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We are happy to answer questions at any time.
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Topics

1. What makes an optimization problem difficult to solve?

2. How does the CMA-ES work?

e Normal Distribution, Rank-Based Recombination
o Step-Size Adaptation
e Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

e Choice of problem formulation and encoding (not covered)
e Choice of initial solution and initial step-size
o Restarts, Increasing Population Size

e Restricted Covariance Matrix
3
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Topics

1. What makes an optimization problem difficult to solve?

636




Problem Statement Black Box Optimization and Its Difficulties Problem Statement Black Box Optimization and Its Difficulties

Problem Statement Problem Statement
Continuous Domain Search/Optimization Continuous Domain Search/Optimization
@ Task: minimize an objective function (fitness function, loss e Goal
function) in continuous domain » fast convergence to the global optimum

- X CR" ) . ) . ...orto arobust solution x
[ XCRT =R, x = f(x) » solution x with small function value f(x) with least search cost

@ Black Box scenario (direct search scenario) there are two conflicting objectives

X f(x) @ Typical Examples
» shape optimization (e.g. using CFD) curve fitting, airfoils
, : model calibration biological, physical
» gradients are not available or not useful ” o .
X . X . I ller, plants,
» problem domain specific knowledge is used only within the black > parameter calibration controller, plants, images
box, e.g. within an appropriate encoding o Difficulties
@ Search costs: number of function evaluations » exhaustive search is infeasible

» naive random search takes too long
» deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
6

Problem Statement Black Box Optimization and Its Difficulties Problem Statement Black Box Optimization and Its Difficulties

What Makes a Function Difficult to Solve? Ruggedness

Why stochastic search? non-smooth, discontinuous, multimodal, and/or noisy

@ non-linear, non-quadratic, non-convex
on linear and quadratic functions much better
search policies are available

@ ruggedness
non-smooth, discontinuous, multimodal, and/or
noisy function

Fithess

@ dimensionality (size of search space)

(considerably) larger than three 762, {
o 200000
@ non-separability + 80000
. _— . b0 ©© 6 C |
dependencies between the objective variables ) ;Q©@@;
@ ill-conditioning S
-4 -3 -2 -1 0 1 2 3 4

f -D I il Ivable with luti i
e non-smooth level sets cut from a 5-D example, (easily) solvable with evolution strategies

gradient.direction Newtea dirgction




Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

Fithess

-4 -3 -2 -1 0 1 2 3

cut from a 5-D example, (easily) solvable with evolution strategies

Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra

dimensions to a (mathematical) space.

Problem Statement Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if

X)) = (argminf(xl,...),...,argn)lcjnf(...,x,,))

arg min f(x,...
(xl) s Xn

= it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively

© ©
decomposable functions X © @ o @ © X

N

; YO OOB O
f(xl,---,xn)ZZﬁ(xi) 0 .....

=1 f©°0°©,

Rastrigin function » © @ . @ ©

@ @:

Problem Statement Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one (*+2)
Rotating the coordinate system

@ f:x — f(x) separable

@ f :x — f(Rx) non-separable
R rotation matrix

) ©_ 0 6 0 ©
,©©.©@x
: @.00@\ R
‘;0000‘;
20 OOB 0
 ©©.©(©'\

ENEE

1 Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann
2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
12
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Problem Statement lll-Conditioned Problems

llI-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

fx) = 3(e—x")TH(x—x*) = 3 30 hig (i—=xF)2 45 2ipy hij (xi—=xF) (=7
H is Hessian matrix of f and symmetric positive definite

gradient direction —f’(x)"

Newton direction —H~'f'(x)!

lll-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10"
are not unusual in real world problems.

If H ~ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H™') is necessary.

)

LGETISIEICTERIE  Non-smooth level sets

Non-smooth level sets (sharp ridges)

Similar difficulty but worse than ill-conditioning

<Q

1-norm scaled 1-norm

opening angle is the crucial parameter

14

1/2-norm

Problem Statement lll-Conditioned Problems

What Makes a Function Difficult to Solve?

...and what can be done

The Problem Possible Approaches

exploiting the problem structure

Dimensionality
separability, locality/neighborhood, encoding

[ll-conditioning second order approach

changes the neighborhood metric

Ruggedness and
non-smooth level
sets

non-local policy, large sampling width (step-size)
as large as possible while preserving a
reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator . .
serves as repair mechanism

restarts

Topics

2. How does the CMA-ES work?

e Normal Distribution, Rank-Based Recombination

o Step-Size Adaptation
e Covariance Matrix Adaptation
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..,X) ER?
@ Evaluate x;,

...xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..,X) ER?
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x,.

.,X) ER?
@ Evaluate x,

...,xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

...,Xx)) €ERY
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

20
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Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..,X) ER?
@ Evaluate xy,.

..,xyonf

© Update parameters 6 < Fy(0,x1,...,x\,f(x1),...,f(x)\))

21

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..,X) ER?
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fy(0,x1,...,xx,f(x1),...,f(xx))

22

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..,X) ERY
@ Evaluate x,

...,xyonf

© Update parameters 6 < Fy(0,x1,...,x\,f(x1),...,f(x)\))

Everything depends on the definition of P and Fy

deterministic algorithms are covered as well

23

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..o,X) ERY
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Everything depends on the definition of P and Fy

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined

via operators on a population, in particular, selection, recombination
and mutation

Natural template for (incremental) Estimation of Distribution Algorithms
24
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The CMA-ES

Input: m € R™; 0 € Ry; A € N>, usually X\ > 5, default 4 4+ [3logn]

Setc,, =1;c1 = 2/n% ¢y & pw/n? cc ®4/n;co 2 1//n;de & 1w, A
decreasinginiand > Hw; =1, w,>0>w W= w2 a3/
i T ’ 122 = H+1!/1’w . i=1 i

Initialize C=1,andp. =0,p, =0

While not terminate
z; = m+oy,, Wherey, ~N;(0,C)fori=1,...,\
D i1 k(i) Yi
p{,<—(1—cg)pﬁ+mmc_%yw path for o
pe < (1= co)pe + Vo 2nfllp, 17} /1= (1 ce)®Viwy,, pathfor C

sampling

m < m+ cmoy,,, wherey, update mean

0 4 0 X exp (%(%—1)) update of o
C C+eu S wag) Wyl —C) + ei(p.pl —C)  update C

Not covered: termination, restarts, useful output, search boundaries and encoding,
corrections for: positive definiteness guaranty, p_ variance loss, c, and d for large A

25

Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x, .

@ Evaluate xy,...,xyonf

© Update parameters 0 < Fy(0,xy,.

..,Xx) € R

X f(xr), . f(xn))

26

Evolution Strategies

New search points are sampled normally distributed

x; ~m~+ o N;(0,C) fori=1,...,\

as perturbations of , where x;,m € R*, s € R, C ¢ R™" |!

where

@ the mean vector m € R" represents the favorite solution
@ the so-called step-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

27

Why Normal Distributions?

@ widely observed in nature, for example as phenotypic traits

@ only stable distribution with finite variance
stable means that the sum of normal variates is again
normal:

N(@x,A)+N@y,B) ~N(x+y, A+B)

helpful in design and analysis of algorithms
related to the central limit theorem

© most convenient way to generate isotropic search points
the isotropic distribution does not favor any direction, rotational
invariant

© maximum entropy distribution with finite variance
the least possible assumptions on f in the distribution shape

28
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Evolution Strategies (ES) The Normal Distribution

Normal Distribution

Standard Normal Distribution

0.4

o
W

probability density of the 1-D standard
normal distribution

probability density
o
N

o

2-D Normal Distribution

probability density of

i i
75"’:’:’8‘@‘\ a 2-D normal :
e distribution :
5 _5
29

Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

2-D Normal Distribution

@ determines the displacement (translation)
@ value with the largest density (modal value)

@ the distribution is symmetric about the distribution
mean

30

Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
{xeR"|(x —m)"C™'(x —m) =n}
Lines of Equal Density

N (m, o) ~ m + oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.

31

A NGHESEICCEEN (S5 The Normal Distribution

Multivariate Normal Distribution and Eigenvalues
For any positive definite symmetric C,
C =dibib] + -+ d3bnby
d;: square root of the eigenvalue of C

b;: eigenvector of C, corresponding to d;

The multivariate normal distribution A/ (m, C)

N(m,C) ~m + N(0,d3)by + -+ N(0,d%)bn

dy - by

32 dy - by
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Evolution Strategies (ES) The Normal Distribution

Effect of Dimensionality

Norm of normally distributed vector 2-D Normal Distribution

0.8 T
1D 04
03 i
AN
2D 02 b
o &D 17D L
> 65D o ‘
3 0
> 5
':1 v5
= 0
~ 5 5
— " o o ol A veor
< 0
z
£ w
< o
Vv "
o §/
00

2 7 3 s 10 : .
IN(0,T) || — N(W, 1/2) with modal value v/n — 1
yet: maximum entropy distribution
also consider a difference between two vectors:
INV(0,1) = N(0,1) || ~ [NV(0,T) + N(0,1) | ~ v2[INV(0,T) |
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Evolution Strategies (ES) The Normal Distribution

Effect of Dimensionality

Norm of normally distributed vector 2-D Normal Distribution

10°

17D

0.4

0.3

-

4

N
0.2 ) '“‘ “ Iy
fﬁlgﬁf“:““\\\\

=
S

0.1

N

H wo
o
El
B
3
I
H o
o

densitygn 1,2,5,1Z,65-D

._.
S
L

1079 ‘ | | | | ]
0 2 4 6 8 10 B * °

IN(0,T) || — N(W, 1/2) with modal value vn — 1

yet: maximum entropy distribution

also consider a difference between two vectors:

INV(0,1) = N(0,T) || ~ [N(0,1) + N (0,1) || ~ V2[NV(0,T) |
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The Normal Distribution
The (u/u, A)-ES, Update of the Distribution Mean

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + oy;
N——

=:y;

The best 1 points are selected from the new solutions (non-elitistic)

and weighted intermediate recombination is applied.
35

Let x;.) the i-th ranked solution point, such that f(x.,) < -+ < f(xx.)).

Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions

Rank-based algorithms
Update of all parameters uses only the ranks

Fla) <fn) < e < flean)

g(f(x1:x)) < g(f(x2:n)) < oo < g(f(xain)) Vg
g is strictly monotonically increasing

3 g preserves ranks

EWﬁlt ey 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best,

ICGA
36
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Basic Invariance in Search Space

@ translation invariance
is true for most optimization algorithms

fx) & flx—a)

Identical behavior on f and f,

f:
fa:

x(=0) = x4+ a

x = f(x),
X Hf(x _a)a

No difference can be observed w.r.t. the argument of f

37

Evolution Strategies (ES) BRIy F-1;%

Summary . .
10?
— ES
— CSA-ES
10° ]
1072
E
N
g
B 104
105
108 T T T T
0 2000 4000 6000 8000 10000
func. evals.

On 20D Sphere Function: f(x) = SV

i=1 [x)?

i

@ ES without adaptation can’t approach the optimum =- adaptation required

38

Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed CLe

fori=1,...,\

where x;,m € R", 0 € Ry, C € R"*"

x; ~m+ o N;(0,C)

as perturbations of m,
where

@ the mean vector m € R” represents the favorite solution
and m « Z‘;Lzl Wi X\
@ the so-called siep-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

The remaining question is how to update + and C.

39

Methods for Step-Size Control

@ 1/5-th success rule?®, often applied with “+”-selection

increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

@ o-self-adaptation®, applied with “,’-selection

mutation is applied to the step-size and the better, according to the
objective function value, is selected

simplified “global” self-adaptation

@ path length control? (Cumulative Step-size Adaptation, CSA)®
self-adaptation derandomized and non-localized

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
Cschwefel 1981, Numerical Optimization of Computer Models, Wiley

dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.
92)

€0stermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN 1V
40
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Path Length Control (CSA) Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation The Equations
Xi = m+oy

m <= m+oyy e .
Initialize m € R", o € R, evolution path p, = 0,

Measure the length of the evolution path setc, ~4/n,d, ~ 1.

the pathway of the mean vector m in the generation sequence

= | A

4 I

decrease o increase o

loosely speaking steps are

@ perpendicular under random selection (in expectation)
@ perpendicular in the desired situation (to be most efficient)

41 42

Step-Size Control Path Length Control (CSA) Alternatives to CSA
(5/5,10)-CSA-ES, default parameters . . .
— Two-Point Step-Size Adaptation (TPA)
— with optimal step-size
— with step-size control |4 @ Sample a pair of symmetric points along the previous mean shift

— respective step-size
e S %12 = m® £ ot ___INO.DI

T — ey ™ ) Il :=*7€"
8

LIRCs fy=>"x
i . i=1
10 in [—0.2,0.8])"
forn = 30

; ; ; ; ; ; N
0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations

[Hansen et al., 2014] Hansen, N., Atamna, A., and Auger, A. (2014). How to assess step-size adaptation mechanisms in randomised search.
43 In Parallel Problem Solving from Nature-PPSN XIII, pages 60-69. Sp‘rlizger.
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On Sphere with Low Effective Dimension
On a function with low effective dimension

o f(x) =" [x]?, xcRY, M<N.
@ N — M variables do not affect the function value

A
10! CS . . .
103 — N=10,M=10 — N=10,M=10
102 — N=100,M=100 — N=100,M=100 ||
10! — N=100,M=10 — N=100,M=10 ||
100
1071
1072
= 107 =
T
107°
10°6
107
1078
107
—10 10
10 10° 10° 10 10° 10 10° 10° 10! 10°

function evaluations function evaluations
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SICTESTP NG Alternatives to CSA

Alternatives: Success-Based Step-Size Control

comparing the fitness distributions of current and previous iterations

Generalizations of 1/5th-success-rule for non-elitist and
multi-recombinant ES
@ Median Success Rule aitEharaetal, 2013)
@ Population Success Rule itoshchilov, 2014]
controls a success probability

[Ait Elhara et al., 2013] Ait Elhara, O., Auger, A., and Hansen, N. (2013). A median success rule for non- elitist evolution strategies: Study of
feasibility. In Proc. of the GECCO, pages 415-422.

[Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proc. of the
GECCO, pages 397-404. 46

Step-Size Control Is Not Enough

=5
3
10¢ 4 a=1 (sphere)
a=3
" a=10
10° 4 a=30
10+
=
=
E 102
g
104 4
10-5 4
N\
10- ; . ] ; ; ; , BN N\
0 2500 5000 7500 10000 12500 15000 17500 20000 R
func. evals. Y
On 20D TwoAxes Function: f(x) = S/ [Rx]? + o iy /241 [RX]F, R: orthogonal o
@ convergence speed of CSA-ES becomes lower as the function becomes ill conditioned  *
(a*> becomes greater) = covariance matrix adaptation required ”
el N
47 B @ B on on o

Covariance Matrix Adaptation (CMA)

Evolution Strategies
Recalling
New search points are sampled normally distributed TR

x; ~m~+ o N;(0,C) fori=1,...,\

as perturbations of m,
where

where x;,m € R", 0 € Ry, C € R*"*"

@ the mean vector m € R" represents the favorite solution
@ the so-called siep-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

The remaining question is how to update C.

48




Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m <— m—+ oy,

9

initial distribution, C =1

Yw = Zfi] WiYiX,

Yi NM(O)C)

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m+ oy,, yi ~ N;(0,C)

BB

initial distribution, C =1

Yw = Zfi] WiYiX,

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m <— m—+ oy,

o
——
[

yw, movement of the population mean m (disregarding o)

Yw = Zfi] WiYiX,

Yi NM(O)C)

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m < m+ oy,, yi ~ N;(0,C)

O

mixture of distribution C and step y,,,
C+—08xC+02xy,yr

Yw = Zfi] WiYiX,

648




Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m & mA+oyw,  Yw

= 27:1 WiYiX,

(>

new distribution (disregarding o)

Yi NM(O)C)

Covariance Matrix Adaptation (CMA)

Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

m <— m+ oyy, yw:Z?:l WiYiX,

A
\/

new distribution (disregarding o)

Yi NM(O)C)

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m & m+oyw, Yw

= 27:1 WiYix,

A
\/

movement of the population mean m

Yi NM(O)C)

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

m <— m+ oyy, yw:Z?:l WiYiX,

mixture of distribution C and step y,,,

C+08xC+02xy,yT

Yi NM(O)C)
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Mmoo mA Oy, Yw =2 widin,  Yi~ Ni(0,C)

new distribution,

C <+ 08xC+02xy,yr

the ruling principle: the adaptation increases the likelihood of
successful steps, y,,, to appear again

another viewpoint: the adaptation follows a natural gradient

approximation of the expected fithess
57

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

Initialize m € R", and C =1, set o = 1, learning rate c.o, ~ 2/n*
While not terminate

X, = m+oy;, yi NM(O,C),
I
m < m+4 oy, where Yw = Zwiyi:)\
i=1
1
C <« (1 - Ccov)C + Ceovliw ywy;Fv where Hw = ETIWZZ =1

rank-one

The rank-one update has been found independently in several domains® 7 & °

6KjeIIstrf‘)m&Tav«'an 1981. Stochastic Optimization in System Design, IEEE TCS

Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix
adaptation, ICEC

8Ljung 1999. System Identification: Theory for the User

9Haario et al 2001. An adaptive Metropolis algorithm, JSTOR
58

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

C <« (1 - Ccov)C + Ccovllw_)’wy;lt‘r
covariance matrix adaptation
@ learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies
conducts a principle component analysis (PCA) of steps y,,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

learns a new rotated problem representation

components are mdependent only)
in the new represeritation. ..

learns a new (Mahalanobis) metric
variable metric method
approximates the inverse Hessian on quadratic functions

transformation into the sphere function
for . = 1: conducts a natural gradient ascent on the distribution A/
entirely independent of the given coordinate system

59

L

(OELELNEVH@CEI LN (S VI Covariance Matrix Rank-One Update

Invariance Under Rigid Search Space Transformation

f = hRast flevel sets in dimension 2 f=h

3 % \\) _w W/«\

© 0O |6 0 ©
2 © O @ O © &

© 0 01070 ©
D OO®O O

o @) e ° @) (¢)
N Y Y NS NS\,
M7\ /NS /AN /AN /BN N
D @ © @ © ©O ¢

Q0 ©I0 (O © °
+ © 0 ©® 0 ©

<’/ @f\@ \@/\C) @
3 R 0 1 2 3

for example, invariance under search space rotation
(separable < non-separable)

60
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(COELELNEVH@CEIEHLE(H LV Covariance Matrix Rank-One Update

Invariance Under Rigid Search Space Transformation

f = hRast o R

\S))

f=hoR

Jf-level sets in dimension 2
i\~
~

for example, invariance under search space rotation
(separable < non-separable)
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
steps y, is used

8
peoc Y (I—co)* ™y
i=0

exponentially
fading weights
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
steps y, is used

8
peocy  (I—c) yY

exponentially
fading weights

The recursive construction of the evolution path (cumulation):

pe — (I=c)pe+ /1= (1—=c)Vw yw
—— ~~

decay factor

I 1 . m—m
normalization factor input = ki old

< 1. History information is accumulated in the evolution path.
63

where 1, = ﬁ, Ce

Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

“Cumulation” is a widely used technique and also know as

@ exponential smoothing in time series, forecasting

@ exponentially weighted mooving average

@ [terate averaging in stochastic approximation

@ momentum in the back-propagation algorithm for ANNs
o ...

“Cumulation” conducts a low-pass filtering, but there is more to it. ..
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

. _ T
Cumulation ML
Utilizing the Evolution Path T T ) .

We used y.y,, for updating C. Because y,y, = —yw(—y») the sign of y,, is lost.

(&=

Cumulation—the Evolution Path

Covariance Matrix Adaptation (CMA)

. _ T
Cumulation ML
Utilizing the Evolution Path T T ) .

We used y.y,, for updating C. Because y,y, = —yw(—y») the sign of y,, is lost.

A
V)

65 66
. _ T . . 0
Cumulation € (1= oo )C o ceovkimyusy Using an evolution path for the rank-one update of the covariance
Utilizing the Evolution Path matrix reduces the number of function evaluations to adapt to a

We used y,.y,, for updating C. Because y,y;, = —y.(—y»)" the sign of y,, is lost.

The sign information (signifying correlation between steps) is (re-)introduced by using
the evolution path.

pe = (1=ce)pe + /1= (1= ce)/thwyw
——

decay factor

(1 — CCQV)C + Ccov PcPcT
~—~—

normalization factor
C «

rank-one

where p,, = ceov K ¢ < 1 such that 1/c. is the “backward time horizon”.

1
Xowi??
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straight ridge from about O(n?) to O(n).(®

aHansen & Auger 2013. Principled design of continuous stochastic search: From theory to practice.

Number of f-evaluations divided by dimension on the cigar function f(x) = x2 + 105 >°7_, x?
4

10
/ ce=1 (no Cumulation)
10°
. bce=1/yn
— cc:]/n, 3/(n+3)

10° ; ,

10 10

dimension

The overall model complexity is n?> but important parts of the model
can be learned in time of order n
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank- Update

xi = m+toy, yi o~ Ni(0,0),
m < m-+oyy Iw = Z,»”lei.%‘:)\

The rank-p update extends the update rule for large population sizes A using
w1 > 1 vectors to update C at each generation step.

Cu = ﬁ Z.Yi:)\}’;'l;)\ Mnew — m + ﬁ DoV
C « (I-DxC+1xCy,

new distribution
sampling of A = 150 calculating C where

solutions where 1 =50,
and c.oy = 1

1OJastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*

rank-p CMA .
conducts a @ can reduce the number of necessary generations roughly from
PCA of O(n*) to O(n) (12)
steps given My X Axn
Therefore the rank-u update is the primary mechanism whenever a
large population size is used
say A >3 10
EMNAgiosai yazant
conducts a
| . | PCA of
o o~ N Ll oints
xi = mog i ¥~ N0 T (S p
sampllqg of A =150 calculating C from p =50 new distribution
solutions (dots) solutions
mpew IS the minimizer for the variances when calculating C
" Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E. 12Hansen, Mdller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of-distribution algorithms. pp. 75-102 Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
71 72
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)
given p, x A < n
Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

12Hansen, Mdller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
73

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank- Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)
given p, x A < n
Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

Rank-one update and rank-u update can be combined

12Hansen, Mdller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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Covariance Matrix Rank-u Update

Covariance Matrix Adaptation (CMA)

Rank-one update

best f-value 30 mean coordinates

25
2.0
15
L0
05

v

107 00
107 -05

2500 5000 7500 100001250015000 02500 5000 7500 100001250015000

principle axis lengt]

Vo

2500 5000 7500 100001250015000 02500 5000 7500 100001250015000

Rank-x update

best f-value mean coordinates
5 10

STwoAxes(X) = Z x% +10° Z x%

i=1 i=6

A = 10 (default for N = 10)

-

2500 5000 7500 100001250015000 G
step-size

A

2500 'n{illll_'f';llll HH_D[HHl?lllllrﬂillll
principle axis len;

10 107 75

02500 5000 7500 100001250015000 02500 5000 7500 100001250015000

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

Rank-one update

best f-value mean coordinates

-

0 10000 20000 30000 40000 0 1000020000 3000040000

principle axis len;

|

)-2
10000 20000 30000 40000 0 10000 20000 30000 40000

ank-u update

best f-value mean coordinates
5 10

10

10

Froonses(x) = Y x2+10° 3" x?
10 . .

10 05 i=1 i=6

10

10 0.0 b A1=50

1000020000 _ 30000 40000

10000 20000 30000 40000 i
principle axis lengt|
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Different Types of llI-Conditioning

(a: Axes Ratio = 10)

Discus Type:
1 short axis = n-1 long axes

Cigar Type:
1 long axis = n-1 short axes

f) =3 +a X,

fE) =a-x+ XL

1.0°1.0

Active Update

utilize negative weights [Jastrebski and Arnold, 2006]

Active Update (rewriting)

decreasing the variances in unpromising directions
[A/2] A

C C+C1PCI7L'T +cp Z Wiyi:)\y;l:)\ —Cu Z
=1 i=A— | M/2)+1

[wilyiayin

increasing the variances in promising directions

@ increases the variance in the directions of p. and promising steps
yix (i < [AN/2])

@ decrease the variance in the directions of unpromising steps y;.
(i> A= [A/2]+1)

@ keep the variance in the subspace orthogonal to the above

[Jastrebski and Arnold, 2006] Jastrebski, G. and Arnold, D. V. (2006). Improving Evolution Strategies through Active Covariance Matrix
Adaptation. In 2006 IEEE Congress on Evolutionary Computation, pages 9719-9726.

78
On 10D Discus Function Summary
. . - 5 Active Covariance Matrix Adaptation + Cumulation
10D Discus Function (axis ratio: oo = 10°)
n [A/2] A
f)=ax+) x5 C « (1—ci—cytc, )CHeipepe Tyep Z wLyi;,\yiT:)\—c; Z [Wilyiayia
i=1 i=1 i=A—|2\/2]+1

Positive Update

1000 2000 3000 4000 5000 6000 7000 8000
function evaluations

01000 2000 3000 4000 5000 6000 7000 8000
function evaluations

@ Positive: wait for the smallest eig(C) decreasing
@ Active: decrease the smallest eig(C) actively

79

@ —|wi| <0 (fori>X—[\/2] + 1): negative weight assigned to yi.»,
A
Dimamplwil = 1.

@ ¢, > 0: learning rate for the active update

80
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CMA-ES Summary

Input: m € R"?; 0 € Ry ; A € N>o, usually A > 5, default 4 + [3logn]

Setcy, =11 =~ 2/n2; Cp R uw/nQ; ce m4A/n;co =1/ de &1 wi—y. 2

d . L B -1 . _ H 2 ~
ecreasinginiand ) Mw; =1, wu> 0> wyi1, po o=y 5wl = 3/A

Initialize C =1,and p. =0,p, =0

While not terminate

x; = m+oy,;, wherey, ~N;(0,C) fori=1,...,A sampling

m =M+ cmoy,, Wherey, = 1w y; update mean

Py (L—co)p, + /1= (1 —co)Vitw C 2y, path for o
Pe < (1 - CC) D + 1[0,2n]{||p0'||2} V 1- (1 - CC)2\/ Hw Yqy path for C

0 4 0 X exp (2—; (E| ”T()((T)‘,'I)II - 1)) update of o
C—C+cp Z?zl Wiy (Y97 — C) + ci(pepl —C)  update C

Not covered: termination, restarts, useful output, search boundaries and encoding,
corrections for: positive definiteness guaranty, p_ variance loss, c, and d. for large A

81

Topics

3. What can/should the users do for the CMA-ES to work

effectively on their problem?

e Choice of problem formulation and encoding (not covered)
e Choice of initial solution and initial step-size
e Restarts, Increasing Population Size

e Restricted Covariance Matrix
82

\LEVRELTE IV RGENTECTEN YAl Strategy Parameters and Initialization

Default Parameter Values
CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

The following parameters were identified in carefully chosen experimental set ups.

@ related to selection and recombination
@ \: offspring number, new solutions sampled, population size
e u: parent number, solutions involved in mean update
@ w;: recombination weights

@ related to C-update
@ 1 — ¢.: decay rate for the evolution path, cumulation factor
@ ¢;: learning rate for rank-one update of C
@ ¢, learning rate for rank-u update of C

@ related to o-update

@ 1 — ¢, : decay rate of the evolution path
@ d,: damping for o-change

The default values depends only on the dimension. They do in the first place
not depend on the objective function.

83

\LEVNELTE TV RGENTECTENC ¥ Al Strategy Parameters and Initialization

Parameters to be set depending on the problem

Initialization and termination conditions

The following should be set or implemented depending on the problem.

@ related to the initial search distribution
o m(©: initial mean vector
o O (or \/C,.(’Oi)): initial (coordinate-wise) standard deviation

@ related to stopping conditions
e max. func. evals.

max. iterations

function value tolerance

min. axis length

stagnation

Practical Hints:

@ start with an initial guess (%) with a relatively small step-size o) to locally

improve the current guess;

@ then increase the step-size, e.g., by factor of 10, to globally search for a better

solution.
84
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Python CMA-ES Implementation

Python CMA-ES Demo
https://github.com/CMA-ES/pycma https://github.com/CMA-ES/pycma

Optimizing 10D Rosenbrock Function

85 86

\LEVRELTE IV RGENTECTEN YAl Strategy Parameters and Initialization

Python CMA-ES Demo Multimodality
https://github.com/CMA-ES/pycma

ALEVRETTE [V RGERTEETENC Al Multimodality

Optimizing 10D Rosenbrock Function Two approaches f.or m_ultlmodal functions: Try again with
e a larger population size
» a smaller initial step-size (and random initial mean vector)

87
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Multimodality

Approaches for multimodal functions: Try again with

e the final solution as initial solution (non-elitist) and small step-size
e a larger population size

e a different initial mean vector (and a smaller initial step-size)

A restart with a large population size helps if the objective function has
a well global structure

e functions such as Schaffer, Rastrigin, BBOB function 15~19

e loosely, unimodal global structure + deterministic noise

89

Multimodality

Hansen and Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions, PPSN 2004.

Rastrigin function Griewank function

90

Multimodality

Approaches for multimodal functions: Try again with

e the final solution as initial solution (non-elitist) and small step-size
e a larger population size

e a different initial mean vector (and a smaller initial step-size)

A restart with a small initial step-size helps if the objective function
has a weak global structure

e functions such as Schwefel, Bi-Sphere, BBOB function 20~24

a large population size has a negative effect
91

Restart Strategy

It makes the CMA-ES parameter free

IPOP: Restart with increasing the population size

o start with the default population size

e double the population size after each trial (parameter sweep)
e may be considered as gold standard for automated restarts

BIPOP: IPOP regime + Local search regime

« IPOP regime: restart with increasing population size

¢ Local search regime: restart with a smaller step-size and
a smaller population size than the IPOP regime

92
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Topics Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems
@ O(N?) Time and Space Complexities
» to store and update C € RV*V
» to compute the eigen decomposition of C

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

Choice of problem formulation and encoding (not covered)
Choice of initial solution and initial step-size
Restarts, Increasing Population Size

Restricted Covariance Matrix
93 94

Restricted Covariance Matrix Restricted Covariance Matrix
Variants with Restricted Covariance Matrix Separable CMA (Sep-CMA)

CMA-ES Variants with Restricted Covariance Matrices
o Sep-CMA [Ros and Hansen, 2008]
» C =D. D: Diagonal
@ VD-CMA [Akimoto etal., 2014]
» C =D(I+wT)D. D: Diagonal, v € R".
@ LM-CMA [Loshchilov, 2014]
» C=1+Y" vl v cRV.
) VkD_CMA [Akimoto and Hansen, 2016]
» C=D(I+ Y, voT)D. v, € RV.

w
—+1 + + ¥

[Ros and Hansen, 2008] Ros, R. and Hansen, N. (2008). A simple modification in CMA-ES achieving linear time and space complexity. In CMA céf:; =0 e (p"p"T - Cm) +eu Z Wi ( i ’"(') ’"(1))1- - c(t))
Parallel Problem Solving from Nature - PPSN X, pages 296-305. Springer. i=1

[Akimoto et al., 2014] Akimoto, Y., Auger, A., and Hansen, N. (2014). Comparison-based natural gradient optimization in high dimension. In I
Proceedings of Genetic and Evolutionary Computation Conference, pages 373-380, Vancouver, BC, Canada. SEP [c§;§”]k,k = [(;(f)]kyk +c (V’c ]f c(’) Jk k) +cpu Z Wi (x _ m(’)]k [c (f)]kyk)

[Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proceedings of
Genetic and Evolutionary Computation Conference, pages 397-404.

[Akimoto and Hansen, 2016] Akimoto, Y. and Hansen, N. (2016). Projection-based restricted covariance matrix adaptation for high dimension. N + 2 /3 times greater than CMA
In Genetic and Evolutionary Computation Conference, GECCO 2016, Denver, Colorado, USA, July 20-24, 2016, page (accepted). ACM.

i=1
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Restricted Covariance Matrix
Demo: On 100D Separable Ellipsoid Function

|foest, med, worst|, f—min(f), o, axi®aat Variables (curr best, 100-D, popsize~17

|foest, med, worst|, f—min(f), o, axi®tat Variables (curr best, 100-D, popsize~17
10°

107

5

.

1 is rati
1

10 o

ool

st N

102

10-%

min(A=9.8044101

0 PPRRAPIRPAXE2OPERERAR 25888 dard DeRREBIIASR BEOIRMPTEAWinates
10?2

1072

0 5000 10000 15000 20000 25000 0
function evaluations

0 5000 10000 15000 20000 25000
function evaluations

function evaluations

function evaluations

Separable-CMA CMA

e CMA needed 10 times more FEs + more CPU time
e However, Sep-CMA won't be able to solve rotated ellipsoid function
as efficiently as it solves separable ellipsoid
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Summary and Final Remarks

Summary and Final Remarks

98

Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

@ Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

© Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

© Covariance matrix adaptation (CMA) increases the likelihood of

previously successful steps and can improve performance by
orders of magnitude
the update follows the natural gradient

C o« H™' <= adapts a variable metric
<= new (rotated) problem representation
= f :x +> g(x"Hx) reduces to x + x"x

99

Summary and Final Remarks

Limitations
of CMA Evolution Strategies

@ internal CPU-time: 10~8xn? seconds per function evaluation on a 2GHz

PC, tweaks are available
1000 000 f-evaluations in 100-D take 100 seconds internal CPU-time

variants with restricted covariance matrix such as Sep-CMA
@ better methods are presumably available in case of

» partly separable problems

» specific problems, for example with cheap gradients
specific methods

» small dimension (x < 10) for example Nelder-Mead

» small running times (number of f-evaluations < 100xn)
model-based methods

100

660




Thank you

Source code for CMA-ES in C, C++, Java, Matlab, Octave, Python, R, Scilab
and
Practical hints for problem formulation, variable encoding, parameter setting
are available (or linked to) at
http://cma.gforge.inria.fr/cmaes sourcecode page.html

101

Theoretical Foundations

Natural Gradient Descend

@ Consider argngn E(f(x)|0) under the sampling distribution x ~ p(.|0)

we could improve E(f(x)|0) by following the gradient VoE(f(x)|6):

0 « 0 —nVpE(f(x)|0), n>0

Vy depends on the parameterization of the distribution, therefore

@ Consider the natural gradient of the expected transformed fitness
Vo E(wo Py(f(x))|0) = F, ' VoE(w o Py(f(x))|60)
= E(w o Py(f(x))Fy ' Vo Inp(x[6))
using the Fisher information matrix Fy :(<E5’21+6§9!‘9)>)/ of the density p.

The natural gradient is invariant under re-parameterization of the
distribution.

@ A Monte-Carlo approximation reads
A

Vo E@(f(x)|0) = > wiFy'Volnp(xial6), wi = w(f(xi)|60)

i=1

102

CMA-ES = Natural Evolution Strategy + Cumulation

Natural gradient descend using the MC approximation and the normal distribution
@ Rewriting the update of the distribution mean

w @
Mpew — E WXy = m + g wi(xi\ —m)
i=1 i=1

natural gradient for mean %E(w o Pr(f(x))|m, C)

@ Rewriting the update of the covariance matrix'3

rank one
~ =

Chew + C+ Cl(PcPcT -C)
rank-p

n
+ % ZWi( (xix —m) (eix —m)" — 02C>
i=1

natural gradient for covariance matrix %E(W o Pr(f(x))|m, C)

13Akimoto et.al. (2010): Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies, PPSN XI
103

Maximum Likelihood Update

The new distribution mean m maximizes the log-likelihood

n
Mnew = argmax Y wilog par(xix|m)
"

independently of the given covariance matrix

The rank-;. update matrix C,, maximizes the log-likelihood

m
Xi:\ — Hold
C, = arg mcaxz;w,- logpr (%’mmd, C)
=

log pyr(x[m, C) = —1logdet(27C) — 1 (x — m)TC~ 1 (x — m)
py is the density of the multi-variate normal distribution

104
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Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

H diagonal
[-2- NEWUOA g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
10 T T I, increasing function (for all other)
10 10 10 10 10 10

Condition number
SP1 = average number of objective function evaluations' to reach the target function
value of g~'(107?)

14 . . - P .
Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

H full
g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
10' T i I, increasing function (for all other)
10 10 10 10 10 10

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of g7'(107?)

5Auqer et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
106

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

el H full
j | -/~ NEWUOA g X x/4 (for BFGS and
: NEWUOA)
g any order-preserving = strictly
10' i I, increasing function (for all other)

4
10 10 10 10 10 10
Condition number

SP1 = average number of objective function evaluations'® to reach the target function
value of g~'(107?)

6Auqer et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparison during BBOB at GECCO 2009

24 funminrl\._% and 31 alaarithms in 20-D

"best 200
-BIPOP-CNIA-ES
AMalLGal! IDEA
_‘iAMaLGaM IDEA
VNS (Garcia)
:MA-LS-Chain
~ JDASA T
:G3-PCX
‘NEWUOA
+(1+1)-CMA-ES
7 _~Cauchy DA
J(1+1)-E9]
CBFGS
PSO_Boupds
“GLOBAL

o
o
T

OA
Han)
Doe)

Proportion of functions
o
N
T

‘Rosenbr' ck
e N\DLSstep |
tLSfminbr|d
simple GA
:DEPSO
‘DIRECT
- :BayEDACG
) ~ = = <Monte Cgrlo
0.0 ;
0 1 2 3 4 5 6 7 3
Running length / dimension
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Comparing Experiments

Comparison during BBOB at GECCO 2010

24 functinrl\.i, and 20+ alagrithms in 20-N)

o
o

o
IS

Proportion of functions

0.2

0.0

"best 200p

:BIPOP-C

A-ES

-CMA+DEFMOS

IPOP-aCMA-ES

-ES
Adap DE|(F-AUC)
:DE (Unifgrm)

bS-DE

9 (IPOP,r1)

CMA-ES
A-ES

MA-ES
-CMA-ES
-CMA-ES

A-ES
UOA
A-ES

MA-ES

DA
A-ES

-CMA-ES

<Monte Cgrl

Colony
GA

o

Running length / dimension
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