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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization
o Task: minimize an objective function (fitness function, loss
function) in continuous domain
f X CR" =R, x — f(x)
o Black Box scenario (direct search scenario)

X

—

f(x)

o gradients are not available or not useful
o problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

o Search costs: number of function evaluations
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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

o fast convergence to the global optimum

. . . ) ...or to a robust solution x
o solution x with small function value with least search cost

there are two conflicting objectives

o Typical Examples

o shape optimization (e.g. using CFD) curve fitting, airfoils

o model calibration biological, physical

o parameter calibration controller, plants, images
@ Problems

o exhaustive search is infeasible

o naive random search takes too long

o deterministic search is not successful / takes too long
Approach: stochastic search, Evolutionary Algorithms
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Problem Statement Black Box Optimization and lts Difficulties

Metaphors
Evolutionary Computation Optimization
individual, offspring, parent «—— candidate solution
decision variables
design variables
object variables
population «—— set of candidate solutions
fitness function — objective function
loss function
cost function
generation — iteration
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Problem Statement Black Box Optimization and lts Difficulties

Objective Function Properties

We assume f : X C R" — R to be non-linear, non-separable and to
have at least moderate dimensionality, say n « 10.
Additionally, f can be

O non-convex
o multimodal

there are eventually many local optima
@ non-smooth

derivatives do not exist
discontinuous

Qo

o ill-conditioned
@ noisy
Q

Goal : cope with any of these function properties
they are related to real-world problems
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Problem Statement Black Box Optimization and lts Difficulties

What Makes a Function Difficult to Solve?

Why stochastic search?

@ ruggedness
non-smooth, discontinuous, multimodal, and/or
noisy function
o dimensionality
(considerably) larger than three
@ non-separability
dependencies between the objective variables
o ill-conditioning
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Problem Statement Black Box Optimization and lts Difficulties

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [0, 1]. To
get similar coverage, in terms of distance between adjacent points, of
the 10-dimensional space [0, 1]'° would require 100'° = 10?° points. A
100 points appear now as isolated points in a vast empty space.

Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or large
dimensional search spaces.
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Problem Statement Non-Separable Problems

Separable Problems

Definition (Separable Problem)
A function f is separable if
arg( min  f(xq,...,%,) = <argminf(x1, ce)y e argminf(. .. 7xn))

= it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively
decomposable functions

S, x) = Zfi(x,-)
i=1

Rastrigin function
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Problem Statement Non-Separable Problems

Non-Separable Problems

Building a non-separable problem from a separable one (1+2)

Rotating the coordinate system
o f:x+— f(x) separable

o f :x — f(Rx) non-separable
R rotation matrix
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1 Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Problem Statement lll-Conditioned Problems

[lI-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function
1 1 2,1
f(x) = i(x —x*)TH(x —x*) =3 Zi ]’lm‘xi + 3 Zi#j hinin
H is Hessian matrix of f and symmetric positive definite

@\ gradient direction —f”(x)T

lll-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10'°
are not unusual in real world problems.

If H ~ I (small condition number of H) first order information (e.g. the

gradient) is sufficient. Otherwise second order information

(estimation nf H—1) is necessarv
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Problem Statement lll-Conditioned Problems

What Makes a Function Difficult to Solve?

...and what can be done

The Problem The Approach in ESs and continuous EDAs

Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed
stochastic, non-elitistic, population-based method

recombination operator . .
serves as repair mechanism

Dimensionality, exploiting the problem structure
Non-Separability locality, neighborhood, encoding

lll-conditioning second order approach
changes the neighborhood metric
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Evolution Strategies A Search Template

Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 6, set population size A ¢ N
While not terminate

@ Sample distribution P (x|0) — x;,...,x) € R"

@ Evaluatex;,...,x,onf

@ Update parameters 0 «— Fy(0,x1,...,x\,f(x1),...,f(x)))

Everything depends on the definition of P and Fy
deterministic algorithms are covered as well

In Evolutionary Algorithms the distribution P is often implicitly defined
via operators on a population, in particular, selection, recombination
and mutation

Natural template for Estimation of Distribution Algorithms
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Evolution Strategies A Search Template

Evolution Strategies

New search points are sampled normally distributed

x; ~m~+ aN;(0,C) fori=1,...,\

as perturbations of m where x;,m € R*, 0 € Ry, and C € R"™*"
where

o the vector m € R” represents the favorite solution

o the so-called o € R4 controls the step length

o the C € R"*" determines the shape of

the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and o.
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Evolution Strategies The Normal Distribution

Why Normal Distributions?

@ widely observed in nature, for example as phenotypic traits

@ only stable distribution with finite variance
stable means the sum of normal variates is again normal,
helpful in design and analysis of algorithms

@ most convenient way to generate isotropic search points

the isotropic distribution does not favor any direction
(unfoundedly), supports rotational invariance

@ maximum entropy distribution with finite variance
the least possible assumptions on f in the distribution shape
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Evolution Strategies The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A/ (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

O determines the displacement (translation)

@ is the value with the largest density (modal value)

O the distribution is symmetric about the distribution
mean

2-D
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Evolution Strategies The Normal Distribution

The covariance matrix C determines the shape. It has a valuable geometrical

interpretation: any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R" |x"C~'x = 1}

Lines of Equal Density

N (m,0°1) ~ m + oN(0,1)
one degree of freedom o
components of A/ (0,1)
are independent standard
normally distributed

N (m,D*) ~ m +DN(0,1) N(m,C) ~m + C%J\f(()7 I)

n degrees of freedom (2 1 »)/2 degrees of freedom
components are components are

independent, scaled correlated
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Evolution Strategies The Normal Distribution

Evolution Strategies

Terminology

(T X)-selection, u: # parents, \: # offspring

+
(1 + X)-ES: selection in {parents} U {offspring}
(u, X)-ES: selection in {offspring}

(I+1)-ES
Sample one offspring from parent m
x=m+oN(0,C)
If x better than m select

m<—Xx
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Evolution Strategies The Normal Distribution

The (/41 \)-ES
Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point x; = m + o N;(0,C) =m + o y;
N—_——
=:Yi

Let x;.\ the i-th ranked solution point, such that f(x;.)) < --- < f(xx.x)
The new mean reads

H H
m «— E WiXiy = m—+o E WiYiA
i=1

i=1
N———
=:!Yw
where
1 . oA
Wiz 2w, >0 Yliwi=1 sron =i~ g

The best ;. points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
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Evolution Strategies Invariance

Invariance Under Monotonically Increasing Functions

Rank-based algorithms
Update of all parameters uses only the ranks

f(xlzz\) Sf(XZ:)\) <.. Sf(x/\:A)

g(f(xin)) < g(f(xan)) < ... < g(f(xan)) Vg
g is strictly monotonically increasing
g preserves ranks
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Evolution Strategies Invariance

Basic Invariance in Search Space

o translation invariance
is t//ue\ofor most optimization algorithms

fx) = f(x—a)

Identical behavior on f and f,

[ x—f(x), x(=0) = x,
fa: x—=f(x—a), x=0 =x;+a

No difference can be observed w.r.t. the argument of f
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Evolution Strategies Invariance

Rotational Invariance in Search Space

o invariance to an orthogonal transformation R, where RRT =1
e.g. true for simple evolution strategies
recombination operators might jeopardize rotational invariance

f(x) < f(Rx)

Identical behavior on f and fx

fiox=fx), x50 =x
fr: x= f(Rx), x(=0 =R (xo)

No difference can be observed w.r.t. the argument of f

34

3Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
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Evolution Strategies Invariance

Invariance
Impact

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein
o empirical performance results, for example
o from benchmark functions
o from solved real world problems

are only useful if they do generalize to other problems

o Invariance is a strong non-empirical statement about the

feasibility of generalization
generalizing (identical) performance from a single function to a whole
class of functions

consequently, invariance is important for the evaluation of search
algorithms
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Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed

x; ~m+ o N;(0,C) fori=1,...,)\

as perturbations of m where x;,,m € R", 0 € R,, and C € R**"
where

o the vector m € R” represents the favorite solution

o the so-called o € Ry controls the step length

o the C € R™" determines the shape of

the distribution ellipsoid

The remaining question is how to update o and C.
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

0 |—
10" | random search i
step-size too small —
Q constahit step-—size C=1
=2 3
S 10
c
2 t ize too large "
- Al step-size too large- — — — - — —
8 s f(JC) = th
210 . =l
in [—0.2,0.8]"
optimal step-size forn =10
(scale invariant)
10_9 L L L
0 05 1 15 2
4
function evaluations % 10
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

constant o]
100 random search R
()
= .3
g 10 1 n
2
5 flx) = in
= i=1
(&)
S . -6
210 . in[-0.2,0.8]"
forn =10
optimal step-size
(scale invariant)
10_9 L L
0 500 1000 1500
function evaluations
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

constant o
100 [ random search
S
t‘_>U 10_37 1 n
5 f) =) "x
8 i=1
[ -6 . )
210 1 in[-0.2,0.8]
forn =10
optimal step-size adaptive
(scale invariant) step-size o
10° ‘ ‘
0 500 1000 1500

function evaluations
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Step-Size Control

Why Step-Size Control?

Why Step-Size Control

constant o
100 [ random search 4
()
= .3
g 10 v n
2
5 )=
b i=1
=
2107 step-size o 1 in[-02,0.8]"
forn =10
optimal step-size adaptive
(scale invariant) step-size o
10 ‘ ‘ .
0 500 1000 1500
function evaluations
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Step-Size Control Why Step-Size Control

Why Step-Size Control?

The evolution window

evolution window for the step-size
f ‘ T ] on the sphere function

o
[N}

evolution window refers to the
step-size interval where
reasonable performance is
observed

o
e
[

0.057

normalized progress
o

107 107 10” 10°
normalized step size
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Step-Size Control Why Step-Size Control

Methods for Step-Size Control

O 1/5-th success rule, often applied with “+"-selection

increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

O o-self-adaptation®, applied with “"-selection
mutation is applied to the step-size and the better one, according to the
objective function value, is selected

simplified “global” self-adaptation

O path length control? (Cumulative Step-size Adaptation, CSA)®, applied with

w9

,-selection

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution,
Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
CSchwefel 1981, Numerical Optimization of Computer Models, Wiley
dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput. 9(2)

eOstermeier et al 1994. Step-size adaptation based on non-local use of selection information. PPSN [V
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Step-Size Control One-Fifth Success Rule

One-fifth success rule

5

\_//
Probability of success (p;) Probability of success (p;)
1/2 1/5 “too small”
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Step-Size Control One-Fifth Success Rule

One-fifth success rule

ps: # of successful offspring / # offspring (per generation)

oo X exp <1 o s _ptarget> Increase o if p; > puarge:
3 1 — Drarget Decrease o if p; < prarget

(I1+1)-ES
Prarget = 1/5
IF offspring better parent
ps=1,0 < o xexp(l/3)
ELSE
ps=0,0 —o/exp(1/3)"/4
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Step-Size Control Self-Adaptation

Self-adaptation
ina (1,))-ES

MUTATE fori=1,...\

step-size o; «— oexp(T N;(0,1))
parent xi — x4 0; N;(0,1)
EVALUATE
SELECT

Best offspring x, with its step-size o,

Rationale

Unadapted step-size won'’t produce successive good individuals
“The step-size are adjusted by the evolution itself”
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

xXi = m+oy;
m <« m-++oyy

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

= | A

I I

decrease o increase o

loosely speaking steps are

@ perpendicular under random selection (in expectation)
@ perpendicular in the desired situation (to be most efficient)
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)

The Equations

Initialize m € R", 0 € R4, evolution path p, = 0,
setc, ~4/n,d, = 1.
m «— m+oy, wherey,=>>"" wyi update mean

Do — (1 - CO’)p(T +4/1— (1 - CO')2 vV Hw Yw
——

accounts for 1—c, accounts forw;

Co P || >> ,
o «— ox exp|l—(=—rrr———-1 update step-size
P (da (E\N(o,n H P P

>1 <= ||p-|| is greater than its expectation
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Step-Size

Control Path Length Control (CSA)

constant o]
100 [ random search B
Q
= 1073
©
>
c
e
—
(@)
% -6 step-size o
= 10 + 1
optimal step-size adaptive
(scale invariant) step-size o
10° ‘ ‘ )
0 500 1000 1500

function evaluations
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Covariance Matrix Adaptation

@ Covariance Matrix Adaptation
@ Covariance Matrix Rank-One Update
O Cumulation—the Evolution Path
O Covariance Matrix Rank-; Update
O Estimation of Distribution
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Covariance Matrix Adaptation

Evolution Strategies

Recalling

New search points are sampled normally distributed

x; ~m+ o N;(0,C) fori=1,...,)\

as perturbations of m where x;,,m € R", 0 € R,, and C € R**"
where

o the vector m € R” represents the favorite solution

o the so-called o € Ry controls the step length

o the C € R™" determines the shape of

the distribution ellipsoid

The remaining question is how to update C.
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Covariance Matrix Adaptation Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m «— m+ oy, Yy= Zf;l wiyin,  Yi~Ni(0,C)

new distribution,
C+—0.8xC+02xy,yl
the ruling principle: the adaptation increases the likelyhood of suc-

cessful steps, y,, to appear again
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Covariance Matrix Adaptation Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Initialize m € R", and C =1, set o = 1, learning rate c.oy ~ 2/n?

While not terminate

X = ”1+UYi7 yi ~ M(O,C),
o
m <« m-+ oy, where y,, = Z Wi Yix
i=1
C — (1 —=ceov)C + ceovliw yWvaV where pu,, =
——
rank-one

Anne Auger & Nikolaus Hansen () Evolution Strategies
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Covariance Matrix Adaptation Covariance Matrix Rank-One Update

C (1 - CCOV)C + CcovaJ’wy;l;
covariance matrix adaptation

o learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies

@ conducts a principle component analysis (PCA) of steps y.,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle components / the

principle axes of the mutation ellipsoid, rotational invariant
o learns a new, rotated problem represen- ‘.

tation and a new metric (Mahalanobis) e
components are independent (only) in the new representatlon
rotational invariant

o approximates the inverse Hessian on quadratic functions
overwhelming empirical evidence, proof is in progress
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Covariance Matrix Adaptation Covariance Matrix Rank-One Update

@ Covariance Matrix Adaptation
@ Covariance Matrix Rank-One Update
O Cumulation—the Evolution Path
O Covariance Matrix Rank-; Update
O Estimation of Distribution
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Covariance Matrix Adaptation Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
— steps y, is used

8
oY (- 5

exponentially

fading weights

The recursive construction of the evolution path (cumulation):

P (I_CC)I7L'+Vl_(l_CC)zvﬂw Yw
— <~

decay factor normalization factor input = 7—old
v

where p,, = ﬁ ce < 1. History information is accumulated in the evolution path.
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Covariance Matrix Adaptation Cumulation—the Evolution Path

“Cumulation” is a widely used technique and also know as

exponential smoothing in time series, forecasting
exponentially weighted mooving average

Q

Q

o iterate averaging in stochastic approximation

@ momentum in the back-propagation algorithm for ANNs
o
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Covariance Matrix Adaptation Cumulation—the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y,yy, for updating C. Because y.yn = —y.(—yw)" the sign of y,, is lost.

AN
N,

The sign information is (re-)introduced by using the evolution path.

pe = (1=cd) pe+ VT — (1= ol /iy
———

decay factor normalization factor

C — (1 - CCOV)C + Ccov pcpc T
——

rank-one

where 1, = ﬁ ce K 1.
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Covariance Matrix Adaptation Cumulation—the Evolution Path

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from O(n?) to O(n).(®

aHansen, Miiller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18

The overall model complexity is n> but important parts of the model
can be learned in time of order n
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Covariance Matrix Adaptation Covariance Matrix Rank-p Update

Rank-u Update

X; = m+toy;, yYi ~ M(07C)7
m «— m+oyy Yw = Zf;lwiyi:)\

The rank-u update extends the update rule for large population sizes
A using i > 1 vectors to update C at each generation step.
The matrix

m
C,u = Z Wiyizkyz/\
i=1

computes a weighted mean of the outer products of the best . steps
and has rank min(yu, n) with probability one.
The rank-u, update then reads

C (1 - Ccov) C + ceov C,u
where ccov & j1,/n? and ceoy < 1.
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Covariance Matrix Adaptation Covariance Matrix Rank-p Update

5= mton wANOO € = Lyl mow = m+ LTy
C «— (I-1)xC+1xC,
new distribution
sampling of A = 150 calculating C where

solutions where w =50,
C:IandUZI W]:...:W:u:i’
and ceov = 1
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Covariance Matrix Adaptation Covariance Matrix Rank-p Update

The rank-u update

o increases the possible learning rate in large populations
roughly from 2/n? to ., /n*

@ can reduce the number of necessary generations roughly from
O(n?) to O(n) ®

given p, x A < n

Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

Rank-one update and rank-u update can be combined. ..

5Hansen, Midiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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Covariance Matrix Adaptation Estimation of Distribution

@ Covariance Matrix Adaptation
@ Covariance Matrix Rank-One Update
O Cumulation—the Evolution Path
O Covariance Matrix Rank-; Update
O Estimation of Distribution
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Covariance Matrix Adaptation Estimation of Distribution

Estimation of Distribution Algorithms

o Estimate a distribution that (re-)samples the parental population.
o All parameters of the distribution 6 are estimated from the given
population.

Example: EMNA (Estimation of Multi-variate Normal Algorithm)

Initialize m € R*, and C =1
While not terminate

X, = m-+ty;, yi ~ M(O,C), fori=1,..., A
1 M
m «— — Y Xp)
i=1
W

C Z(x,-:)\ —m)(xiy —m)T

i=1

Larrafaga and Lozano 2002. Estimation of Distribution Algorithms
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Covariance Matrix Adaptation Estimation of Distribution

Estimation of Multivariate Normal Algorithm EMNAgopa1 VErsus rank-u CMA®

EMNAgIobaI
conducts a
PCA of
points

rank-u CMA
conducts a

: ‘ ‘ | PCA of

b= o o v < N, ©) ) ! . steps

T
C = & 2 (i x—moid) (¥i:x —Mola) Mnew = moid + 7 3 Vix

sampling of A = 150 calculating C from p = 50
solutions (dots) solutions

The CMA-update yields a larger variance in particular in gradient direction, because nnew is the

minimizer for the variances when calculating C

new distribution

6 Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, |. Inza and E.
Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102
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Experiments

Experimentum Crucis (1)

f convex quadratic, separable

biye:abs(f), cyan:f-minf), green:sigma, red:axis ratio
10

Object Variables (8-D)

15 1)=3.0931e
K(2)=2.2083¢
10 [/ x(6)=5.6127¢
?W:;:v /) (7)=2.7147e
5 (8)=4.5138¢
\ ‘ \ (9)=2.741e-
. 0 b= (5)=-1.0864
) W (4)=-3.8371
107 =2.66178883753772e-10 ¥ 5 3)=-6.9109
0 2000 4000 6000 [ 2000 4000 6000
, Principle Axes Lengths Slgndard Deviations in Coordinates divided by sigma
10 10 1
2
10° :
4
5
107 6
7
8
107 107 9
0 2000 4000 6000 0 2000 4000 6000

function evaluations

Fl) =30 1012 a = 6
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Experiments

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

bl‘née:abs(f), cyan:f-min(f), green:sigma, red:axis ratio Object Variables (9-D)
10 4

(1)=2.0052¢
(5)=1.2552¢
/ (6)=1.2468e
) _(©9)=-7.3812
(4)=-2.9981
N\ (7)=-8.3583
\ K(@=-20364
(2)=-2.1131
(8)=-2.6301

10 f=7.91055728188042e-10
0 2000 4000 6000 0 2000 4000 60!

CxH 'forallg,H

Principle Axes Lengths Standard Deviations in Coordinates divided by sigma

© ot 4N o ko

4
0 2000 4000 6000 0 2000 4000 6000
function evaluations function evaluations

f(x) = g (x"Hx), g : R — R stricly monotonic
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Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying «

dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07
o BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
=z DE (Storn & Price 1996)
e ‘ i ‘ DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)

f(x) = g(x"Hx) with
g identity (BFGS, red) or

| -2~ Ellipsoid NEWUOA
—O- Ellipsoid BFGS

% Elipsoid DES g(.) = ()Y* (BFGS, red dashed)
Ellipsoid DE2 or
10 —> Ellipsoid PSO

—+ Ellipsoid CMA-ES - i = i
o San Sart 1 B8 g any order preserving strlctly

" i i | increasing (all other)
10 10 10 10 10 10

Condition number

SP1 = average number of objective function evaluations to reach the target function
value of 10~°
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Summary

Three Main Features of Evolution Strategies

@ Rank-based selection: same performance on g(f(x)) for any g
g : R — R stricly monotonic (order preserving)

@ Step-size control: converge log-linearly on the sphere function
and many others

@ Covariance matrix adaptation: reduce any convex quadratic
function
f(x) =x"Hx

to the sphere function

without use of derivatives
lines of equal density align with lines of equal fitness C oc H~!
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Source code for CMA-ES in C, Java, Matlab, Octave, Scilab, Python is
available at
http://www.lri.fr/ hansen/cmaes_inmatlab.html
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