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ABSTRACT
This paper investigates the limits of the predictions based on
the classical progress rate theory for Evolution Strategies.
We explain on the sphere function why positive progress
rates give convergence in mean, negative progress rates di-
vergence in mean and show that almost sure convergence
can take place despite divergence in mean. Hence step-sizes
associated to negative progress can actually lead to almost
sure convergence. Based on these results we provide an al-
ternative progress rate definition related to almost sure con-
vergence. We present Monte Carlo simulations to investigate
the discrepancy between both progress rates and therefore
both types of convergence. This discrepancy vanishes when
dimension increases. The observation is supported by an
asymptotic estimation of the new progress rate definition.

Categories and Subject Descriptors: G.1.6 [Numerical
Analysis]: Optimization—Global optimization,Unconstrained
optimization; F.2.1[Analysis of Algorithms and Problem Com-
plexity]:Numerical Algorithms and Problems

General Terms: Algorithms, Theory

Keywords: Evolution Strategy, theory, progress rate, con-
vergence rate

1. INTRODUCTION
Since the introduction of Evolution Strategies (ES) in the

mid-sixties, theoretical investigations [3, 6] mainly focused
on investigating the so-called progress rate defined as the
expected progress from one step of the algorithm to the
next. In case of a spherical fitness function1 the normal-
ized progress rate obeys

ϕ∗ = d E

„ ‖Xn‖ − ‖Xn+1‖
‖Xn‖

˛

˛

˛

˛

Xn

«

, (1)

1A spherical (isotropic) fitness function f : R
d → R can be

expressed as f(x) = g(xT x), where g : R → R is strictly
increasing. Surfaces of equal fitness of f are hyperspheres.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

where d is the dimension of the search space, n the discrete
time index and (Xn)n∈N the sequence of random variables
modeling the algorithms evolution in search space that is
assumed to take non-zero values except on a set of proba-
bility zero. Most estimations given for the progress rate ϕ∗

are asymptotic in the dimension d.2

We give a simple example, where the progress definition of
Eq. 1 fails to reflect what is actually observed in reality. Con-
sider a sequence of Xn where the search algorithm is step-
ping forward and backward, and forward and backward,. . . ,
always by the same amount respectively; say ‖X0‖ = 1,
‖X1‖ = 0.5, ‖X2‖ = 1, ‖X3‖ = 0.5, ‖X4‖ = 1,. . . Con-
sequently (‖Xn‖ − ‖Xn+1‖)/‖Xn‖ equals to +0.5 for even
n and −1 otherwise, while, in contrary, the same distance
is covered in even and odd steps. The resulting negative
progress value for even time steps is, in absolute terms,
greater than the resulting positive progress value for odd
time steps, suggesting divergent behavior of the sequence.
Divergence stands in contrast to ‖X0‖−‖Xn‖ ∈ {0, 0.5} ≥ 0
for all time steps n. In this paper we will see that the de-
fect in ϕ∗, observed in this simple example, carries over to
stochastic random sequences ‖Xn‖ (even though ‖Xn‖ is
deterministic in our example, Xn can be stochastic) and
also applies to the evolution strategy. The defect can be re-
solved by using different means of analysis leading to a new
progress definition.

When analyzing the convergence of a sequence of random
variables several notions of convergence exist. In this paper
we will focus on

1. convergence in mean, associated to the expected progress
rate

A sequence of random variable (Xn)n∈N con-
verge in mean to X if

lim
n→∞

E(|Xn − X|) = 0 .

2. almost sure convergence, which is more desirable to
reflect what is observed in single instances.

A sequence of random variables (Xn)n∈N con-
verges almost surely or with probability one to
the random variable X if:

P{ lim
n→∞

Xn = X} = 1

2The conditioning in Eq. 1 should not be omitted in general.
However, we will see that for the so-called scale-invariant al-
gorithm the conditional expectation in the right-hand side of
Eq. 1 is equal to the (unconditional) expectation (Lemma 1).



which means that the events for which Xn does
not converge to X have probability 0. Under
these conditions we use the notation

lim
n→∞

Xn = X a.s.

For the investigation of different types of convergences the
reader is also referred to [7].

Positive progress, as defined in Eq. 1, and convergence in
mean are equivalent for the following algorithm3 minimizing
f(x) = ‖x‖2 [1]:

Xn+1 = arg min
1≤i≤λ



‖Xn +
σ∗‖Xn‖

d
N i(0, Id)‖2

ff

, (2)

where σ∗ ∈ R
+ and N i(0, Id) for i = 1 . . . λ are λ inde-

pendent Gaussian random vectors with mean zero and co-
variance matrix Id. This algorithm is related to the (1, λ)-
evolution strategy and the natural question of convergence
related to convergence in mean or almost sure convergence
arises.

The organization of the paper is the following. In Sec-
tion 2 we construct a simple example to illustrate the dis-
crepancy between convergence in mean and almost sure con-
vergence. Section 3 explains the link between convergence
in mean and maximization of the progress rate and ana-
lyzes convergence in mean and almost sure convergence of
the algorithm from Eq. 2. From the different convergence
rates (associated to different types of convergence), a new
progress rate definition related to almost sure convergence
is derived. Numerical investigations of the different conver-
gence rates are presented in Section 4. Finally we derive in
Section 5 asymptotic approximations for the new progress
rate definition. Section 6 discusses the practical relevance of
our results and Section 7 gives a summary and conclusion.

2. AN INTRODUCTORY EXAMPLE
We start by constructing a simple example of a sequence

of random variables (Xn)n∈N ∈ R
+ to illustrate how predic-

tions based on the expectation E(Xn) can give the wrong
intuition of what actually occurs during one simulation.

Let X0 ∈ R
+\{0} and let the random sequence Xn be

recursively defined by

Xn+1 = XnYα , (3)

where Yα is an independent random variable with parameter
α ∈ R

+\{0}. As an example we take for Yα a log-normal
distribution multiplied by α:

Xn+1 = Xn α exp (Nn(0, 1)) , (4)

where Nn(0, 1) are independent normal random variables
with mean 0 and standard deviation 1. Since E (exp (Nn(0, 1))) =
exp(1/2) we have

E (Yα) = α exp(1/2)

and since ln(Yα) = ln(α) + Nn(0, 1) we have

E (ln (Yα)) = ln(α) .

3For convenience and brevity we will simply use the term
algorithm for a sequence of random variables that models
an algorithm running on a function to be minimized.
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Figure 1: Ten realizations of the random sequence
defined in Eq. 4 with α = 0.8 and X0 = 1. The
dashed line represents E(Xn) = (α exp(1/2))n, the
dashed-dotted line (within the set of curves) depicts
exp(E(ln Xn)) = αn. We can observe convergence of
those 10 samples despite the divergence in mean.

Divergence in mean, almost sure convergence. By
taking the expectation of Eq. 4 we obtain that

E(Xn+1) = E(Xn) α exp(1/2) . (5)

This equation shows that for α > 1/
√

e ≈ 0.6065 the se-
quence of random variables (Xn)n∈N diverges in mean. How-
ever for α = 0.8 > 1/

√
e we observe that samples of the

sequence of random variables converge to zero as illustrated
in Fig. 1. We precise in the following proposition when con-
vergence in mean and almost sure convergence take place for
the sequence defined with Eq. 4.

Proposition 1. Let (Xn)n∈N be the random sequence de-
fined with Eq. 4 with E(X0) < +∞.

1. The sequence ln(Xn) is a random walk, i.e.

ln(Xn+1) = ln(Xn) + ln(α) + Nn(0, 1) . (6)

2. Almost surely

lim
n→∞

1

n
(ln(Xn) − ln(X0)) = ln(α) (7)

3. In mean

E(Xn) = E(X0) (α exp(1/2))n (8)

proof: By taking the logarithm of Eq. 4 we obtain Eq. 6.
Equation 8 results from iterating Eq. 5. For the almost sure
convergence, we sum both sides of Eq. 6 and obtain:

n−1
X

k=0

ln(Xk+1) =
n−1
X

k=0

ln(Xk) + n ln(α) +
n−1
X

k=0

Nk(0, 1)

which simplifies to

ln(Xn) = ln(X0) + n ln(α) +
n−1
X

k=0

Nk(0, 1)



and dividing by n yields

1

n
(ln(Xn) − ln(X0)) = ln(α) +

1

n

n−1
X

k=0

Nk(0, 1) .

From the Strong Law of Large Numbers we have that almost
surely

lim
n→∞

1

n

n−1
X

k=0

Nk(0, 1) = E(N(0, 1)) = 0 .

Equation 7 follows.

From Proposition 1 follows that for α such that α exp(1/2)
is greater than 1 and ln(α) is negative, divergence in mean
occurs though almost sure convergence takes place, which is
the case illustrated in Fig. 1.

Corollary 1 . For 1/
√

e < α < 1 there is almost sure
convergence of (Xn)n∈N and divergence in mean.

For α < 1/
√

e and α > 1 the results almost sure versus in
mean agree.

3. NEGATIVE PROGRESS BUT CONVER-
GENCE TOWARDS ZERO

In this section we prove that the previous phenomenon
can also be observed with the progress rate approach for
Evolution Strategies. For step-sizes associated to a negative
progress (defined in expectation), almost sure convergence
of the algorithm can occur.

3.1 Equivalence between progress rate and con-
vergence of the scale-invariant algorithm

We consider a (1, λ)-ES, a simple non-elitist strategy where
negative progress exists. The fitness function that we con-
sider is the so-called d-dimensional sphere function

f := (x1, . . . , xd) ∈ R
d → ‖x‖2 =

d
X

i=1

x2
i ,

to be minimized. At each generation n a parent, Xn, creates
λ offspring with the so-called mutation operator

Xi
n = Xn + σN i(0, Id) for i = 1, . . . , λ ,

where σ ∈ R
+ is the step-size and

`

N i(0, Id)
´

1≤i≤λ
are λ

independent instances of a Gaussian random variable with
zero mean and identity covariance matrix. The best off-
spring is selected to become the next parent Xn+1. One
iteration of the ES running on the sphere function can be
summarized by the following equation:

Xn+1 = arg min
1≤i≤λ

n

‖Xn + σN i(0, Id)‖2
o

. (9)

Due to the invariance of the ES against order preserving
transformations of the fitness values, the previous equation
is equivalent to

Xn+1 = arg min
1≤i≤λ

n

‖Xn + σN i(0, Id)‖
o

. (10)

We now introduce the notation N∗(0, Id) to denote the
selected random variable, i.e.

Xn+1 = Xn + σN∗(0, Id) . (11)

The classical progress rate approach. The progress rate
approach [3, 6] consists in looking for σ maximizing the
progress rate defined in Eq. 1. This progress can be rewrit-
ten as

ϕ∗ = d

„

1 − E

„

‖Xn+1‖
‖Xn‖

˛

˛

˛

˛

Xn

««

or, in case of the (1, λ)-ES on the sphere model, we can write

ϕ∗ = d

„

1 − E

„

‖ Xn

‖Xn‖
+

σ

‖Xn‖
N∗(0, Id)‖

˛

˛

˛

˛

Xn

««

.

Usually the so-called normalized step-size σ∗ = σd
‖Xn‖

is in-

troduced [3] and the approach consists in trying to find σ∗

maximizing

ϕ∗ = d

„

1 − E

„

‖ Xn

‖Xn‖
+

σ∗

d
N∗(0, Id)‖

˛

˛

˛

˛

Xn

««

. (12)

Actually the distribution of the random variable ‖ Xn

‖Xn‖
+

σ∗

d
N∗(0, Id)‖ does not depend on Xn and more specifically

we have:

Lemma 1. The distribution of the random variable ‖ Xn

‖Xn‖
+

σ∗

d
N∗(0, Id)‖ does not depend on Xn and is the same as the

distribution of

‖e1 +
σ∗

d
N∗(0, Id)‖ = min

1≤i≤λ



‖e1 +
σ∗

d
N i(0, Id)‖

ff

(13)

where e1 = (1, 0, . . . , 0) is the first unit vector.

This result has been for instance used in [4]. With Lemma 1
Eq. 12 simplifies to

ϕ∗ = d

„

1 − E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

««

, (14)

specifying the classical progress rate of the (1, λ)-ES on any
unimodal isotropic function.

Convergence of a scale-invariant algorithm. We recall
in this section how the progress rate given in Eq. 14 relates
to the convergence of the scale-invariant algorithm (Xn)n∈N

[1] defined as:

Xn+1 = arg min
1≤i≤λ



‖Xn +
σ∗‖Xn‖

d
N i(0, Id)‖

ff

(15)

derived from Eq. 10 where the step-size σ is chosen at each

step proportional to the norm of the parent, σ = σ∗‖Xn‖
d

.

Lemma 2. For the algorithm defined in Eq. 15, the fol-
lowing holds

‖Xn+1‖ = ‖Xn‖‖ Xn

‖Xn‖
+

σ∗

d
N∗(0, Id)‖ (16)

where the random variable
‖Xn+1‖

‖Xn‖
= ‖ Xn

‖Xn‖
+ σ∗

d
N∗(0, Id)‖

is independent of ‖Xn‖ and is distributed as ‖e1+
σ∗

d
N∗(0, Id)‖

defined in Eq. 13.

proof: Taking the norm in both sides of Eq. 15 we have
that

‖Xn+1‖ = min
1≤i≤λ



‖Xn +
σ∗‖Xn‖

d
N i(0, Id)‖

ff



where we can factorize ‖Xn‖:

‖Xn+1‖ = ‖Xn‖ min
1≤i≤λ



‖ Xn

‖Xn‖
+

σ∗

d
N i(0, Id)‖

ff

.

Using the ∗ notation for the selected (N i(0, Id))1≤i≤λ we
have:

‖Xn+1‖ = ‖Xn‖‖
Xn

‖Xn‖
+

σ∗

d
N∗(0, Id)‖ .

The independence is implied from Lemma 1 stating that the
distribution of ‖ Xn

‖Xn‖
+ σ∗

d
N∗(0, Id)‖ is independent of Xn.

From Lemma 2 and Lemma 1 we deduce the convergence
in mean for (Xn)n∈N defined in Eq. 15.

Proposition 2. For the algorithm defined in Eq. 15, with
E(‖X0‖) < +∞ the following holds:

E(‖Xn+1‖ |Xn) = ‖Xn‖E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

«

(17)

and

E(‖Xn‖) = E(‖X0‖)
„

E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

««n

(18)

= E(‖X0‖)
„

1 − ϕ∗

d

«n

(19)

proof: We take the conditional expectation of Eq. 16. Ac-
cording to Lemma 1 the distribution of ‖ Xn

‖Xn‖
+σ∗N∗(0, Id)‖

is the same as the distribution of ‖e1 + σ∗N∗(0, Id)‖ and is
independent of ‖Xn‖, therefore Eq. 17 follows. Taking again
the expectation gives

E(‖Xn+1‖) = E(‖Xn‖)E
„

‖e1 +
σ∗

d
N∗(0, Id)‖

«

.

Iterating yields Eq. 18, substituting with Eq. 14 yields Eq. 19.

Proposition 2 states that convergence in mean of the algo-
rithm defined in Eq. 15 occurs for positive progress with a
convergence rate equal to

E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

«

= 1 − ϕ∗

d
(20)

and divergence occurs for negative progress. Moreover we
see with Eq. 20 that the highest convergence rate is associ-
ated to the σ∗ that maximizes the progress rate ϕ∗. Accord-
ing to Eq. 17 for positive progress or equivalently whenever
convergence in mean occurs, ‖Xn‖ is a positive supermartin-
gale, i.e. E(‖Xn+1‖|Xn) ≤ ‖Xn‖. The positivity and the
supermartingale property implies almost sure convergence
[9]. In the next section we find for some values of σ∗ almost
sure convergence whereas E‖Xn‖ diverges.

3.2 Convergence despite a negative progress
For the scale-invariant algorithm (Eq. 15), Lemma 2 shows

that ‖Xn+1‖ is the product of ‖Xn‖ and the independent

random variable ‖ Xn

‖Xn‖
+ σ∗

d
N∗(0, Id)‖. Therefore Eq. 15

is an instantiation of Eq. 3. As pointed out in Section 2
the analysis of the expectation of Eq. 3 does not necessar-
ily reflect what is observed for samples of the algorithm.
Figure 2 illustrates that for σ∗ = 3.133, associated to neg-
ative progress in dimension 3 (or equivalently to divergence
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Figure 2: Ten realizations of the algorithm from
Eq. 15 for σ∗ = 3.133, dimension d = 3, λ = 5,
and ‖X0‖ = 1. The increasing dashed line depicts
‖X0‖ × (1 − ϕ∗/d)n, the decreasing straight line de-
picts ‖X0‖ × exp (−ϕ∗

ln/d)n. Both terms are modeling
‖Xn‖.

in mean of the random sequence given in Eq. 15), almost
sure convergence occurs. This is related to the same effect
than the one observed in Section 2: almost sure convergence
can happen without convergence in mean. The almost sure
convergence of the algorithm Eq. 15 was analyzed in [4].

Proposition 3 (almost sure convergence). For the
algorithm defined in Eq. 15, the following holds

lim
n→∞

1

n
(ln ‖Xn‖ − ln ‖X0‖) (21)

= E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

a.s.

or equivalently

lim
n→∞

„

‖Xn‖
‖X0‖

«1/n

= exp

„

E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

««

a.s.

The limites are independent of X0.

proof: The proof is similar to the proof of Proposition 1
using the fact that ‖Xn‖ and ‖ Xn

‖Xn‖
+ σ∗

d
N∗(0, Id)‖ are in-

dependent (from Lemma 2).

The proposition implies that almost sure convergence of
Xn toward zero will occur for all σ∗ such that

E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

< 0 . (22)

Additionally Eq. 22 gives the convergence rate for E (ln(‖Xn‖)):
Proposition 4. For the algorithm defined in Eq. 15 with

E(ln(‖X0‖)) < +∞, the expectation of ln(‖Xn‖) obeys

1

n
(E (ln (‖Xn‖) − ln(‖X0‖))) (23)

= E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

.

proof: We take the logarithm of Eq. 16, use the result of
Lemma 1, and take the expectation.



The convergence rate of Eq. 23 is reflected by the slope of
the decreasing straight line in Fig. 2.

When convergence in mean occurs, we did conclude from
the positivity and the martingale property implied by Eq. 17
that almost sure convergence takes places. This can be de-
duced as well from Jensen’s inequality implying that

ln E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

«

> E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

.

Motivated by Eq. 21 we suggest an alternative progress
rate definition relating more to what is actually observed in
single runs:

ϕ∗
ln = d E

„

ln
‖Xn‖

‖Xn+1‖

˛

˛

˛

˛

Xn

«

, (24)

where we did multiply by d to have the same normalization
as ϕ∗. We refer to ϕ∗

ln as log-progress in the following.

4. FINITE DIMENSION PROGRESSES
We will now quantify on the sphere model the differences

of progress definitions and formulas and evaluate their pre-
dictive power in terms of actually observed convergence of
the evolution strategy. For this we simulate the classical
progress rate ϕ∗ using the relation

ϕ∗ = d

„

1 − E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

««

, (25)

and the log-progress rate representing the convergence rate
for almost sure convergence using the relation

ϕ∗
ln = −d E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

, (26)

a consequence of Lemma 2 substituting in Eq. 24. We use a
Monte Carlo simulation of the expectations with empirical
averages of 106/

√
d samples from the random variables ‖e1+

σ∗

d
N∗(0, Id)‖ and ln ‖e1 + σ∗

d
N∗(0, Id)‖ respectively.

Figure 3 shows the results for dimensions d = 3, 10, 30 in
comparison with the progress rate approximation formula
ϕ∗ ≈ c1,λσ∗ − 0.5 σ∗2 and its refinements Eq. 3.242 and Eq.
3.241 from [3] (respectively lower and upper light line). For
larger dimensions all graphs become quite similar within the
shown range (for larger σ∗ they still disagree significantly).
Already for d = 10 Eq. 3.241 from [3] and ϕ∗

ln are in a good
agreement, while for d = 3 the deviations are remarkable.

To confirm the relevance of ϕ∗
ln we simulate the algorithm

of Eq. 15 for σ∗ = 3.133 and 3.516, where d = 3. These
σ∗-values are shown as ∗ on the ϕ = 0 axis in Fig. 3, upper
left. Only for the ϕ∗

ln measure the value is positive for the
smaller σ∗ and negative for the larger one. Figure 4 shows
ten realizations for the two σ∗-values respectively (crimped
lines) for d = 3. The final norm values for the smaller σ∗ are
smaller than 10−20, relating to positive progress, while the
final values for the larger σ∗ are larger than 1020, relating
to negative progress. This outcome is predicted only by the
progress graph of ϕ∗

ln in Fig. 3. The results for d = 10 are
similar (not shown).

Besides the ten realizations for the smaller σ∗ the 10−5,
10−3, 0.5, 1 − 10−3, and 1 − 10−5-quantiles of 2.5 × 105

realizations are shown in Fig. 4 (lesser crimped lines) for d =
3. These graphs are estimates of the cumulative distribution
function of Xn for the probabilities given by the quantiles.
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Figure 3: Monte Carlo simulation of ϕ∗ and ϕ∗
ln (re-

spectively lower and upper dark graph with crosses),
the classical progress rate approximation formula
c1,λ σ∗ − 0.5 σ∗2 (thin dark line) and two refinements
of the formula (related to ϕ∗) conferring to Eq. 3.242
and Eq. 3.241 from [3] (lower and upper light line,
respectively), for dimensions d = 3, 10, 30. While for
large dimensions a good agreement between the dif-
ferent progress lines is observed, the graphs deviate
considerably for small dimensions.
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Figure 4: Twenty realizations of the algorithm from
Eq. 15 with λ = 5, ten for σ∗ = 3.133 and ten for
σ∗ = 3.516, where dimension d = 3, and ‖X0‖ = 1.
The lesser crimped lines depict for some time steps
the 10−5, 10−3, 0.5, 1− 10−3, and 1− 10−5-quantiles of
2.5× 105 realizations. For example, the lowest line is
an estimate for x(n) where P (Xn < x(n)) = 10−5.

5. ASYMPTOTIC ESTIMATION OF PRO-
GRESSES

The simulations shown in Section 4 suggest that for high
dimension or sufficiently small σ∗ both ϕ∗ and ϕ∗

ln converge
to the same values. We formalize this result in Theorem 1
stating that asymptotic estimations of ϕ∗ and ϕ∗

ln (zero or-
der in 1/d and second order in σ∗) are equal. The proof
relies on the following proposition stating that asymptoti-
cally in the dimension, N∗

1 + σ∗

2d
‖N∗‖2 (where N∗

1 is the first

coordinate of the selected vector) converges to N1:λ + σ∗

2

where N1:λ is the minimum of λ normal distributions. This
result is useful to derive rigorously asymptotic estimations
of ϕ∗ and, to the best of our knowledge, here proven for the
first time.

Proposition 5. Let N∗
1 be the first coordinate of the se-

lected vector N∗ (implicitly) defined in Eq. 13. The following
holds:

lim
d→∞

N∗
1 +

σ∗

2d
‖N∗‖2 = N1:λ +

σ∗

2
a.s. (27)

where N1:λ = min{N1, . . . , Nλ} is the first order statistics
among λ normal random variables.

lim
d→∞

E

„

N∗
1 +

σ∗

2d
‖N∗‖2

«

= −c1,λ +
σ∗

2
(28)

where c1,λ = −E (N1:λ) is called progress coefficient [6, 3].

proof: Let (N i)1≤i≤λ be λ independent normal ran-
dom vectors with mean zero and covariance matrix identity.
For 1 ≤ j ≤ d, let (N i

j )1≤i≤λ denote the coordinate j of

(N i)1≤i≤λ. The equation

‖e1 +
σ∗

d
N∗‖2 = min

1≤i≤λ
{‖e1 +

σ∗

d
N i‖2} (29)

can be rewritten as

1 +
σ∗

d

„

σ∗

d
‖N∗‖2 + 2N∗

1

«

(30)

= min
1≤i≤λ



1 +
σ∗

d

„

σ∗

d
‖N i‖2 + 2N i

1

«ff

,

which implies that

σ∗

d
‖N∗‖2 + 2N∗

1 = min
1≤i≤λ

{σ∗

d
‖N i‖2 + 2N i

1} . (31)

Moreover for all 1 ≤ i ≤ λ, ‖N i‖2 =
Pd

j=1
(N i

j )
2 is the sum

of d independent random variables with finite expectation.
With the Strong Law of Large Numbers

lim
d→∞

1

d
‖N i‖2 = E((N i

1)
2) = 1 a.s.

and therefore σ∗

d
‖N i‖2 + 2N i

1 converges almost surely to

σ∗ + 2N i
1 and min1≤i≤λ{σ∗

d
‖N i‖2 + 2N i

1} converges almost
surely to

min
1≤i≤λ

{σ∗ + 2N i
1} = σ∗ + 2N1:λ

where N1:λ is the first order statistics among λ normal dis-
tributions. With Eq. 31, we obtain that

lim
d→∞

σ∗

d
‖N∗‖2 + 2N∗

1 = σ∗ + 2N1:λ a.s. (32)

In addition, σ∗

d
‖N∗‖2 + 2N∗

1 is uniformly integrable since

E(‖N∗‖2) ≤ E( max
1≤i≤λ

χi
d) ≤ λd , (33)

where χi
d are chi-squared distributions and

E(|N∗
1 |) ≤ E( max

1≤i≤λ
|Ni|) < +∞ . (34)

Therefore

lim
d→∞

E

„

σ∗

d
‖N∗‖2 + 2N∗

1

«

= σ∗ + 2E(N1:λ)

= σ∗ − 2c1,λ .

Theorem 1 . For a (1, λ)-ES on the sphere model, a zero
order in 1/d and second order in σ∗ approximation of ϕ∗ and
ϕ∗

ln is given by:

c1,λσ∗ − 1

2
(σ∗)2 + O

„

(σ∗)3

d

«

(35)

where c1,λ = −E (N1:λ) = E (Nλ:λ) is the expectation of the
largest order statistics among normal random variables.

proof: Let N∗
1 and N∗

d−1 be respectively the first and
last d − 1 components of the selected vector N∗(0, Id). We

decompose the vector ‖e1 + σ∗

d
N∗(0, Id)‖ in the following

way.



‖e1 +
σ∗

d
N∗(0, Id)‖

=

 

(1 +
σ∗

d
N∗

1 )2 +

„

σ∗

d

«2

‖N∗
d−1‖2

!1/2

=

 

1 + 2
σ∗

d
N∗

1 +

„

σ∗

d

«2

(N∗
1 )2 +

„

σ∗

d

«2

‖N∗
d−1‖2

!1/2

=

 

1 + 2
σ∗

d
N∗

1 +

„

σ∗

d

«2

‖N∗‖2

!1/2

We use (1 + h)1/2 = 1 + 1

2
h + O(h2) to obtain:

‖e1 +
σ∗

d
N∗(0, Id)‖ (36)

= 1 +
σ∗

d
N∗

1 +
1

2

„

σ∗

d

«2

‖N∗‖2+ O(
(σ∗)3

d2
)

We take the expectation of both sides and use Eq. 14:

ϕ∗ = −σ∗

„

E

„

N∗
1 +

σ∗

2d
‖N∗‖2

««

+ O
„

(σ∗)3

d

«

Using Proposition 5 we obtain

ϕ∗ = c1,λσ∗ − (σ∗)2

2
+ O

„

(σ∗)3

d

«

.

To obtain an estimation for ϕ∗
ln we take the log in Eq. 36

using the fact that ln(1 + h) = h + O(h2):

ln ‖e1+
σ∗

d
N∗(0, Id)‖ =

σ∗

d
N∗

1 +
1

2

„

σ∗

d

«2

‖N∗‖2+O(
(σ∗)3

d2
)

We now take the expectation of both sides and multiply by
d:

d E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

=

σ∗
E(N∗

1 ) + (σ∗)2
1

2d
E
`

‖N∗‖2
´

+ O
„

(σ∗)3

d

«

Using Proposition 5 we obtain

ϕ∗
ln = c1,λσ∗ − (σ∗)2

2
+ O

„

(σ∗)3

d

«

.

The main reason why both models asymptotically agree is
the correspondence of the Taylor expansions

√
1 + h −1 and

ln
√

1 + h in h = 0.

6. PRACTICAL RELEVANCE
An important and challenging task in Evolution Strategies

is to find an efficient method to adapt the step-size. Several
techniques have been introduced for this purpose. The first
work in this direction is the one-fifth-success rule [6] where
the step-size is adapted based on the rate of successful muta-
tions. Then self-adaptation was proposed, where the step-
size is mutated and selected according to the individuals
fitness [8]. Cumulative path length control was introduced
to overcome certain shortcomings of self-adaptation and is
implemented in the CMA-ES [5].

One may question the relevance of the scale-invariant al-
gorithm where the step-size is chosen proportional to the

distance to the optimum, σ∗‖Xn‖
d

, because in practice the
location of the optimum is not known and is not used in
algorithms that adapt the step-size. First we prove in Theo-
rem 2 that the convergence rate of the scale-invariant (1, λ)-
ES associated to an optimal choice of σ∗ (denoted σ∗

opt) is
the optimal convergence rate for adaptive (1, λ)-ES. Second
we argue that the adaptive techniques mentioned above do
achieve, on the sphere function, an adaptation where the
step-size is proportional to the distance to the optimum.

We consider a (1, λ)-ES minimizing f : R
d → R

+ where
an adaptive step-size method is implemented:

Yn+1 = arg min
1≤i≤λ

n

f
“

Yn + σnN i(0, Id)
”o

, (37)

where the random variable σn denotes the step-size at gen-
eration n.

Theorem 2 . Let f : R
d → R

+ be a fitness function with
an unique global optimum xopt and without loss of general-
ity xopt = 0. Let Yn ∈ R

d be defined as in Eq. 37, where
(σn)n∈N is a sequence of strictly positive random variables
and the random vector Y0 is zero only with zero probability
and E(ln(‖Y0‖)) < +∞. Then the following holds

E (ln ‖Yn‖ − ln ‖Yn+1‖ |Yn, σn) ≤ max
σ∗

ϕ∗
ln(σ

∗)

d
=

ϕ∗
ln(σ∗

opt)

d

where ϕ∗
ln is defined in Eq. 24 and

ϕ∗
ln(σ

∗) = −d E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

,

holds.
This bound is reached on the sphere function for

σn =
σ∗

opt

d‖Xn‖
.

proof: Because ‖Yn+1‖ ≥ min1≤i≤λ ‖Yn + σnN i(0, Id)‖
we obtain:

E (ln ‖Yn‖ − ln ‖Yn+1‖ |Yn, σn)

≤ E

„

ln ‖Yn‖ − ln

„

min
1≤i≤λ

‖Yn + σnN i(0, Id)‖
«

|Yn, σn

«

= E

„

− ln

„

min
1≤i≤λ

‖ Yn

‖Yn‖
+

σn

‖Yn‖
N i(0, Id)‖

«

|Yn, σn

«

= E

„

− ln

„

min
1≤i≤λ

‖e1 +
σn

‖Yn‖
N i(0, Id)‖

«

|Yn, σn

«

≤ max
σ∗

E

„

− ln

„

min
1≤i≤λ

‖e1 + σ∗N i(0, Id)‖
««

=
ϕ∗

ln(σ∗
opt)

d

The previous theorem states that the optimal adaptation
scheme (on the sphere) chooses σ ∝ ‖Xn‖ as in the scale-
invariant algorithm and σ∗ = σ∗

opt. One can argue that
in practice it is not possible to choose the step-size pro-
portional to the norm. Simple experiments on the sphere
show the contrary: with all adaptive techniques mentioned
above, ln ‖Yn‖ and ln(σn) decrease linearly4 at the same

4Because ln ‖Yn‖ and ln(σn) are random variables, the linear
decrease is superposed by stochastic deviations as can be
observed for instance in Fig. 2.



rate. Moreover this property is proven for self-adaptive
schemes, where ‖Yn‖/σn admits a stationary measure and
converges “fast” to this measure, and sufficient conditions
for ensuring this are derived [2]. As a corollary, the linear
convergence of ln ‖Yn‖ and ln(σn) is deduced [2]:

lim
n→∞

1

n
ln ‖Yn‖ = lim

n→∞

1

n
lnσn = c

where c is expressed in terms of the stationary distribution
of ‖Yn‖/σn.

7. SUMMARY AND CONCLUSION
In this paper we have investigated the limits of the pre-

dictions based on the classical progress rate. We show how
the definition of progress ϕ∗ in Eq. 1 is related to the con-
vergence of the scale-invariant (1, λ)-evolution strategy on a
spherical fitness function as defined in Eq. 15: using

‖Xn+1‖ = ‖Xn‖ ‖e1 +
σ∗

d
N∗(0, Id)‖ ,

we get

„

E(‖Xn‖)
E(‖X0‖)

«1/n

= E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

«

, (38)

where the coefficient

E

„

‖e1 +
σ∗

d
N∗(0, Id)‖

«

= 1 − ϕ∗

d
(39)

determines the convergence or divergence in mean. From
Eq. 39 we see that positive progress corresponds to conver-
gence in mean and negative progress to divergence in mean.

Convergence in mean and almost sure convergence are not
equivalent. In reality single samples of the algorithm are ob-
served and thus almost sure results reflect what we observe.
Almost sure convergence is given in Proposition 3 by

lim
n→∞

„

‖Xn‖
‖X0‖

«1/n

= exp E

„

ln ‖e1 +
σ∗

d
N∗(0, Id)‖

«

a.s. ,

(40)
where the sign of the coefficient

E(ln ‖e1 +
σ∗

d
N∗(0, Id)‖) = −ϕ∗

ln

d
(41)

determines whether almost sure convergence or divergence
holds. Equations 40 and 41 suggest the definition of a new
progress rate, the log-progress

ϕ∗
ln = d E

„

ln
‖Xn‖

‖Xn+1‖

˛

˛

˛

˛

Xn

«

, (42)

and the replacement of (1 − ϕ∗/d)n, as a (deterministic)
model for the sequence ‖Xn‖/‖X0‖, by the almost sure con-
vergence rate

exp

„

−ϕ∗
ln

d

«n

. (43)

According to Eq. 41 and Eq. 39 there exists step-sizes σ∗

where divergence in mean occurs, i.e. 1 − ϕ∗/d > 1, while
almost sure convergence takes place, i.e. exp(−ϕ∗

ln/d) < 1.
One simulation of this phenomenon was given in Fig. 2. That
means there exists step-sizes (close to the right border of the
evolution window) for which the progress rate ϕ∗ is negative
but almost sure convergence is observed (and ϕ∗

ln is positive).

We show that the zero order in 1/d and second order in σ∗

estimations of ϕ∗ and ϕ∗
ln coincide (Section 5).

We come back to our simple example from Section 1,
where the algorithm oscillates between two points and ‖Xn‖
equals 1 for even n and 0.5 otherwise. Using the new progress
definition Eq. 42 the quantity ln(‖Xn‖/‖Xn+1‖) equals to
ln(2) for even n and − ln(2) for odd n, reflecting well that
the algorithm is not stepping ahead in time.

Many of our results are based on the scale-invariant algo-
rithm from Eq. 15, where the step-size is chosen proportional
to the distance to the optimum. Given σ∗ = σ∗

opt the scale-
invariant algorithm running on the sphere function achieves
the maximum possible log-progress and the fastest conver-
gence to zero for the (1, λ)-ES (Theorem 2 ). While in the
scale-invariant algorithm σn ∝ ‖Xn‖ is chosen, theoretical
and empirical results reveal that this seemingly unrealistic
setting turns out to be what is approximately achieved by
realistic and well-known adaptive techniques: ‖Xn‖/σn con-
verges to a stationary measures.

We conclude with three final remarks.

• The convergence results that we provide do not only
state convergence but are associated with convergence
rates. Therefore they give insights into the finite time
behavior and they are a realistic measure of efficiency.

• The log-progress rate corresponds to almost sure con-
vergence and achieves correct convergence predictions
even in finite dimensions for any unimodal spherical
fitness function. It can be used as an empirical perfor-
mance measure using Monte-Carlo integration. Any
analysis aiming at finite dimensional progress rates
should use as a starting point ϕ∗

ln rather than ϕ∗ to
reflect more what is actually observed in single runs.

• The theory of progress rates and the log-progress ϕ∗
ln

is not confined to the sphere function alone but can be
naturally extended to any function f(x) = g(xT Hx)
with Hessian matrix H and a strictly increasing func-
tion g : R

+ → R. The norm in the progress definition
is then replaced by the respective Mahalanobis metric.
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