Tutorial—Evolution Strategies and Covariance Matrix Adaptation

Anne Auger & Nikolaus Hansen

INRIA Saclay - Ile-de-France, project team TAO Universite Paris-Sud, LRI, Bat. 490 91405 ORSAY Cedex, France

GECCO 2009, July 9, 2009, Montreal, Canada.

July 9, 2009

Content

- 1 Problem Statement
 - Black Box Optimization and Its Difficulties
 - Non-Separable Problems
 - Ill-Conditioned Problems
- 2 Evolution Strategies
 - A Search Template
 - The Normal Distribution
 - Invariance
- 3 Step-Size Control
 - Why Step-Size Control
 - One-Fifth Success Rule
 - Self-Adaptation
 - Path Length Control (CSA)
 - Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
 - Estimation of Distribution
- 5 Experiments
- 6 Summary

Problem Statement

Continuous Domain Search/Optimization

 Task: minimize an objective function (fitness function, loss function) in continuous domain

$$f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}, \qquad \mathbf{x} \mapsto f(\mathbf{x})$$

Black Box scenario (direct search scenario)

- gradients are not available or not useful
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- Search costs: number of function evaluations

Problem Statement

Continuous Domain Search/Optimization

- Goal
 - fast convergence to the global optimum
 - ... or to a robust solution x solution x with small function value with least search cost

there are two conflicting objectives

- Typical Examples
 - shape optimization (e.g. using CFD)
 - model calibration
 - parameter calibration

curve fitting, airfoils biological, physical

controller, plants, images

- Problems
 - exhaustive search is infeasible
 - naive random search takes too long
 - deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms

Metaphors

Evolutionary Computation		Optimization
individual, offspring, parent	\longleftrightarrow	candidate solution
		decision variables
		design variables
		object variables
population	\longleftrightarrow	set of candidate solutions
fitness function	\longleftrightarrow	objective function
		loss function
		cost function
generation	\longleftrightarrow	iteration

Objective Function Properties

We assume $f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R}$ to be *non-linear, non-separable* and to have at least moderate dimensionality, say $n\not\ll 10$. Additionally, f can be

- non-convex
- multimodal

there are eventually many local optima

non-smooth

derivatives do not exist

- discontinuous
- ill-conditioned
- noisy
- ...

Goal: cope with any of these function properties they are related to real-world problems

What Makes a Function Difficult to Solve?

Why stochastic search?

- ruggedness non-smooth, discontinuous, multimodal, and/or noisy function
- dimensionality

(considerably) larger than three

- non-separability
 dependencies between the objective variables
- ill-conditioning

cut from 3-D example, solvable with an evolution strategy

a narrow ridge

Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the **rapid increase in volume** associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [0,1]. To get **similar coverage**, in terms of distance between adjacent points, of the 10-dimensional space $[0,1]^{10}$ would require $100^{10}=10^{20}$ points. A 100 points appear now as isolated points in a vast empty space.

Consequently, a **search policy** (e.g. exhaustive search) that is valuable in small dimensions **might be useless** in moderate or large dimensional search spaces.

Separable Problems

Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

 \Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example: Additively decomposable functions

$$f(x_1,\dots,x_n) = \sum_{i=1}^n f_i(x_i)$$

Rastrigin function

Non-Separable Problems

Building a non-separable problem from a separable one (1,2)

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $f: x \mapsto f(\mathbf{R}x)$ non-separable

R rotation matrix

¹ Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

²Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

$$f(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H}(\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_i h_{i,i} x_i^2 + \frac{1}{2} \sum_{i \neq j} h_{i,j} x_i x_j$$

$$\mathbf{H} \text{ is Hessian matrix of } f \text{ and symmetric positive definite}$$

gradient direction $-f'(x)^{T}$ Newton direction $-H^{-1}f'(x)^{T}$

Ill-conditioning means **squeezed level sets** (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise **second order information** (estimation of H^{-1}) is **necessary**

Anne Auger & Nikolaus Hansen ()

What Makes a Function Difficult to Solve?

... and what can be done

The Problem	The Approach in ESs and continuous EDAs
Ruggedness	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
	stochastic, non-elitistic, population-based method recombination operator serves as repair mechanism
Dimensionality, Non-Separability	exploiting the problem structure locality, neighborhood, encoding
III-conditioning	second order approach changes the neighborhood metric

- 1 Problem Statemen
 - Black Box Optimization and Its Difficulties
 - Non-Separable Problems
 - III-Conditioned Problems
- 2 Evolution Strategies
 - A Search Template
 - The Normal Distribution
 - Invariance
- 3 Step-Size Control
 - Why Step-Size Control
 - One-Fifth Success Rule
 - Self-Adaptation
 - Path Length Control (CSA)
- 4 Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Bank-, Undate
 - Estimation of Distribution
- 5 Experiments
- 6 Summary

Stochastic Search

A black box search template to minimize $f: \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **①** Sample distribution $P(x|\theta) \rightarrow x_1, \dots, x_{\lambda} \in \mathbb{R}^n$
- ② Evaluate x_1, \ldots, x_{λ} on f
- **3** Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

In Evolutionary Algorithms the distribution P is often implicitly defined via **operators on a population**, in particular, selection, recombination and mutation

Natural template for Estimation of Distribution Algorithms

Evolution Strategies

New search points are sampled normally distributed

$$\mathbf{x}_i \sim \mathbf{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

for
$$i = 1, \ldots, \lambda$$

as perturbations of m

where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, and $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the **shape** of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, \mathbb{C} , and σ .

Why Normal Distributions?

- widely observed in nature, for example as phenotypic traits
- ② only stable distribution with finite variance stable means the sum of normal variates is again normal, helpful in design and analysis of algorithms
- 3 most convenient way to generate isotropic search points the isotropic distribution does not favor any direction (unfoundedly), supports rotational invariance
- 4 maximum entropy distribution with finite variance the least possible assumptions on f in the distribution shape

The Multi-Variate (*n*-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m,\mathbb{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbb{C} .

The **mean** value m

- determines the displacement (translation)
- is the value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

The **covariance matrix** $\mathbb C$ determines the shape. It has a valuable **geometrical interpretation**: any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb R^n \mid x^T \mathbf C^{-1} x = 1\}$

Lines of Equal Density

 $\mathcal{N}\left(m,\sigma^2\mathbf{I}\right)\sim m+\sigma\mathcal{N}(\mathbf{0},\mathbf{I})$ one degree of freedom σ components of $\mathcal{N}(\mathbf{0},\mathbf{I})$ are independent standard normally distributed

 $N(m, D^2) \sim m + DN(0, 1)$ n degrees of freedom components are independent, scaled

 $\mathcal{N}(m,\mathbf{C}) \sim m + \mathbf{C}^{\frac{1}{2}} \mathcal{N}(\mathbf{0},\mathbf{I})$ $(n^2+n)/2$ degrees of freedom components are correlated

Evolution Strategies

Terminology

 $(\mu + \lambda)$ -selection, μ : # parents, λ : # offspring

 $(\mu + \lambda)$ -ES: selection in {parents} \cup {offspring} (μ, λ) -ES: selection in {offspring}

(1+1)-ES

Sample one offspring from parent m

$$x = m + \sigma \mathcal{N}(\mathbf{0}, \mathbf{C})$$

If x better than m select

$$m \leftarrow x$$

The $(\mu/\mu, \lambda)$ -ES

Non-elitist selection and intermediate (weighted) recombination

Given the *i*-th solution point
$$x_i = m + \sigma \underbrace{\mathcal{N}_i(\mathbf{0}, \mathbf{C})}_{=:y_i} = m + \sigma y_i$$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$m \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = m + \sigma \underbrace{\sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}}_{=: \mathbf{y}_w}$$

where

$$w_1 \ge \dots \ge w_{\mu} > 0$$
, $\sum_{i=1}^{\mu} w_i = 1$, $\frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

$$f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le \dots \le f(x_{\lambda:\lambda})$$

$$g(f(x_{1:\lambda})) \le g(f(x_{2:\lambda})) \le \dots \le g(f(x_{\lambda:\lambda})) \quad \forall g$$

g is strictly monotonically increasing g preserves ranks

Basic Invariance in Search Space

translation invariance

$$f(\mathbf{x}) \leftrightarrow f(\mathbf{x} - \mathbf{a})$$

is true for most optimization algorithms

Identical behavior on f and f_a

$$f$$
:

$$x \mapsto f(x)$$
,

$$\mathbf{r}^{(t=0)} = \mathbf{r}_0$$

$$f: x \mapsto f(x), \qquad x^{(t=0)} = x_0$$

 $f_a: x \mapsto f(x-a), \quad x^{(t=0)} = x_0 + a$

$$\mathbf{x}^{(t=0)} = \mathbf{x}_0 + \mathbf{a}$$

No difference can be observed w.r.t. the argument of f

Rotational Invariance in Search Space

• invariance to an orthogonal transformation \mathbf{R} , where $\mathbf{R}\mathbf{R}^{\mathrm{T}} = \mathbf{I}$ e.g. true for simple evolution strategies recombination operators might jeopardize rotational invariance

Identical behavior on f and $f_{\mathbf{R}}$

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

 $f_{\mathbf{R}}: \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{R}^{-1}(\mathbf{x}_0)$

No difference can be observed w.r.t. the argument of f

34

Invariance

Impact

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms.

Albert Finstein

- empirical performance results, for example
 - from benchmark functions
 - from solved real world problems

are only useful if they do generalize to other problems

Invariance is a strong **non-empirical** statement about the feasibility of generalization

> generalizing (identical) performance from a single function to a whole class of functions

consequently, invariance is important for the evaluation of search algorithms

- 1 Problem Statemen
 - Black Box Optimization and Its Difficulties
 - Non-Separable Problems
 - III-Conditioned Problems
- 2 Evolution Strategies
 - A Search Template
 - The Normal Distribution
 - Invariance
- 3 Step-Size Control
 - Why Step-Size Control
 - One-Fifth Success Rule
 - Self-Adaptation
 - Path Length Control (CSA)
- 4 Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Bank-u Update
 - Estimation of Distribution
- 5 Experiments
- 6 Summary

Evolution Strategies

Recalling

New search points are sampled normally distributed

$$x_i \sim m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

as perturbations of m

where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, and $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $\mathbf{m} \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbb{C} \in \mathbb{R}^{n \times n}$ determines the **shape** of the distribution ellipsoid

The remaining question is how to update σ and \mathbb{C} .

 $\mathbf{C} = \mathbf{I}$ $f(\mathbf{x}) = \sum x_i^2$ in $[-0.2, 0.8]^n$ for n = 10

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

The evolution window

evolution window for the step-size on the sphere function

evolution window refers to the step-size interval where reasonable performance is observed

Methods for Step-Size Control

■ 1/5-th success rule^{ab}, often applied with "+"-selection

increase step-size if more than 20% of the new solutions are successful, decrease otherwise

• σ -self-adaptation^c, applied with ","-selection

mutation is applied to the step-size and the better one, according to the objective function value, is selected

simplified "global" self-adaptation

 path length control^d (Cumulative Step-size Adaptation, CSA)^e, applied with "."-selection

^aRechenberg 1973, *Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution*, Frommann-Holzboog

^bSchumer and Steiglitz 1968. Adaptive step size random search. *IEEE TAC*

^CSchwefel 1981, Numerical Optimization of Computer Models, Wiley

^dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, *Evol. Comput. 9(2)*

Ostermeier et al 1994. Step-size adaptation based on non-local use of selection information. PPSN IV

One-fifth success rule

One-fifth success rule

Probability of success (p_s)

1/2

Probability of success (p_s)

1/5

"too small"

One-fifth success rule

 p_s : # of successful offspring / # offspring (per generation)

$$\sigma \leftarrow \sigma \times \exp\left(\frac{1}{3} \times \frac{p_s - p_{\text{target}}}{1 - p_{\text{target}}}\right) \qquad \text{Increase } \sigma \text{ if } p_s > p_{\text{target}} \\ \text{Decrease } \sigma \text{ if } p_s < p_{\text{target}}$$

(1+1)-ES
$$p_{target} = 1/5$$
 IF offspring better parent
$$p_s = 1, \ \sigma \leftarrow \sigma \times \exp(1/3)$$
 ELSE
$$p_s = 0, \ \sigma \leftarrow \sigma / \exp(1/3)^{1/4}$$

Self-adaptation

in a $(1, \lambda)$ -ES

MUTATE for
$$i = 1, \dots \lambda$$

step-size parent

$$\sigma_i \leftarrow \sigma \exp(\tau N_i(0, 1))$$

$$x_i \leftarrow x + \sigma_i \mathcal{N}_i(0, \mathbf{I})$$

EVALUATE

SELECT

Best offspring x_* with its step-size σ_*

Rationale

Unadapted step-size won't produce successive good individuals "The step-size are adjusted by the evolution itself"

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

$$\begin{array}{rcl} \boldsymbol{x}_i & = & \boldsymbol{m} + \sigma \, \boldsymbol{y}_i \\ \boldsymbol{m} & \leftarrow & \boldsymbol{m} + \sigma \boldsymbol{y}_w \end{array}$$

loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, evolution path $p_{\sigma} = 0$, set $c_{\sigma} \approx 4/n$, $d_{\sigma} \approx 1$.

$$m{m} \leftarrow m{m} + \sigma m{y}_w \quad \text{where } m{y}_w = \sum_{i=1}^{\mu} w_i m{y}_{i:\lambda} \quad \text{update mean}$$
 $m{p}_\sigma \leftarrow (1-c_\sigma) m{p}_\sigma + \sqrt{1-(1-c_\sigma)^2} \quad \sqrt{\mu_w} \quad m{y}_w \quad \text{accounts for } u_i$
 $\sigma \leftarrow \sigma \times \exp\left(\frac{c_\sigma}{d_\sigma} \left(\frac{\|m{p}_\sigma\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right) \quad \text{update step-size}$
 $>1 \Longleftrightarrow \|m{p}_\sigma\| \text{ is greater than its expectation}$

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$

for $n = 10$

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
 - Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
 - Estimation of Distribution
- 5 Experiments
- 6 Summary

Evolution Strategies

Recalling

New search points are sampled normally distributed

$$x_i \sim m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

as perturbations of m

where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, and $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $\mathbf{m} \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbb{C} \in \mathbb{R}^{n \times n}$ determines the **shape** of the distribution ellipsoid

The remaining question is how to update C.

Covariance Matrix Adaptation

Rank-One Update

$$m \leftarrow m + \sigma y_w, \quad y_w = \sum_{i=1}^{\mu} w_i y_{i:\lambda}, \quad y_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$

new distribution,

$$\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \mathbf{y}_{w} \mathbf{y}_{w}^{\mathrm{T}}$$

the ruling principle: the adaptation increases the likelyhood of successful steps, y_w , to appear again

..equations

Covariance Matrix Adaptation

Rank-One Update

Initialize $m \in \mathbb{R}^n$, and C = I, set $\sigma = 1$, learning rate $c_{cov} \approx 2/n^2$ While not terminate

$$\begin{split} & \boldsymbol{x}_i &= \boldsymbol{m} + \sigma \, \boldsymbol{y}_i, \qquad \boldsymbol{y}_i \ \sim \ \mathcal{N}_i(\boldsymbol{0}, \mathbf{C}) \,, \\ & \boldsymbol{m} \ \leftarrow \ \boldsymbol{m} + \sigma \boldsymbol{y}_w \qquad \text{where } \boldsymbol{y}_w = \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \\ & \mathbf{C} \ \leftarrow \ (1 - c_{\text{cov}}) \mathbf{C} + c_{\text{cov}} \mu_w \, \underbrace{\boldsymbol{y}_w \boldsymbol{y}_w^{\mathrm{T}}}_{\text{rank-one}} \quad \text{where } \mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \geq 1 \end{split}$$

$\mathbf{C} \leftarrow (1 - c_{\text{cov}})\mathbf{C} + c_{\text{cov}}\mu_{w}\mathbf{v}_{w}\mathbf{v}_{w}^{\mathrm{T}}$

covariance matrix adaptation

- learns all pairwise dependencies between variables off-diagonal entries in the covariance matrix reflect the dependencies
- conducts a principle component analysis (PCA) of steps v_w , sequentially in time and space

eigenvectors of the covariance matrix C are the principle components / the principle axes of the mutation ellipsoid, rotational invariant

learns a new, rotated problem representation and a new metric (Mahalanobis)

approximates the inverse Hessian on quadratic functions overwhelming empirical evidence, proof is in progress

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
 - Estimation of Distribution
- 5 Experiments
- 6 Summary

Cumulation

The Evolution Path

Evolution Path

Conceptually, the evolution path is the path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of steps y_w is used

$$p_{
m c} \propto \sum_{i=0}^{g} \underbrace{(1-c_{
m c})^{g-i}}_{
m exponentially} y_{w}^{(i)}$$

The recursive construction of the evolution path (cumulation):

$$p_{\mathrm{c}} \leftarrow \underbrace{(1-c_{\mathrm{c}})}_{\mathrm{decay \ factor}} p_{\mathrm{c}} + \underbrace{\sqrt{1-(1-c_{\mathrm{c}})^2} \sqrt{\mu_{w}}}_{\mathrm{normalization \ factor}} \underbrace{y_{w}}_{\mathrm{input} = \frac{m-m_{\mathrm{old}}}{\sigma}}$$

where $\mu_{\rm\scriptscriptstyle W}=\frac{1}{\sum w_i^2}$, $c_{\rm c}\ll 1$. History information is accumulated in the evolution path.

"Cumulation" is a widely used technique and also know as

- exponential smoothing in time series, forecasting
- exponentially weighted mooving average
- iterate averaging in stochastic approximation
- momentum in the back-propagation algorithm for ANNs
- ...

Cumulation

Utilizing the Evolution Path

We used $y_w y_w^T$ for updating C. Because $y_w y_w^T = -y_w (-y_w)^T$ the sign of y_w is lost.

The sign information is (re-)introduced by using the evolution path.

where
$$\mu_w = \frac{1}{\sum w_i^2}$$
, $c_c \ll 1$.

Using an **evolution path** for the **rank-one update** of the covariance matrix reduces the number of function evaluations to adapt to a straight ridge **from** $\mathcal{O}(n^2)$ **to** $\mathcal{O}(n)$. (a)

The overall model complexity is n^2 but important parts of the model can be learned in time of order n

^aHansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evolutionary Computation*, 11(1), pp. 1-18

Rank- μ Update

$$\mathbf{x}_{i} = \mathbf{m} + \sigma \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \\
\mathbf{m} \leftarrow \mathbf{m} + \sigma \mathbf{y}_{w} \quad \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda}$$

The rank- μ update extends the update rule for **large population sizes** λ using $\mu>1$ vectors to update ${\bf C}$ at each generation step.

The matrix

$$\mathbf{C}_{\mu} = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$$

computes a weighted mean of the outer products of the best μ steps and has rank $\min(\mu, n)$ with probability one.

The rank- μ update then reads

$$\mathbf{C} \leftarrow (1 - c_{\text{cov}}) \mathbf{C} + c_{\text{cov}} \mathbf{C}_{\mu}$$

where $c_{\text{cov}} \approx \mu_w/n^2$ and $c_{\text{cov}} \leq 1$.

$$x_i = m + \sigma y_i, y_i \sim \mathcal{N}(\mathbf{0}, \mathbb{C})$$

$$\mathbf{C}_{\mu} = \frac{1}{\mu} \sum \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathsf{T}}$$

$$\mathbf{C} \leftarrow (1-1) \times \mathbf{C} + 1 \times \mathbf{C}_{\mu}$$

new distribution

sampling of
$$\lambda=150$$
 solutions where $\mathbf{C}=\mathbf{I}$ and $\sigma=1$

calculating C where
$$\mu=50$$
, $w_1=\cdots=w_\mu=\frac{1}{\mu}$, and $c_{\rm cov}=1$

The rank- μ update

- increases the possible learning rate in large populations roughly from $2/n^2$ to $\mu_{\scriptscriptstyle W}/n^2$
- can reduce the number of necessary **generations** roughly from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$ (5)

given
$$\mu_w \propto \lambda \propto n$$

Therefore the rank- μ update is the primary mechanism whenever a large population size is used

say
$$\lambda \ge 3n + 10$$

The rank-one update

• uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

Rank-one update and rank- μ update can be combined. . .

⁵ Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evolutionary Computation*, 11(1), pp. 1-18

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
 - Covariance Matrix Rank-One Update
 - Cumulation—the Evolution Path
 - Covariance Matrix Rank-μ Update
 - Estimation of Distribution
- 5 Experiments
- 6 Summary

Estimation of Distribution Algorithms

- Estimate a distribution that (re-)samples the parental population.
- All parameters of the distribution θ are estimated from the given population.

Example: EMNA (Estimation of Multi-variate Normal Algorithm)

Initialize $m \in \mathbb{R}^n$, and $\mathbf{C} = \mathbf{I}$ While not terminate

$$egin{array}{lll} oldsymbol{x}_i &=& oldsymbol{m} + oldsymbol{y}_i, & oldsymbol{y}_i &\sim \mathcal{N}_i(oldsymbol{0}, oldsymbol{C}) \,, & ext{for } i = 1, \ldots, \lambda \ & oldsymbol{m} &\leftarrow & rac{1}{\mu} \displaystyle{\sum_{i=1}^{\mu}} oldsymbol{x}_{i:\lambda} \ & oldsymbol{C} &\leftarrow & \displaystyle{\sum_{i=1}^{\mu}} (oldsymbol{x}_{i:\lambda} - oldsymbol{m}) (oldsymbol{x}_{i:\lambda} - oldsymbol{m})^{\mathrm{T}} \end{array}$$

Larrañaga and Lozano 2002. Estimation of Distribution Algorithms

Estimation of Multivariate Normal Algorithm EMNA $_{global}$ versus rank- μ CMA 6

The CMA-update yields a larger variance in particular in gradient direction, because m_{new} is the minimizer for the variances when calculating $\mathbb C$

⁶ Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Control
- 4 Covariance Matrix Adaptation
- 5 Experiments
- 6 Summary

Experimentum Crucis (1)

f convex quadratic, separable

...non-separable

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

 $\mathbf{C} \propto \mathbf{H}^{-1}$ for all g, \mathbf{H}

...internal parameters

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying α

SP1 = average number of objective function evaluations to reach the target function value of 10^{-9}

- 1 Problem Statement
- 2 Evolution Strategies
- 3 Step-Size Contro
- 4 Covariance Matrix Adaptation
- 5 Experiments
- 6 Summary

Three Main Features of Evolution Strategies

- **Q** Rank-based selection: same performance on g(f(x)) for any g $g: \mathbb{R} \to \mathbb{R}$ strictly monotonic (order preserving)
- Step-size control: converge log-linearly on the sphere function and many others
- 3 Covariance matrix adaptation: reduce any convex quadratic function

$$f(x) = x^{\mathrm{T}} H x$$

to the sphere function

$$f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}}\mathbf{x}$$

without use of derivatives

lines of equal density align with lines of equal fitness $\mathbb{C} \propto H^{-1}$

Source code for CMA-ES in C, Java, Matlab, Octave, Scilab, Python is available at

http://www.lri.fr/~hansen/cmaes_inmatlab.html