0

@

i

X

j=1

x

j

1

A

2

! minimum (= 0)

n = 20; �65 � x

0

i

� 65
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Figure 2: Number of function evaluations to reach F

stop

with the derandomized ES at

di�erent values of �

scal

. The circled symbols refer to �

scal

= 1=n, as chosen in all further

simulations. Schwefel's (15/2,100)-ES (empty symbols) is shown for comparison merely

and does not depend on the parameter �

scal

.

Figure 3: Convergence plots of optimizations on Schwefel's problem. = (1,10)-

ES with /without derandomized individual step-size adaptation, respectively (�

scal

=

(1=n) / 0, respectively); 2 = (15/2,100)-ES with mutative individual step-size adapta-

tion according to Schwefel (1981).

This problem represents | with respect to the coordinate axes | rotated hyper-ellipsoids.

The simulations (see �gure 3) show that the simple (1,10)-ESs are about �ve times faster than

Schwefel's (15/2,100)-ES. By the derandomized adaptation of individual step-sizes, optimiza-

tion slows down by about 30%. This is caused by the stochastic uctuations of the individual

step-sizes induced by the adaptation process. Because of the rotation of the ellipsoid axes,
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Figure 4: Convergence plots of optimizations on the generalized Rosenbrock function.

= (1,10)-ES with /without derandomized individual step-size adaptation, respectively

(�

scal

= (1=n) / 0, respectively); 2 = (15/2,100)-ES with mutative individual step-size

adaptation according to Schwefel (1981).

the initialization with identical individual step-sizes is optimal or nearly optimal.

5.3 Generalized Rosenbrock Function

Objective function:

F (~x) =

n�1

X

i=1

100 �

�

x

i

2

� x

i+1

�

2

+ (x

i

� 1)

2

! minimum (= 0)

n = 30; ~x

0

= (0; : : : ; 0); F (~x

0

) = 29

This problem is characterized by the quadratic association of adjoining parameters. As

can be seen in �gure 4, adaptation of individual step-sizes accelerates the entire optimization

cycle by increasing the step-sizes of adjoining parameters for which variations are of topical

relevance. In the �nal stage, Schwefel's (15/2,100)-ES is about eight times slower than the

derandomized ES.

5.4 Sum of Di�erent Powers

Objective function:

F

n

(~x) =

n

X

i=1

jx

i

j

i+1

! minimum (= 0)

n = 30; ~x

0

= (1; : : : ; 1); F (~x

0

) = 30

This problem cannot be transformed into a hyper-sphere by an appropriate constant scal-

ing. The sensitivity relations (partial deviations) of the parameters continuously worsen
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Figure 5: Convergence plots of optimizations on the sum of di�erent powers. = (1,10)-

ES with /without derandomized individual step-size adaptation, respectively (�

scal

=

(1=n) / 0, respectively); 2 = (15/2,100)-ES with mutative individual step-size adapta-

tion according to Schwefel (1981).

when approaching the optimum. Both adaptation mechanisms can cope with the deteriorat-

ing scaling conditions. Their constant progress on the logarithmic scale is shown in �gure 5.

Schwefel's (15/2,100)-ES is about two times faster than the derandomized ES. This separable

problem requires rather fast than precise adaptation.

5.5 The Steiner-Net (with �xed topology)

The optimization problem is to minimize the length of a Steiner-net by �nding the optimal

positions of the points of branching (Steiner-points). The points to be connected (house-

points) and the topology of the net are �xed as shown in �gure 6. Only the positions of the

Steiner-points are subject to optimization. In the optimal solution, four of nine Steiner-points

are located at house positions, while the others take positions with angles of 120

o

between

their branches.

The di�culty with this problem is comparable to the sum of di�erent powers. Worsening

sensitivity relations of the parameters and premature step-size convergence of simple ESs

are caused by the linear dependency of the net length on shifting of Steiner-points that are

located on house positions. The corresponding partial deviations of the quality function

remain constantly about +1 or �1, respectively, while the others converge to zero when

approaching the optimum. As a result, the (1,10)-ES with mutative control of only one

general step-size does not �nd the optimal Steiner-point positions (see �gure 7).

Tests with the individual step-size adaptation schemes have shown that they converge

to the optimum without premature step-size convergence, while the derandomized scheme is

slightly faster than Schwefel's (15/2,100)-ES, as can be seen in �gure 7. To approximate the

minimal net, the length of which is about 1229.40854, with an absolute precision of 10

�3

,

about 20000 function evaluations are needed. The (1,10)-ES without individual step-sizes

mostly converge to nets that are 1 to 10 units longer.
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Figure 6: Steiner-net, used for optimization runs. The �xed points to be connected by the

Steiner-net are symbolized by houses. The dots represent Steiner-points.

Figure 7: Convergence plots of optimizations runs on the Steiner-Net. = (1,10)-

ES with /without derandomized individual step-size adaptation, respectively (�

scal

=

(1=n) / 0, respectively); 2 = (15/2,100)-ES with mutative individual step-size adapta-

tion according to Schwefel (1981). The function values plotted are the actual net lengths

minus 1229.40854, which is the length of the minimal net.

6. Conclusions

A reliable adaptation of individual step-sizes is of essential importance for the applicability

of the ES. Otherwise, the convergence rates can slow down by orders of magnitude for badly

scaled problems. Even if the parameter-scaling seems not to be questionable, the lack of
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an appropriate adaptation of individual step-sizes can cause premature convergence of the

general step-size (e.g. Steiner-Net).

The attempts to use the concept of mutative step-size control to deal with the adaptation

of individual step-sizes in small populations, have not been convincing up to now. Weak

points of the mutative step-size control that are related to this shortcoming are demonstrated

in this paper.

The new algorithm presented here demonstrates one possibility of overcoming these di�-

culties by relatively small modi�cations without changing the basic idea of mutative step-size

control. Derandomized mutative step-size control allows a reliable adaptation of individual

step-sizes even within quite simple ES-variants such as a (1,10)-ES. The population size needed

for the adaptation process does not depend on the dimension of the problem. Furthermore,

no extra function evaluations and only small computational expense are required.
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